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Abstract: The importance of non-linear models in time series analysis has been
recognized increasingly over the past ten years. A number of discrete time non-linear
processes have been introduced and found valuable for the modelling of observed
series. Among these processes are the discrete time threshold models, discussed
extensively in the book of Tong (1983). The purpose of this paper is to define a
continuous time analogue of the threshold AR(p) process and to discuss some of its
properties. For the continuous time threshold AR(1) process (henceforth denoted
CTAR(1)) we derive the stationary distribution (under appropriate assumptions)
and consider problems of prediction and inference. The techniques developed apply
equally well both to regularly and to irregularly spaced observations.
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1. Introduction

A time series {X;} is a discrete self-exciting threshold autoregressive (SE
TAR) process with delay parameter d if it satisfies the equations

. p o .
X; = a((;) + Eag-')Xt_j + a(’)et, 791 < Xi—g < 13, (1.1)
i=1
where —00 = 19 < 11 < -+ < 7 = 00, a,(j") and a(i)(> 0), 2 = 1,...,1, are

constants, and {e;} is a white noise sequence with unit variance. The thresholds
are the levels ry,... ,7/—;. Thus, the real line is partitioned into [ intervals, and
X satisfies one of / autoregressive equations depending on the interval in which
Xi¢—q falls. When ! =1, {X,;} is an AR process.

The model (1.1) is capable of reproducing features which are frequently ob-
served in naturally occurring time series but which cannot be reproduced by
linear Gaussian models, e.g. time-irreversibility and the occurrence of occa-
sional bursts of outlying observations. For a comprehensive account of the use
of threshold models see Tong (1983) and Tong and Lim (1980). The threshold
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AR(1) process is discussed in considerable detail by Chan et al. (1985), who de-
rive necessary and sufficient conditions for existence of a stationary distribution.

There are several good reasons for investigating continuous time analogues
of (1.1). For a continuously evolving process observed at discrete time intervals it
is natural to allow the possibility of a model change at any time, possibly between
observations. It would also be useful to allow a delay parameter, d, which is not
necessarily an integer multiple of the observation spacing, although in this paper
we shall confine ourselves to the case of zero delay (which means that the state
vector S(t) of Equation (2.4) is Markovian). As in Jones (1981), where linear
continuous time autoregressive processes are used for modelling observations in
discrete time, the continuous time model is particularly well suited to dealing
with missing or irregularly spaced observations. This is demonstrated in Section
4 where we show how to compute the Gaussian likelihood for a finite set of
arbitrarily spaced observations.

As we shall see, the analysis of continuous time threshold autoregressive
models can be reduced to the study of diffusion processes with piecewise linear
coefficients. Stationary distributions and conditional expectations can be com-
puted (numerically at least) from the forward and backward Kolmogorov equa-

tions with appropriate boundary conditions. The calculations are illustrated in
the examples.

2. Continuous Time Autoregressive Models

Before studying continuous time threshold autoregressive (CTAR) processes,
we shall quickly review the corresponding linear CAR models.

We define a zero-mean CAR(1) process to be a stationary solution of the
stochastic differential equation,

dX(t) = aX(t)dt + 0dW (1), —00 < t < 00, (2.1)

where {W(t)} denotes standard Brownian motion and @ < 0. Under the latter
assumption, Equation (2.1) has the unique stationary solution

13
X@)=c [ explat - )W) (22)

Equivalently, a zero-mean CAR(1) process can be defined as a stationary
diffusion process with drift coefficient a(z) = az and diffusion coefficient 8(z) =
02/2, i.e. a stationary Ornstein-Uhlenbeck process.

A CAR(1) process with mean p = —b/a is a stationary solution of

dY (t) = (aY () + b)dt + 0dW(t), —o0 <t < 0o, (2.3)
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where again we assume that a < 0. Equivalently we can say that {Y;} is a
stationary diffusion process with drift coefficient a(z) = az + b and diffusion
coefficient 8(z) = 02/2.

In order to define a zero-mean CAR(p) process we introduce the stationary
p-variate process {S(t)} satisfying the stochastic differential equation,

dS(t) = AS(t)dt + eadW (1), (2.4)
where .
0 1 0 0 0
0 0 1 0 0
A= : y €= y
0 0 0 1 0
-Gy —Qp_1 ~—Qp_2 - —0 1

and, to ensure stability, we assume that the zeros of a(z) = 2P +a1 2P~ 1 +- - -+ a,2°
all have negative real parts. The zero-mean CAR(p) process {X:;} is then defined
to be the first component of the process {S(t)}, i.e.

Xt=[1 0 --- 0]S(t). (2.5)
Equation (2.4) is simply a state-space version of the equation

PX(@) | X

. dw (t)
dtp Y g1

dt ’

+ta,X(t)=0

in which the jth component of S(t) is d—’%{—ffﬁ, j=1,...,p. Even though ﬂ;’éﬂ
is not defined in the usual sense, the pth-order differential equation for {X(t)}
acquires a precise interpretation when it is written in the state-space form (2.4).

We can also specify {X(¢)} as the first component of the stationary multi-
variate diffusion process {S(¢)} with drift coefficient vector a(x) = Ax and diffu-
sion coefficient matrix B(x) = o%ee/2. A CAR(p) process with mean p = b/a,
is defined analogously, by substituting bdt + o dW(t) for cdW (t) on the right of
Equation (2.4).

3. The Continuous Time Threshold AR(1) Process

We define the CTAR(1) process to be a stationary solution of the stochastic
differential equations '

dX(t) = (DX (&) +6D)dt+oDdW(t), rioi < X(@t)<ri, i=1,...,1, (3.1)

where —00 = 1) < 11 < -+ < 1 = o0, aV) < 0, al?) < 0, each o) > 0 and
b, ... ,b() are constants. The thresholds are the levels Tly.--,Ti—1. Hl=1
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then {X(t)} is a CAR(1) process. The process defined by (3.1) is a diffusion
process with drift and diffusior coefficients

{
a(z) =Y (aDz + ), _, »)(2), (3.2)
i=1
and
L (2
,B(Z) = E TI(Ti—l,T.')(z)7 (33)
=1

respectively, where I4 denotes the indicator function of the set A.

The transition function of {X(t)} cannot be determined until we specify
the boundary behaviour at the thresholds ry,... ,7;_;. We do this by specifying
that the functions in the domain D(G) of the generator G of {X(t)} satisfy the
condition,

\/ﬂ(r,-—)f'(r;—) =4/ ﬂ(’l‘,‘+)f’(7‘;+), i1=1,... ,l -1, for all f € D(g)
(3.4)
For f € D(G) the generator of {X(t)} is defined by

Gf(z) = a(z)f'(z) + B(z)f" (=), z @ {ri,.-..,11-1}, (3.5)

with Gf(z), z € {r1,... ,71-1}, determined by continuity of G f(-).

In the constant variance case, o) = ¢, i = 1,...,I, the condition (3.4)
reduces to continuity of f’. This is the condition used by Atkinson and Caughey
(1968) in their determination of the spectral density for this case. The more gen-
eral condition is obtained from the solution {X(™)(t),t > 0} of Equation (3.1)
with {W(t)} replaced by I™)(t) = fot Y™ (u)du, where {Y(")(t)} is the contin-
uous time Markov process with state-space {—+/n,+/n} and generator ["n" i
It is known (see Brockwell, Resnick and Pacheco-Santiago (1982)) that {I{(™)(¢)}
converges weakly to {W(t)} as n — oco. Consideration of the generator of the
process {(X(™(t),Y(")(t))} as n — oo leads to the condition (3.4). (Note that a
different process is obtained if (3.4) is replaced by continuity of f’.)

Proposition 3.1. Suppose that o) > 0, i = 1,...,l. Then the process
{X(t)} defined by (3.1) and (3.4) has a stationary distribution if and only if
limg—,— oo (aMz? + 26(0z) < 0 and limg_, oo (aP2? + 26(2) < 0.

Proof. If either of the two conditions is violated, if [a,b] is any finite interval
and if 0 < € < (b — a)/2, then either the expected passage time of X(¢) from
b+ € to b — € or the expected passage time from a — € to a + ¢ is infinite. On
the other hand the expected time, starting from any state z € [a + €,b — €], for
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X (t) to reach either a — € or b+ ¢ is bounded. A simple renewal theory argument
therefore shows that there can be no stationary distribution for X(t), since such
a distribution would necessarily assign probability zero to the interval [a+ ¢, b— ¢]
and hence to every finite interval.

If both conditions are satisfied we show that there is a stationary distribution
by computing it explicitly. To do this we note (see, e.g., Breiman (1968), p.346)
that 7(z) is a stationary density for {X(¢)} if and only if

/_ ” Gf(@)r(z)ds =0 for all f € D(G). (3.6)

Substituting from (3.5), integrating by parts, using (3.4) and assuming that 7 has
continuous second derivatives except at the thresholds, we find that 7 satisfies
the forward Kolmogorov equation,

a(z)r'(z) + o' (2)r(z) - B(z)r"(z) =0, =z & {ri,...,r_1}, (3.7)

with boundary conditions (for i = 1,... ,1 — 1),

VB(ri=)n(ri—) = /B(ri+)m(ri+), (3.8)

and
a(ri=)m(ri=) = B(ri=)r'(ri=) = a(ri+)r(rit) — B(rit)n'(ri+),  (3.9)
where o and 3 are defined in (3.2) and (3.3). Integrating (3.7) we find that
@Dz + bNa(z) — eM2'(2) /2= D, 7y <z < s

Integrability of 7 implies that ¢() = 0 and (3.9) then implies that ¢() = 0 for all
t. Integrating again we find that

m(z) = kiexp[(aP2? + 2602) /62, riy <z <y, i=1,... 4, (3.10)
where k1, kz,... ,k; are determined by (3.8) and the fact that > =(z)dz = 1.
Example 3.1. Consider the CTAR(1) process,

dX(t)+ 0.50X(t)dt = 0.50dW(t), if X(t)< 0;
dX(t) +1.00X(t)dt = dW(t),  if X(£)> 0.

From (3.10) we immediately find that the stationary density of {X(t)} is

2ce~2%" 1 <0,
m(z) = 2
ce™ %, z>0,
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where ¢ = (2v2 - 2)//7 ~ 0.46739.

Example 3.2. Consider the two-threshold CTAR(1) process,
dX(t) +0.18 X()dt = 1.2dW(t),  if X(t) < ~0.5;
dX(t)+0.50 X(t)dt = dW (%), if —0.5 < X(t) < 0.5;
dX(t)+0.80 X(t)dt = 0.4dW(t), if X(t) > 0.5.

From (3.10) the stationary density of {X (1)} is

ce—0.09375——.1251'2, z < —0.5,
2
7(2) = § 1.2¢e7%%%, -0.5 < z < 0.5,
3cel 125-5z" z > 0.5,

where ¢ ~ 0.2940.
4. Prediction and Inference for CTAR(1) Processes

We first consider the problem of finding the minimum mean squared error
predictor X,(n+h) of X(n+h) based on {X(s),s < n}. By the Markov property
of {X(t)} this is simply the conditional expectation E(X(n + h)|X(n)). (This is
also the best predictor based on any finite set of observations of which the last
is X(n).) We can express E(X(n + h)|X(n)) in the form m(X(n),h) where

m(z,t) = E(X(t)|X(0) = z).

In the same way we can express the mean squared error of the predictor, condi-
tional on X(n), as v(X(n),h) where

v(z,t) = s(z,t) — m(z,t)? and s(z,t) = E(X()}|X(0) = 2).

In order to determine the functions m and s numerically, we solve the
backward Kolmogorov equations for the conditional characteristic function,
#(z,t) = E,e'*X() namely

0 0 2
05?3 = a(m)gg +ﬂ(z)%, z ¢ {rl"" ,7'1-1}7

with initial condition ¢(z,0) = €' and boundaty conditions

9| <1 and \/ﬂ(ri—)%g(r.-—) = \/ﬂ(r;+)—g—:i(r.-+), i=1,...,1-1.

The functions m and s are determined from the first and second partial deriva-
tives of ¢ with respect to 6 at 6 = 0.
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Example 4.1. For the CTAR(1) process of Example 3.1 the functions m(z, )
and v(z,t) for ¢ = 1,2 and ‘5 are shown in Figures 1 and 2 respectively. As
expected, the values of m(z,t) and v(z,t) for t > 10 are very close to the mean,
0, and variance, .35355, of the stationary distribution in Example 3.1. Notice
also that for small t, m(z,t) is reasonably well approximated by the solution
m*(z,t) = zexp(—t), z > 0, m*(z,t) = zexp(—.5t), z < 0, of the correspond-
ing defining equations with the white noise terms set equal to zero. In general
however, this approximation will not be good for large values of the lead time, t.

Maximum Gaussian likelihood estimation of parameters for discrete time
ARMA processes based on the observations {X3,... ,X,} is equivalent (see e.g.

Brockwell and Davis (1987)) to maximization of the Gaussian likelihood of the
linear innovations, i.e. of

n

N ‘AY

L= (27[')—’1/2(’00’01 e ’l)n_l)_l/2 exp { — ; (—Xr—;v,—%‘)},
where X; = EX;, X;,i> 2, is the minimum mean-squared error linear predictor
of X; in terms of 1,X;,...,X; 1, vo = Var(X;) and v; = E(Xj41 — Xj)z,
J 2 1. A natural analogue of this procedure for the CTAR(1) process observed
at a finite set of times {t1,... ,t,} is maximization of the Gaussian likelihood
defined as follows. Letting X(tl) = EX(t), f((t;) =m(X(ti-1),ti — ti—1), % > 2,
vo = Var(X(t)) and v; = v(X(t),tig1 — t), ¢ > 1, we define the Gaussian
likelihood L* by supposing the distribution of X (¢;) and the transition densities
to be Gaussian. Thus

n N Yot 2
L* = (27) ™2 (vowy -+ - vpy) /2 exP{ -2 L) = 2 }

20,

i=1

For a given CTAR(1) model and a given data set, the function L* is easily
calculated from the stationary distribution and the functions m and v discussed
above. Properties of the estimators obtained by maximization of L* will be
investigated in a subsequent paper. We note however that the expression for L*
is valid both for regularly and irregularly spaced observations. (Calculation of the
true likelihood of the observations is also possible from the marginal (stationary)
distribution and transition probabilities of {X(¢)}, however the computation of
the latter is considerably more difficult.)

5. The CTAR(p) Process

Analysis of the CTAR(p) process is more complicated when p > 1 since
it involves the analysis of a p-dimensional diffusion process. We shall therefore
restrict ourselves, here, to specification of the process. A detailed study of its
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properties will be given in a subsequent paper. A CTAR(p) process is defined

(cf. the CAR(p) process) as the first component of a stationary p-dimensional
series S(t) satisfying the equations,

dS(t) = AVS(t)dt + e(bVdt + 0VdW (t)),  rioy < Si1(2) < 7,

where —00 =719 < 73 < -+ < 71 = 00, 51(t) denotes the first component of S(t)
and each o{9) > 0. The matrices A®) and vector e have the form,

0 1 0 “en 0 0

0 0 1 v 0 0

AG) = : : : and e= | :
0o 0 0 1 0

—ag,') —aﬁ,’_l —a§22 —a,(l') 1

The process {S(t)} is a diffusion process with drift and diffusion coefficients
1-1
a(x) = E(A(‘)x + eb(i))I(Ti—lyTi)(z1)7
=0
and

-1 0(5)2
B(x) = Z Tee'I(r.._h,...)(ml).
i=0
(We shall write z;, j = 1,...,p, to denote the jth component of any p-vector
x.) In order to determine the transition function of S(t), or equivalently the
conditional characteristic function, ¢(x,t) = E(exp(i6'S(t))|S(0) = x), we need
to solve the backward equation,

09  o*(zy) 8¢ _
F T a—z%+a(x) Ve,

where 0?(z,) = Y24 o1, ro(®1), #(x,0) = ef'x |¢| < 1 and 0%¢/d22 is
continuous.
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Best predictor, m(z, t)

-5 -4 =3 -2 -1 0 1 2 3 4 5
Initial state, z

Figure 1. The best predictors m(z,t), —5 < z < 5, for Example 3.1 with lead times
t=1,2and 5. Legend: +t=1, xt=2,Vit=5.
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Figure 2. Conditional mean squared errors v(z,t), —5 < z < 5, of the predictors in
Figure 1. Legend: +t=1, x t =2,V t=5.
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