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Supplementary Material

This note contains the proofs of Theorem 1, 2 and 3 in the main paper. Theorem 1

~(1
establishes the root-n consistency of /\( ). Theorem 2 establishes the sparsity property of
~(0
)\( ). Theorem 3, which combines both Theorems 1 and 2, is our main theorem. It estab-

lishes the selection consistency of the KGNG estimator and its asymptotic normalities
for both nonzero constant and time-varying regression coefficient.

Before we give the details of proofs, we first introduce some additional notation.
With simple matrix multiplication, we have /\81) = P1 )Xo and /\80) = Py)\g, where

0P2 Xp1 Ipz OP2 Xp3 OP2 Xp1 OP2 Xp2 OP2 Xp3

Pr=1 Opyxpi Opyxp, Ipg Opsxpr Opsxps Opsxps ) (S0.1)
Ops Xp1 Ops Xp2 OP3 Xp3 OP3 Xp1 OP3 Xp2 I;DS (p2+2p3) x2p
Ipl Opl Xp2 Opl Xp3 0p1 Xp1 0p1 Xp2 Op1 Xp3

Py=1 0pixpi Opixps Opixps  Ip, 0pixps  Opixps (S0.2)
0P2 Xp1 0P2 Xp2 0P2 Xp3 OP2 Xp1 Ipz OP2 Xp3 (2p1+p2) x2p

LQEXO = (A(()l)T,A(()O)T)T. We also have Ag1 = PsAo = Py AM + PioA® and Agy =
Pixo = PudW + PpA® | where

Opl Xp2 0101 Xp3 0101 Xp3 I;vl 01)1 Xp1 01)1 Xp2
Py = (P31 |P32) = Ipz Opsxps  Opaxps | Opaxpr Opyxpr Opaxps ;
01’3 Xp3 Ips Ops Xp3 Ops Xp1 Ops Xp1 Ops Xp2 pX2p
(S0.3)
Opl Xp2 Opl Xp3 Opl Xp3 Opl Xp1 I;D1 Opl Xp2
Py = (P41 |P42) = Opz X p2 Opz X p3 Opz X p3 Opz Xp1 Opz Xp1 ng
OPS Xp2 0:03 Xp3 IP3 Ops Xp1 Ops Xp1 Ops Xp2 pX2p
(S0.4)

Let Lon(A1, Ao;m2, B (1) and Qan(A1, Ao;m2, B (+)) denote the partial likelihood
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and penalized partial likelihood in equation (2.3) respectively. We then have

Lon(A1, Az;m, B()) = Z /0 " a(s) 2~ 1og in(s)e“WZj dN;(s);
i=1 =1
Qan(A1, A2;m, B(+)) = — Lon (A1, A2;m, B(+)) + 01| A1]l1 + 62 Xzl
where
a(s) = a(s, AV, XV:m, B7(-) = als, A1, Apsm, B7(-) = A om + Ay 0 B7(s). (S0.5)

Let U(A1, Ag;m, B7(+)) and H (A1, Ag;m, 37 (+)) denote the vector and matrix of the first
and second order partial derivatives of Lo, (A1, A2;m, B(+)) with respect to A = (A], A})".
Thus

U(A1, A2;m Z/A (Z; — E(a(s),s)) dN;(s),
S@ (a(s),s SM (a(s), s @2 .
e YT E P
Lo
where
As) = Alssm g7 () = ) ) (50,6

Rearranging the order of A, we rewrite Loy (A1, A2;-) as Lgn(/\(l)7 pAR -). Denote
the first and second order partial derivatives of Lgn()\(l), A -) with respect to AW as
Ul()\(l), PYRE -) and Hn()\(l), A0 -). Denote the first and second order partial deriva-
tives of Lo, (A, A ) with respect to A? as Uy(AM, A@;.) and Hypy (A, A1) In
the following proofs, we use || - ||; and | - || to denote ¢; and ¢ norms, respectively.

S1 Proof of Theorem 1

Define @(s) = a(s, A, X9, B°()), A(s) = A(s;m, B () and
Ap(s) = A(s;mo, B5(4)), (S1.7)

where a(s, A\, A\©:m_ B*(.)) and A(s;m,B%()) are deﬁned in (SO 5) and (S0.6), re-
spectively. The second order partial derivative of Qg (X AW A0 6 () with respect
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to A is

P Qan(A O)fﬁ ()
OA 1>a>\
B n T B _5(2)(5(8)75) S(l)(a(s),s) ®2
_Z PLA(s) 5(0) (a(s), s) - <S(O)(Ei(s), s))
(S Yi(s )Yj(s)e a(s)' Z; ga(s)' Z; (Z; _Zj)®2

7; 0/ PLA(s) | =2 BN (Pi(s)) ani(s),

= —H;; A, A3, 537()

(Pli(s))T AN, (s)

=17

which is positive definite for large n and P is deﬁned in (SO. 1) Thus, for any fixed A

there exists a unique minimizer )\ of Qon( AP A0 ,6' (1)) when n is large.

Consider the C-ball B,(C) = {AM : XD = AlY 4 n=1/24 ||u|| < C}, C > 0, and

~(1
denote its boundary by 0B, (C). To prove ||)\( ' )\(()1)” = 0,(n~1/2), it is sufficient to
show that, for any given € > 0, there exists a large constant C' so that

pr sup QQn(A(l)aA(O)7maB*()) < QQn( 1)7 0) m ﬂ ( )) S 1—e (SlS)
AP eonB, (C)

Then we have

Dan(u) = Qan(AY + 07 2u, A, 87 () = Qan (A, A m, B7())

<= UTOG A B () - + %u [~ Ha A A 0,87 ())]
LB, (519

where A(V* lies in between )\él) and )\él) +n 24 and AV B )\61). Here

S OP A () = =3 /a 12~ B(a(s), 5)] dNifs),  (S1.10)

110

.
where a(s) = a (s )\(()1),)\(0 m, 3 ()) Define By = diag (Ps ()\él)T,)\(O)T) > and

_ g OUENOIY .
By =diag [ Py (A7 A , where P3 and Py are defined in (S0.3) and (S0.4), re-
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spectively. The first-order Taylor expansion of (S1.10) around mg and 3§ (s) yields

1 1 o~

fz/a )12 — E (By(s), 5)] dNi(s)

=1 0
_ % 3 / PLA()V (a*(s), 5) By (i — i) dNy(s)
i=1 0
A . )
-=> / PV (0" (), 5) B (B(5) ~ B3(5)) dni(s),
=1 0

where a*(s) = a (s )\él), m,B (- )), m lies between mg and m, 3 (s) lies between

Bo(s) and B (s), and E(-, ~), V(-,-) are defined in Section 3.1. Furthermore, we can
prove (a)
sup  [|ST(B,1) — s (B, 1)]| = Op(n~1/?)

tefo,r],08eB
where B is a compact set of IRP that includes a neighborhood of B (¢) for t € [0, 7]; (b)
B(t) 2 B, (t) uniformly in the sense that SUPe(0,7] 18(t) — Bo(t)]] = 0p(1); (c) both AU
and A are bounded. (a) can be justified using the central limit theorem for Banach
space (Ledoux and Talagrand, 1991). (b) is proved in Appendix A of Tian et al. (2005).
(c) can be justified with the following observations: When 6; = 6 = 0 and sample size
n goes to infinity, approximately the minimizer of (3.2) are A; = 1 and Ay = 1. Thus,
for all 6; > 0 and 65 > 0, [A¢lli + [|Aelli < 2p+ 1 as n — oo, and AN and A© are
bounded. Based on (b) and (c), we can prove that a*(s) 2 B,(s) uniformly. Thus, given
(a), we have

1 o~k
— U (A A m, B())

52> [ Ps) (i~ B (Bufs). )] dNis)
0

% :1 /P1A0( (Q)Ez; _ (g;g)@?] dN;(s)Biyv/n (m —m)
:lz: /PIA QZEE; - (g;Eg)m Byv/n (B*(S) —,63(5)) AN, (s)
£R; — Ry — R3,

where Qo(s), Q1(s) and Q2(s) are defined in Section 3.1.



STRUCTURE SELECTION IN TIME VARYING COEFFICIENT COX MODEL S5

Next we want to show R; — Re — R3 = O,(1). Using the fact that Q2(s)/Qo(s) —
(Q1(5)/Qo(5))%* = 0,(1), Ao(s) = O,(1) and /n (M — mg) = O,(1), it is easy to verify
that Ry = Op(1). Further, similarly as Lemma 2 we can show

Qa(s) (Q1<s>)®2

L —1/2
By Z/ Pl 00 ~ \@ols)

(nhs) ”22/ Boterow) & (L) aatyapanits

fz/ {/ Frdole)

3253 (2]

BS(6) (250 B (By(s). ) 1K () Qulos vty

n

Byt (s)

Z% Z/OT PyrAg(u)2(u) BoaX 7 () (Z;(u) — E (Bo(w),u) dM;(u),

LL 7

where the sign can be proved using the strong approximation argument (Yandell,
1983). By the martingale central limit theorem (Andersen and Gill, 1982), R3 = O,(1).
Then, we only need to prove R; = Op(1). Since

1f2/P1Ao )12 — B (By(s). s)] dMi(s) + 0,(1),
7.10

it follows from the martingale central limit theorem (Andersen and Gill, 1982) that
R1 = Op(l) Thus,

1 =
T A, B () 5 Ry — Ry = Ry = Oy(1).

Furthermore, we know

1
_ ﬁHll()\(l)*,A(O); _

-1y / PGV (i(s), ) (PLAG)) dNis)

:\*—‘

Rt /Ple ) (P1Ao(s )) dSéIu,

where i(s) = a(s, AP A©:m /6 (+)). From the definition of P; (S0.1) and Ag(s)
(S1.7), we can show that Iu is positive definite and I;; = Op(1). Therefore, given
max(f1,02)/+/n is bounded, if we choose a sufficient large C, the second term in (S1.9)
is of order C?. The first and third terms are of order C, which are dominated by the
second term. Therefore (S1.8) holds and it completes the proof.
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S2 Proof of Theorem 2

For any A satisfy [|A®) — A{Y | = O, (n=1/2), we have

Qon A, Xm0, B() — Q2 (A, 0;m, B())
> — U3 AN, A0 732, B()AO) 4 min (61, 62) A,

> [ sup [0 N, N7, B0+ (01,02 I (52.1
k
where Usp (AN, A% 73, B()) is the kth component of the vector Us (A, A(©O*: B())
X s 0 . M7 3y (0)T\"
and A9 lies in between A®) and 0. Define Bs =diag | Ps ()\ s A ) and By =

T ~
diag <P4 (A(l)T, A(O)*T) ) The first order Taylor expansion of Uy(AM, AO*: 7, (1))

around mg and B5(s) yields

nhy — . - - |
T ;(J/PzA(S)V(a(S)ys)Bs (m — mg) dN;(s)
Nl — T 7 e .
" ; 0/ PAV (@().9)B: (B () - B3()) dVi(s)
= Ln / \/WszT(s) [Z; — E(a*(s),s)] dN;(s)
=1 0
- -/ A Qals) _ (Quls) . (s n(m—m
_ n;(}/m&A(S) Qo(s) (Qo(s)) 1le( )Bsv/n ( 0)
n T N ) s 22 .
3 [ VapAe) | 285 - (B4 | Bavi (B ) - B (o) dnigs)
=1 0
2Ry — Rs — Ry,

where a(s) = a (s A0 X% 71, 8°(), a*(s) = a (s, A0 A% mo, B5()). als) =
a (s, AW A0 7 B*()> and E(-,-), Qo(-), Q1(-), Q2(-) are defined in Section 3.1. Here

m lies in between myg and m, and B (s) lies in between 3(s) and B*(s) Using the
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fact that v/nhy, PyA(s) = O,(1), Q2(s)/Qo(s) — (Q1(s)/Qo(s))®* = O,(1) and Lemma 1
and 2, it is easy to verify Rs = O,(1) and Rg = O,(1). For R4, by the first order Taylor

expansion of A around )\(()1)7 we have

Ry = IZ/\/nh PyA(s)[Z; — E (a*(s), s)] dN;(s)

110

fz / VnhaPoA(s) [Z; — E (By(s). 5)] ANi(s)

1,10

_1 Z / o/t PyA( 5)Ba(s)dNi(s)vm (XU = AL

110

:Op( ) — Op(l) = Op(l)a

where i(s) = a(s, A", X" myg, B5()), Bs(s) = diag(mg)Ps1 + diag(35(s))Pyr, AV
lies in between A and )\(()1), and Psq, Py are defined in (S0.3) and (S0.4), respectively.
Thus vA,Us(AD, A@* 70, 87(-)) = 0,(1). From (S2.1),

Q2n()‘(1)7 A(O); ?ﬁv B()) - Q2n(>‘(1)v 0; ?ﬁv B())
> [0, (h/2) 4 min (62,6)] 1A

If hs/? min (61,6) — oo, then with probability one Q2, (AL, A(O);ﬁ,ﬁ (5))—Qz2. (A, 0; m,ﬁ (s)) >

0 for all A(¥ # 0. It completes the proof.

S3 Proof of Theorem 3
~(1) @y, _ —1/2 (1 ~(1)
(a) From Theorm 1, |A" " — Ay’|| = Op(n~'/%) where Ay’ = 1. Thus P(A "[k] #
~1 ~(
0) — 1 for all k, where )\( )[k:] is the k-th component of )\( ), This in couple with

(0 ~ —~ —~
P()\( ) 0) — 1 from Theorem 2 proves Ip = Ip, I¢ = I¢ and Iy¢c = Ine hold with

probability tending to one. It completes the proof for part (a).

(b) From part (a), we know with probability tending to one, Bc(t) = E}C. Thus,
~ . ~C . ~C c .
\/ﬁ(ﬂc—ﬁc) :\/ﬁ(mCO)\l —mc) :mco\/ﬁ()\l —)\01) ++v/n(me —me),
— C —_ . . . ~C —
where m¢, A; , m¢ are sub-vectors of m, A1, mg with indexes in I. Since A; and m¢

are root-n consistent estimator for )\Ocl and mc respectively. We have /n (BC - ,BC) =
Op(1). It completes the proof for part (b).
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~(1
(c) From the proofs of part (a), and Theorem 1 and 2, it is easy to show that /\( ) is a
root-n consistent maximizer of Qa, (A, 0; 7, 3 (-)). Thus

8)\ 1) AW\ -
This is equivalent to
1 /\(1) . ~x% 5
——— U0 — =0 S3.1
\/’ﬁ 1( ) 7m7ﬁ ( )) + \/ﬁ ’ ( )

where 0 is a vector of length (py + 2p3) consisting with elements 6; and 6s.

The first order Taylor expansion of n’l/QUl(X(l), 0;m, ,é*()) around myg and 3(+)

yields

UG 0m B ) = =Y [ P12 B, av)
=1 0
%Z/HA ), s) Bg (M — my) dN;(s)
i=1
-=> / PV (a*(5).5) Br (B (5) = B3(o)) di(s)
2R7 — R — Ry, (53.2)

where a(s) = a(s,s\(l),o;mo,ﬁg(-)), a*(s) = a(s,x(l),O;m,B*(-)), Bg = diag <P3 ((3\(1)) ,OT) )

T T
and §7 = diag <P4 (<X(1)) ,OT) > . Using similar arguments for the proofs of Theo-

rem 1 and 2, we can show

P 1 o T QQ(S) _ Ql(s) ®2 : ~
Rﬁnzi_l/o PAlo) | 5o s) (%(s)) PNZ(S)BM(’" o)
p 17 - 1 4
%;/0 P1Ao(s)X(s)dsBsg n§1/0 X Zi(u) — E(By(u), u) dM;(u)

(93.3)
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and

1
R9£>WZ/P1AO(3)
nhy~ 34 )

2o ()

Qa(s) _ (Qi(s)\**
Qo(s) <Q0(8)> 137
S 2 S [ (2560 - B0 K (4
N TS T e |2 (@)
), {nZ/ o) | 3o~ ()

(2,00~ B (Bu(o),0) 1K (U ) avito) b v )

n

Brv/nhy (B'(s) = Bi(s) ) dNi(s)

n

1
271/22/131140(5)
nhy' = = 4

) dM; (u)dN;(s)

B;X 1 (s)

2 % g / Py Ao() (1) BrS (u) (25(u) — B (Bo(u), w)) dM; (), (53.4)

where

Bg = ( 0p, xp, Op1><(P2+P3) ) By = ( 0(p1+102)><(;01+102) 0(p1+172)><p3 ) )
Opstps)xpr Lpats p3X(p1+p2) I,

Here Bg and By are the limits of Eg and 57, respectively. The first order Taylor expansion
of R; around )\(()1) yields

1 & 7~
Fo= 23 / PLA(s) [Zi — B (By(5), )] dNi(5)
—in i ~s a(s), s s (s nA(l)— (1)
i3 ) AV )0 Bloymo Vs - A
5 %L > / " PLA(s) (Zi — B (Bols),8)] dMi(s) — Fya(h — (), (s3.5)
where
0 0 0
Bs(s) = ( diag (m¢) 0O 0 )
0 diag (myc)  diag (Biyc(s))
and

F= /OT Py Ap(s)3(s)Bs(s)ds.

~(
Here i(s) = a(s, \V*,0;mq, 35(-)) and AV lies in between )\gl) and AW,
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Under the assumption max(61,62)/v/n — 0, combining (S3.1), (S3.2), (S3.3), (S3.4),
(S3.5), we have

Jn (?\(” - Ag”) _ 1n Z} /0 F'G(u) [Zi — E (By(s). 5)] dM;(s) + 0p(1),  (S3.6)

= T >
where

G(u) = Py Ao(u) — % (/OT Ple(s)Z(s)ds) BsX H(u) — PrAo(u)X(u) By S (u).
Because

\/ﬁ (BC - ,Bc) = ﬁc o \/ﬁ (Xf — Agi) +n1/2 (mc B mC)
=diag (m¢) Bov/n (X(l) _ )‘(()1))

+ % ; /OT %3102‘1(16) (Zi — E (By(u), u)] dM;(u) + 0p(1), (S3.7)

where By = (Ip,]0p,xps|0pyxps) a0d Big = (0p, xp; [Ip,|0ps xps ). Combining (S3.6) and
(S3.7), we have

Vvn (Bc - 60) = % ; /O [D(u) + %Blozfl(u) (Z; — E (By(u),u)) dM;(u)+o,(1),

where
D(u) = diag (m¢) BoF~*G(u). (S3.8)

Finally by the martingale central limit theorem (Andersen and Gill, 1982), n'/? (30 — ,@C)

converges weakly to a normal distribution with mean 0 and variance X | where

S /0 (D(u) + iBlOZ_l(u)> (u) (D(u) + iBmE_l(u)) du.
(d) Because
(1) (Brc(t) = Bue(t)) = ()72 (anc o Xy + e oy —Brol®))
=(nha)'? [Fanc o (X0 © = ANC) + Buet o (R = N) + (Bue(®) — Byc(®)]
=(nh)"* (Brc(t) = Bre(®)) + op(1)
AN {0, (=Y )}nvene /11 KQ(S)ds},

where {~71(t)}yo.ne is the submatrix of ¥71(¢) corresponding to Iyc. It completes
the proof for part (d).
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