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Abstract: Wavelet shrinkage estimation has been found to be a powerful tool for

the non-parametric estimation of spatially variable phenomena. Most work in this

area to date has concentrated primarily on the use of wavelet shrinkage techniques

in contexts where the data are modeled as observations of a signal plus additive,

Gaussian noise. In this paper, I introduce an approach to estimating intensity

functions for a certain class of “burst-like” Poisson processes using wavelet shrink-

age. The proposed method is based on the shrinkage of wavelet coefficients of the

original count data, as opposed to the current approach of pre-processing the data

using Anscombe’s square root transform and working with the resulting data in a

Gaussian framework. “Corrected” versions of the usual Gaussian-based shrinkage

thresholds are used. The corrections explicitly account for effects of the first few

cumulants of the Poisson distribution on the tails of the coefficient distributions. A

large deviations argument is used to justify these corrections. The performance of

the new method is examined, and compared to that of the pre-processing approach,

in the context of an application to an astronomical gamma-ray burst signal.

Key words and phrases: Gamma-ray bursts, large deviations, Poisson processes,

wavelets.

1. Introduction

Wavelet shrinkage techniques (e.g., Donoho, Johnstone, Kerkyacharian and
Picard(1995)) have emerged recently as powerful methods for the non-parametric
estimation of objects which may be characterized as ‘spatially variable’. Exam-
ples of such objects include astronomical gamma-ray bursts, nuclear magnetic
resonance spectra, and tomographic medical images. To date, most efforts by
researchers have focused on problems in which the data are adequately modeled
as observations of a signal plus additive, Gaussian noise. Deviations from this
basic model often are dealt with through judicious use of transformations. For
example, in the case of Poisson count data, a direct usage of Gaussian-based
shrinkage thresholds usually is naive, given the effects of the Poisson distribu-
tion on the variance of the wavelet coefficients. Instead, the data typically are
pre-processed using Anscombe’s (1948) square root transformation, thereby nor-
malizing the data and stabilizing the variance (e.g., Donoho (1993)). However,
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in practice it is often found that this approach over-smooths the data, resulting
in the elimination of sharp, brief structure in the underlying intensity function.

In this paper, I offer a new approach for adapting the wavelet shrinkage
paradigm to Poisson data. Specifically, the original count data are analyzed,
using an arbitrary orthonormal basis of periodic wavelets, but a set of “corrected”
thresholds are applied to the corresponding wavelet coefficients. In deriving these
thresholds, a large deviations probability calculation is used to approximate the
tail probabilities of the wavelet coefficient distributions. The resulting thresholds
explicitly correct the usual (2 log(n))1/2 Gaussian-based thresholds for the effects
of the Poisson distribution on these tails. In addition, I demonstrate that a
particularly simple form of corrected thresholds may be derived for the special
case of Haar wavelets, using a different set of approximations that are especially
appropriate for situations involving very low levels of counts.

The rest of the paper is organized as follows. In Section 2, I define a certain
class of “burst-like” Poisson processes and present certain distributional char-
acteristics of the wavelet coefficients of such processes. The derivation of the
corrected thresholds for these coefficients is given briefly in Section 3. Some is-
sues regarding implementation of these results are discussed in Section 4, and
the special case of Haar wavelets is presented. In Section 5, an application of
the proposed methodology is presented in the context of estimating astronomi-
cal gamma-ray burst intensity functions. Finally, some discussion of additional
related issues may be found in Section 6.

2. Burst-Like Poisson Processes

2.1. Background

Consider a Poisson process N(0, t] on the interval [0, 1] with intensity func-
tion

λ(t) = λ0 + λ̃(t),

where λ0 is strictly positive and λ̃(t) ≥ 0 may be described as being ‘spatially
inhomogeneous’. The process N(0, t] is simply the sum of a homogeneous “back-
ground” Poisson process and a second, inhomogeneous Poisson process that tends
to generate observations in “bursts”. A perfect example of a phenomenon that
may be well described by this model is the astronomical gamma-ray burst shown
in Figure 1. This signal is one of the almost 4000 gamma-ray bursts collected
since 1991 by the Burst and Transient Source Experiment (BATSE), on board
NASA’s Compton Gamma-Ray Observatory (Meegan (1992)). These bursts are
observed on a fairly regular basis against the relatively constant background of
gamma-ray emissions in outer space. However, despite having been first observed
almost 30 years ago, much about the nature of the sources of these bursts remains
a mystery. Additional details regarding these bursts are given in Section 5.
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Figure 1. Gamma-Ray Burst (BATSE trigger 474). Original photon arrival
times have been collected into n = 512 (roughly) two-millisecond bins. Only
half of the burst data (about 0.54 seconds) that contain the actual pulse are
displayed here.

The spatially variable nature of the data in Figure 1 suggests the use of
wavelet shrinkage methods for estimating the underlying intensity function λ(t).
Such a methodology would be useful as a pre-processing step in large studies of
many bursts (e.g., Norris et al. (1996)), as well as for more detailed analyses
of the structure of individual bursts (e.g., Kolaczyk (1997)). The methodology
in this paper will be based on the use of periodic wavelets on the interval [0, 1].
Specifically, functions

ψ◦
j,k(x) ≡

∑
l∈Z

ψj,k(x+ l),

where the ψj,k(x) = 2j/2ψ(2jx − k) are dilations and translations of a single
wavelet function ψ ∈ L2(IR), defined so that the collection {ψj,k}j,k∈Z forms an
orthonormal basis of L2(IR). The collection {ψ◦

j,k}j≥0,k∈Z forms an orthonor-
mal basis of the periodic functions in L2([0, 1]). Wavelet functions typically
are smooth, localized and oscillating. Additionally, wavelets are restricted to
have zero integral, an important property in motivating the shrinkage of em-
pirical wavelet coefficients in wavelet shrinkage methods. The reader is referred
to Daubechies (1992) and Nason and Silverman (1994) for more background on
wavelets.

2.2. Wavelet coefficients

Define the random variable dj,k to be the (j, k)th wavelet coefficient of the
process N(0, t] i.e.,

dj,k ≡
∫ 1

0
ψ◦

j,k(x)N(dx) =
∑

i

ψ◦
j,k(xi). (1)
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The summation in (1) expresses the wavelet coefficient in terms of the event
arrival times {xi}. By definition, the mean and variance of the wavelet coefficients
take the form

E [dj,k] =
∫ 1

0
ψ◦

j,k(x)λ(x) dx and Var (dj,k) =
∫ 1

0

[
ψ◦

j,k(x)
]2
λ(x) dx.

Hence, the observed wavelet coefficients are unbiased estimates of the true co-
efficients of the intensity function λ(t). Additionally, as might be expected, the
variance of each coefficient is influenced by the value of λ(t), primarily in the
region of support of the corresponding wavelet function. Analogous expressions
for higher order moments show a similar influence by λ(t), indicating altogether
that a simple Gaussian approximation to the coefficient distribution potentially
may be quite unreasonable.

It is also instructive to consider the relationship between two distinct wavelet
coefficients, say dj1,k1 and dj2,k2. Their covariance takes the form

Cov (dj1,k1, dj2,k2) =
∫ 1

0
ψ◦

j1,k1
(x)ψ◦

j2,k2
(x)λ(x) dx.

Hence, in general, the wavelet coefficients will be correlated. However, under
H0 : λ(t) ≡ λ0, i.e., when the process N(0, t] consists of simply a homogeneous
background process, it follows from the above moment expressions and the ortho-
normality of the wavelet basis that the wavelet coefficients will be uncorrelated
and possess identical marginal distributions, with zero mean and constant vari-
ance λ0. It is under this particular null hypothesis that the thresholds in Section
3 are derived.

As a final point, it should be noted that the distributions of the wavelet
coefficients dj,k are not necessarily independent, even under H0. More specif-
ically, a simple application of Campbell’s theorem (e.g., see Kingman (1993),
chapter 3) shows that the joint characteristic function of two wavelet coefficients
is not equal to the product of the marginal characteristic functions unless the
two wavelets have disjoint intervals of support. Therefore, when using wavelets
of compact support, a short-term dependency among the coefficients is expected;
with wavelets of infinite support, all coefficients are dependent to some degree,
although the localized nature of the wavelet functions suggests that this depen-
dency is effectively short-term as well.

2.3. Implications for wavelet shrinkage thresholds

The above results regarding the distributional properties of the dj,k have
two key implications for the nature of the thresholds that are derived in this
paper. First, thresholds designed for use in the Gaussian noise problem will be
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inappropriate here; proper thresholds will need to incorporate some of the higher
order distributional differences in the Poisson and Gaussian problems. Second,
not only will the incorporation of these differences potentially change the form
of the thresholds used, but also the number of thresholds used; the coefficient
distribution in the Poisson problem commonly will not be symmetric, which
suggests the need for a pair of thresholds.

In order to appreciate these issues in more detail, first recall the original for-
mulation of the wavelet shrinkage methodology in the Gaussian noise problem.
Donoho and Johnstone (1994) suggest that an n-length signal observed in addi-
tive, Gaussian noise may be “de-noised” through appropriate shrinkage towards
zero of the empirical wavelet coefficients. Under the null hypothesis that the
observations contain only noise, the wavelet coefficients, say wj,k, will be inde-
pendent and identically distributed Gaussian random variables, with zero mean
and variance σ2. The value BG

n = (2 log(n))1/2σ is a probabilistic upper bound
on the n coefficients, in the sense that

Pr(maxwj,k ≤ BG
n ) −→ 1 as n→ ∞. (2)

See Leadbetter et al. (1983), page 14. Combined with the fact that the value
−BG

n is in turn a probabilistic lower bound on the coefficients, this result suggests
using the value BG

n as a single threshold on the size (absolute value) of the wavelet
coefficients. For data in which the underlying signal may be well-compressed
by a wavelet transform, and for which there is a moderate to high signal-to-
noise ratio, this threshold should serve to separate the “signal” and the “noise”
into sets of “large” and “small” coefficients, respectively. Application of the
appropriate inverse wavelet transform to the thresholded coefficients yields a de-
noised estimate of the object underlying the data.

In moving from the Gaussian noise problem to that of burst-like Poisson pro-
cesses, the analogous null hypothesis of “no signal” is H0 : λ(t) ≡ λ0 . Under this
condition, the wavelet coefficients dj,k have zero mean and common variance, as
in the Gaussian setting, but they also have non-negligible skewness and kurtosis,
not to mention some short-term dependency. These facts motivate the derivation
in this paper of a new set of resolution level-dependent thresholds Bj , calibrated
so that

Pr
(

max
0≤k≤2j−1

dj,k ≤ Bj

)
(3)

approaches 1 at a rate similar to that in (2), as j increases. Additionally, not only
will the thresholds Bj be different from (essentially, corrections of) the Gaussian
thresholds, but the use of two thresholds Bmax

j �= −Bmin
j will be induced natu-

rally within the derivation, in the case where the distribution of the dj,k is skewed.
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Note that here and throughout the rest of this paper, probabilities involving the
dj,k as in (3) will be written implicitly under the null hypothesis H0.

3. Poisson Corrected Thresholds

A set of Poisson-corrected thresholds Bj are derived in this section for the
wavelet coefficients dj,k . The rate at which these thresholds allow (3) to tend
to 1 is calibrated to that of the analogous BG

j in the Gaussian case. Using
suitable approximations for the probabilities in both the Poisson and Gaussian
settings, this calibration takes the form of an equation which may be simplified
to a defining equation for Bj. Details are given in Section 4 on how this latter
equation may be used to solve for Bj numerically.

The primary task in the derivation of Bj is that of developing a usable
approximation for the probability in (3). This task may be simplified somewhat
by starting with the expression

Pr
(

max
0≤j≤2j−1

dj,k ≤ Bj

)
≈ exp

{
− 2j Pr (dj,k > Bj)

E[CBj ]

}
. (4)

Through (4), the original task is now reduced to that of finding a tractable ex-
pression for the tail probability of dj,k. The approximation in (4) comes from
application of Aldous’ Poisson Clumping Heuristic (Aldous (1989)). The quan-
tity E[CBj ] is the expected “clump size”, roughly the expected number of local
exceedances of Bj, conditional on there being at least a single exceedance, which
implies CBj ≥ 1. If it were the case that the dj,k were independent, we would have
E[CBj ] = 1. In Section 4, it will be argued that while the coefficients themselves
are not independent, the events {dj,k > Bj} are approximately independent for
large Bj , which suggests that the expected ‘clump size’ is still approximately
equal to 1.

The remainder of this section consists of two parts. In Section 3.1, an ap-
proximation for P (dj,k > Bj) is presented. Substituting this approximation into
the right hand side of (4), the calibration referred to above may then be per-
formed, resulting in the defining equation for Bj. Details of the calibration are
given in Section 3.2.

3.1. Approximating the coefficient tail probability

Although we will see in Section 4 that a closed form expression for the co-
efficient tail probability Pr(dj,k > Bj) exists when using the Haar wavelet, this
is not generally true for other choices of the wavelet function. Accordingly, we
settle for an approximation to this tail probability. One might consider simply
approximating the coefficient distribution by an appropriate normal distribu-
tion. However, the distributional characteristics derived in Section 2.2 suggest



WAVELET SHRINKAGE ESTIMATION OF CERTAIN POISSON INTENSITY SIGNALS 125

that this approach will be unsatisfactory, especially as the probabilities under
consideration are expected to be far out in the tails of the individual coefficient
distributions.

This latter point suggests the use of a large deviations approximation. A
method described in Feller (1971), Chapter 16.7, may be adapted to the present
context for this purpose, yielding an expression that explicitly incorporates effects
of just the first few cumulants on the far tail of the coefficient distribution.

Theorem 1. Let κm = λ0
∫ 1
0 [ψ◦

j,k(x)]
mdx denote the m-th cumulant of the

distribution of dj,k, and consider thresholds of the form Bj ≡ bjκ
1/2
2 . Then,

under the assumption that bj = o(λ3/10
0 ),

Pr (dj,k > Bj) ∼ exp{γ1 b
3
j + γ2 b

4
j} [1 − Φ(bj)] , (5)

where

γ1 =
κ3

6κ3/2
2

and γ2 =
κ2κ4 − 2κ2

3

8κ3
2

, (6)

and Φ is the standard normal cumulative distribution function.
The proof of Theorem 1 relies on an exponential tilting of the distribution

of dj,k. This straightforward adaptation of Feller’s (1971) method allows one, in
principle, to work within a hierarchy of approximations between the two extremes
of the Central Limit Theorem (simple, but less accurate) and, say, a standard
saddlepoint approximation (accurate, but less practical from the standpoint of
efficient implementation). Each successive approximation in this hierarchy incor-
porates cumulants of higher and higher orders, accompanied by the appropriate
conditions on the growth of the thresholds bj with that of λ0. The expression
in (5) may be viewed as a correction of the simple Central Limit Theorem ap-
proximation for the effects of skewness and kurtosis in the distribution of dj,k.
Note that the cumulants κm may be computed easily in the discrete setting. This
point is critical because the coefficients γ1 and γ2 arise explicitly in the definition
of the values bj , as explained next. (The reader may notice that the coefficient
γ2 is slightly different from that obtained by Feller (1971) in the context of sums
of independent random variables. In fact, the value for γ2 given by Feller is
incorrect, and may be shown to be equal to the quantity defined above.)

3.2. Calibrating the thresholds

A quick glance at the wavelet shrinkage literature to date is sufficient to
demonstrate that the threshold BG

n , or variants thereof, lies at the heart of a fair
percentage of the methodology suggested for the Gaussian noise problem. Ac-
cordingly, I take this threshold to serve as a canonical choice with Gaussian data,
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and calibrate a set of thresholds for Poisson data to have a similar probabilistic
character. Specifically, as the probability in (2) tends to 1 asymptotically like

exp
{
− [4π log(n)]−1/2

}
, (7)

the Poisson thresholds Bj may be calibrated with BG
j by setting the right hand

side of (4) equal to (7), with n = 2j , and substituting (5) appropriately. Taking
logarithms twice on both sides of the resulting expression yields the equation

γ2 b
4
j + γ1 b

3
j + log [1 − Φ(bj)] + log(2j) − log(E[CBj ]) = −1

2
log[4π log(2j)].

Using the well-known approximation 1−Φ(x) ∼ φ(x)/x, where φ(x) is the stan-
dard normal density function, and simplifying further, we arrive at the result

γ2 b
4
j + γ1 b

3
j −

1
2
b2j − log(bj) + log[2j(2 log(2j))1/2] − log(E[CBj ]) = 0. (8)

Hence, the threshold Bj ≡ bjκ
1/2
2 is proportional to the standard deviation

of the coefficients of the background noise process, where the constant of pro-
portionality is defined to be the solution of a particular equation. This equation
involves bj in polynomial and logarithmic terms, with coefficients that reflect the
effects of the third and fourth order cumulants of the dj,k. In addition, there
is a constant term relating to the number of coefficients at resolution level j
and, finally, the term capturing the effects of dependency among the coefficients
through the expected clump size, E[CBj ].

Details on the numerical implementation of (8) follow in the next section.
However, before proceeding, note that technically the threshold just derived
should be labeled Bmax

j , denoting it as a probabilistic upper bound on the max-
imum of the wavelet coefficients. Recall from the discussion in Section 2.3 that,
in general, a second threshold Bmin

j �= −Bmax
j is needed as well to bound the

minimum of the coefficients. An argument analogous to that used above shows
that Bmin

j = bmin
j κ

1/2
2 , where −bmin

j is a solution to an equation identical in form
to that in (8), but with the coefficients γ1 and γ2 replaced by

γ̃1 = −γ1 and γ̃2 = γ2.

4. Implementation

In this section, some issues relating to the computation of the threshold
values Bj are discussed. An example is given as well, wherein these corrected
Poisson thresholds are compared to the analogous Gaussian thresholds. Finally,



WAVELET SHRINKAGE ESTIMATION OF CERTAIN POISSON INTENSITY SIGNALS 127

the context of data with very low levels of counts is discussed, where computation
of the Bj may break down, and an alternative using Haar wavelets is suggested.

4.1. Computing the Bj

Although the results presented in Sections 2.2 and 3.1 were derived in the
context of a continuous-time Poisson process N(0, t], the adaptation of these
results to discrete data is entirely straightforward. Therefore, from a computa-
tional point of view, the only non-trivial value involved in computing bj from (8)
is the logarithmic term involving the expected clump size, E[CBj ]. In general,
for a discrete-time stochastic process, the expected clump size is bounded be-
low by 1. When the components of the process are independent and identically
distributed, we have E[C] = 1 trivially. However, if there is dependency among
these components, as is true in the case of the dj,k, the value of E[C] may be
greater than 1, and estimation of this value generally will be non-trivial, as it “. . .
ultimately must involve the particular structure . . .” of the underlying process
(Aldous (1989)).

In the present context, an heuristic argument may be used to suggest that,
as a rough estimate, we may take E[CBj ] ≈ 1. Specifically, by definition of the
expected clump size, the essential condition for this approximation to be valid is
that, for fixed u,

Pr
( dj,k0+u

κ
1/2
2

> bj
∣∣∣dj,k0

κ
1/2
2

> bj
)
−→ 0 as bj −→ ∞ (9)

(see Aldous (1989), pg. 50). By way of justification, begin by noting that the
standardized wavelet coefficients in (9) are uncorrelated, have zero mean, unit
variance, and cumulants κm that tend to zero like λ−(m−2)/2

0 , for m ≥ 3. Hence,
as λ0 → ∞, which is what drives bj towards infinity, the probability in (9) tends
towards a conditional probability between two uncorrelated, Gaussian random
variables. Because uncorrelated Gaussian random variables are also independent,
this probability looks asymptotically like the marginal tail probability of the
standardized dj,k0+u. Under the condition bj = o(λ1/2

0 ), a modification of the
arguments in Section 3.1 shows that this latter probability acts like e−b2j/2, which
tends to zero quickly as bj → ∞.

As a result of this argument, the term log(E[CBj ]) in (8) essentially vanishes.
Hence, the defining equation for bj becomes

γ2 b
4
j + γ1 b

3
j −

1
2
b2j − log(bj) + log[2j(2 log(2j))1/2] = 0, (10)

which is just a fourth order polynomial, with the additional term log(bj). The left
hand side of (10) is quite smooth, and an estimate of bj may be obtained easily,



128 ERIC D. KOLACZYK

for example using the golden section method (Press, Teukolsky, Vetterling and
Flannery (1992)). Although more than one such zero will exist, the search may
be restricted to a suitable region near bGj ≡ (2 log(2j))1/2, the analogue of bj in
the Gaussian setting. Note that bGj is a zero of (10) when γ1 = γ2 = 0, and recall
that bj essentially was derived as a correction of bGj . Because the coefficients γ1

and γ2 actually are quite small in practice, as compared to the coefficient −0.5
of the term b2j in (10), these facts suggest that bj be defined as the zero occurring
close to bGj and not another (usually ridiculously large) value.
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Figure 2. Comparison of Poisson corrected thresholds Bmax
j (‘x’) and −Bmin

j

(‘o’) with the analogous level-dependent Gaussian thresholds BG
j (‘∗’).

For the purpose of illustration, a comparison of the values Bj and BG
j , for

a particular case, are shown in Figure 2. In this example, the most nearly sym-
metric Daubechies wavelets of order 8 were used, with sample size n = 512 and
λ0 = 6. Thresholds were computed for resolution levels j = 4, . . . , 8. These spe-
cific settings were chosen for this example because they correspond to those used
in the analysis of the gamma-ray burst channel data in Section 5 below. Note
that the relative discrepancy from BG

j increases as resolution level increases, and
is particularly evident at the highest resolution level. A simple calculation shows
that, for all other factors fixed, the cumulants κm increase with increasing reso-
lution level j like 2j(m−2)/2, for m ≥ 3. Hence, the greater discrepancy at higher
resolution levels reflects the fact that the distribution of coefficients at those
levels is decidedly “less Gaussian”.

4.2. Low-count data and the Haar wavelet

Experience has shown that for small values of λ0 (depending on the choice of
wavelet function), the value of γ2 may be large enough to make the left hand side
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of (10) strictly positive in the region around bGj . Hence, in situations involving
very low levels of observed counts, a reasonable solution for bj may not exist. For
the choice of wavelet and sample size used in the example above, solutions at the
highest resolution level ceased to exist for values of λ0 less than about 5.5. This
computational limitation perhaps is not entirely surprising, considering that the
derivation of (8) is based on an argument asymptotic in λ0. Below, I present an
alternative set of thresholds, for the special case in which the Haar wavelet is
used, that is particularly appropriate for applications with low levels of counts.

Assume that the observations from the process N(0, t] have been binned
to form the values y0, . . . , yn−1, where yi ∼ Poisson(Λi), Λi =

∫ (i+1)/n
i/n λ(u)du,

and n = 2J for some J > 0. The empirical wavelet coefficients in the Haar
transform of the vector y, are simply proportional to the differences of counts in
pairs of adjacent bins, where the size of the bins is dyadic and determined by the
particular resolution level j of a given coefficient. Recalling that the distribution
of the difference of independent Poisson random variables may be expressed in
terms of the distribution of a certain non-central chi-square random variable
(Johnson (1959)), we find that the distribution of any given Haar coefficient is
symmetric under H0 : λ(t) ≡ λ0, and write

Pr (|dj,k| < Bj) = 1 − 2Pr
[
χ2

(2mj)
(λj) < λj

]
, (11)

where mj = 2(J−j)/2Bj and λj = λ0/2j .
Inspired by the approach in Section 3, I use a set of simple approximations

to the distribution of dj,k, to facilitate a calibration with the canonical Gaussian
threshold, BG

j . Specifically, write

Pr
[
χ2

(2mj ) (λj) < λj

]
≈ Pr

[
χ2

(fj)
< λj/cj

]
≈ Pr

[
Z <

(λj/cj) − fj√
fj

]
, (12)

where fj = (2mj + λj)2/(2mj + 2λj), cj = (2mj + 2λj)/(2mj + λj), and Z is
a standard normal random variable. The first approximation is due to Patnaik
(1948), and has been found to be especially accurate for what corresponds to
low levels of λj (Johnson, Kotz and Balakrishnan (1995), page 464). The second
approximation is a simple Central Limit Theorem approximation which, due to
the reliance of fj on the threshold Bj , can be expected to be quite reasonable in
practical situations.

The desired calibration may be effected by equating the argument of the
Gaussian tail probability in (12) with z = (2 log(n))1/2. After simplifying, we
find that the defining equation has a quadratic form i.e., f2

j − 4 log(2j) fj −
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8 log(2j)λj = 0. Taking the positive root of this equation and making the proper
substitutions yields the threshold value

Bj = 2−(J−j)/2
{

log(2j) +
[
log2(2j) + 2 log(2j)λj

]1/2 }
. (13)

The relative simplicity of the above derivation, in contrast to that of the
thresholds in Section 3, results in part from the availability of a closed-form
expression for Pr (dj,k > Bj) and from the independence of the Haar coefficients
as well. The thresholds defined by (13) have been used successfully in estimating
the intensity functions underlying a variety of astronomical gamma-ray burst
signals like the one shown in Figure 1. Note that, due to the block-like structure
of the Haar wavelets, implementation naturally is done within a cycle-spinning
or translation-invariant framework (Donoho and Coifman (1995)). The reader is
referred to Kolaczyk (1997) for details.

5. An Application

As an illustration of the primary methodology proposed in Section 3 of this
paper, I provide an analysis of the astronomical gamma-ray burst (GRB) data
presented earlier in Figure 1. The raw data were recorded as the arrival times of
the high-energy photons (essentially light at the high end of the electro-magnetic
spectrum) of which the burst is composed. Using specialized detectors equipped
with charged-coupled devices (CCDs), arrivals initially are collected over four
separate energy channels (i.e., at 25 - 58 keV, 58 - 115 keV, 115 - 320 keV, and
> 320 keV). However, it is common to aggregate over all energies, and to collect
the arrival times into adjacent, equi-length bins, yielding plots of total counts
versus time, as shown in Figure 1. Astronomers have found that the counts may
be well-modeled as having arrived from a Poisson process of unknown intensity
(Scargle (1996)). GRBs such as this were observed first in the late 1960s by
satellites designed to monitor violations of the nuclear test-ban treaty. Although
thousands of these bursts have been observed since then, no two have been found
to be alike, and their origin (and even much of their nature) remains one of the
oldest mysteries in astronomy. The GRB in Figure 1 was observed over 1.08
seconds. Counts were placed into n = 512 bins. Note that the full data for this
burst consist of the pulse-like event itself, followed by a period during which it is
judged that the system has returned to the original background levels. Because
the pulse occurred exclusively in the first half of the data, only this half (i.e., the
first 256 bins) has been displayed in Figure 1 and the other figures below, so as
to highlight the structure therein. However, the full set of data was used in all
calculations.
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Figure 3. Estimates of the underlying intensity function for the Gamma-
Ray Burst in Figure 1 using the Poisson corrected thresholds (solid), and
the standard square-root based approach (dotted). The most nearly sym-
metric Daubechies wavelets of order 8 were used in both methods, with soft
thresholding of the coefficients at resolution levels 5 through 8.

Figure 3 shows two estimates of the intensity function underlying the GRB.
Both estimates were obtained using variations of the basic wavelet shrinkage
methodology: wavelet transform, threshold coefficients, inverse wavelet trans-
form. For the estimate drawn in a solid line, the methodology of this paper
was used. Specifically, the wavelet transform of the 512 counts was computed,
the level-dependent Poisson-corrected thresholds Bj were applied, and the corre-
sponding inverse wavelet transform was computed. Alternatively for the estimate
drawn in a dotted line, Anscombe’s (1948) square root transformation was used
first to pre-process the data, yielding observations xi ≡ 2(yi+3/8)1/2 that are ap-
proximately normal in distribution, with roughly unit variance. The analogous
level-dependent Gaussian thresholds BG

j = bGj (i.e., using unit variance) were
applied in this case. Both methods were implemented within the translation-
invariant de-noising framework of Donoho and Coifman (1995), which has been
found to be useful in general for reducing pseudo-Gibbs phenomena.

Examining the estimates in Figure 3, it is clear that the Poisson-corrected
thresholds have allowed for better preservation of the fine structure within the
GRB. In particular, while the Poisson-corrected method has maintained the in-
tegrity of the three small bumps along the plateau, the square root method has
smeared them into two larger bumps. Additionally, the former method has kept
some evidence of the extremely sharp, brief spike at about 0.16 seconds; the
latter method has eliminated any sign of this phenomenon. In the region from
roughly 0.25 seconds onward, which contains the smooth, relatively constant
background, both methods are almost identical in the estimated values they
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yield. Thresholds in both methods were applied using soft thresholding (i.e.,
ηB(x) = sgn(x)(|x| −B)+ ), a fact which accounts for some of the attenuation in
the estimates.

Of additional interest to astronomers is sometimes an analysis of the data by
energy channel. Often the occurence of a phenomenon at more than one energy
level is taken as additional evidence that it truly exists. When the photon arrival
times are separated according to their original four channels, the level of counts
involved typically is much lower than in the aggregate. This is particularly true
in the fourth channel, which registers photons with energies in excess of 320 keV.
Anscombe’s square root transformation is less effective in settings involving very
low levels of counts, and wavelet shrinkage estimates using data pre-processed
with this transformation tend to exhibit noticeable over-smoothing of the data.
Hence, any improvement in such settings is particularly welcome. Figure 4(a)
shows the GRB of Figure 1 broken down by energy channel. The background
level of counts corresponds to roughly 11 counts per bin in the first three channels,
and just over 6 counts per bin in the fourth channel. Estimates of the underlying
intensity functions are shown in Figure 4(b), deriving from the Poisson-corrected
methods. The square root method was found to produce estimates with an
unacceptably rounded appearance. On the other hand, the method using the
Poisson-corrected thresholds has produced reasonably sharp estimates in areas
where they seem quite plausible, such as the individual peaks in the third channel.
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Figure 4(a)



WAVELET SHRINKAGE ESTIMATION OF CERTAIN POISSON INTENSITY SIGNALS 133

0
0

0
0

0
0

0
0

0.05

0.05

0.05

0.05

0.1

0.1

0.1

0.1

0.15

0.15

0.15

0.15

0.2

0.2

0.2

0.2

0.25

0.25

0.25

0.25

0.3

0.3

0.3

0.3

0.35

0.35

0.35

0.35

0.4

0.4

0.4

0.4

0.45

0.45

0.45

0.45

0.5

0.5

0.5

0.5

20

50

50

50

1
2

3
4

Seconds

Figure 4(b)

Figure 4. (a): Decomposition of the Gamma-Ray Burst in Figure 1 into
four energy channels. Reading from top to bottom, the channels are 25 - 58
keV, 58 - 115 keV, 115 - 320 keV, and > 320 keV. (b): Estimates of channel
intensity functions are shown, based on Poisson corrected thresholds. Choice
of wavelet and resolution levels thresholded is the same as in Figure 3.

6. Discussion

The distributional properties of the wavelet coefficients in the Poisson noise
problem differ from those of the analogous coefficients in the Gaussian noise prob-
lem. In this paper I outline a method whereby these differences may be corrected
for in the thresholding stage of the standard wavelet shrinkage methodology, in-
stead of relying on the usual pre-processing tools. The corrections suggested here
serve to account for effects of the first few cumulants of the Poisson distribution
on the tails of the wavelet coefficient distributions. One may also account for the
effect of short-term dependency among the coefficients. The brief argument used
in Section 4.1 suggests that this effect may be treated as being negligible. How-
ever a more refined argument, perhaps leading to a more sensitive small-sample
estimate of this effect, may be of interest. Additionally, although the defining
equation presented here results from calibration with the Gaussian “universal”
threshold i.e., (2 log(n))1/2, the probabilistic behavior of other thresholds may be
matched in an analogous manner. In a related direction, the large deviations ap-
proximation to the coefficient tail probability may be used in principle to modify
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the False Discovery Rate (FDR) algorithm of Abramovich and Benjamini (1995)
in an obvious manner. This algorithm results from considering the thresholding
of wavelet coefficients from the perspective of multiple hypothesis testing, an
approach also considered by Ogden and Parzen in (1996a) and (1996b).

From a broader perspective, there are further issues to consider. For exam-
ple, a more careful study of the dependencies among the coefficients might yield
measurable improvements via a joint thresholding rule, in place of the indepen-
dent thresholding rule adopted here in analogy to the Gaussian case. Also, the
replacement of simple thresholding rules by more flexible shrinkage rules merits
attention. The adoption of various Bayesian paradigms (e.g., Abramovich, Sap-
atinas and Silverman (1998); Chipman, Kolaczyk and McCulloch (1997); and
Clyde, Parmigiani and Vidakovic (1998)) has proven especially useful and nat-
ural for this purpose, in the Gaussian case. Finally, although the thresholds
presented herein serve as a starting point for building up a body of knowledge
with respect to wavelet shrinkage estimators from Poisson data, work in the
Gaussian case is still far ahead as far as a study of general properties of the
estimators is concerned. Work on this and some of the other points mentioned
above is currently in progress by the author and colleagues.
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