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Abstract: For long range dependent time series with a spectral singularity at fre-

quency zero, a theory for optimal bandwidth choice in non-parametric analysis of the

singularity was developed by Robinson (1994a). In the present paper, the optimal

bandwidths are compared with those in case of a smooth spectrum. They are also

analysed in case of fractional ARIMA models and calculated as a function of the self

similarity parameter in some special cases. Feasible data-dependent approximations

to the optimal bandwidth are proposed. We also include some applications using real

data.
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1. Introduction

A theory of optimal bandwidth choice in nonparametric spectral estimation

was developed many years ago (see e.g. Parzen (1957)). This theory, in large

part, precedes the corresponding optimal bandwidth literature for nonparametric

probability density and regression estimation, though it has not been developed

to the same extent. There are considerable similarities between the two types

of theory. In both cases, a nonparametric estimate of an unknown function

at a given point of the domain borrows information from neighbouring points.

The extent of such information is largely determined by a \bandwidth" number,

and the choice of this considerably a�ects the estimate. Too large a bandwidth

tends to be associated with a large bias, too small a bandwidth with a large

variance. One usually seeks a bandwidth which balances bias and imprecision.

A mathematically simple way of doing this consists of minimizing a form of

mean squared error of the nonparametric estimate, either at a particular point of

interest, or else averaged across an interval, even the whole domain. Typically, a

closed form formula for an `optimal' bandwidth results, depending on the precise

way the nonparametric estimate has been implemented and on features of the

nonparametric function, in particular, smoothness properties.

In the spectral estimation situation, as well as the probability density and

regression situations, it is typically assumed that the unknown function is at least
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�nite at all points at which it is estimated. This assumption may be controver-

sial in case of spectral estimation. Some plots of spectral estimates exhibit sharp

peaks (so that it has long been common practice to use a logarithmic scale), and

this could be consistent with a singularity in the spectral density. Correspond-

ingly, plots of sample autocorrelations are sometimes indicative of a slow rate of

decay. Consequently there has been considerable study of `long range dependent'

parametric and nonparametric models which imply a singularity in the spectral

density, typically at zero frequency. A recent literature survey is in Robinson

(1994c).

Recently, Robinson (1994a) has developed some optimality theory for non-

parametric frequency domain estimation in case of long range dependence. The

present paper elaborates on and extends his work. The following section com-

pares his results with those for `short memory' time series with a smooth spectral

density. In Section 3 these formulae are further analyzed and numerically illus-

trated for fractional ARIMA (ARFIMA) models. Feasible approximations of the

optimal bandwidth are proposed in Section 4, and applied in Section 5, to the

analysis of annual minimum water levels of the river Nile (which has also illus-

trated many other methods of long memory time series analysis), and to the

analysis of ination rate, using Spanish data.

2. Optimal Spectral Bandwidth

Denote by Xt; t = 0;�1;�2; : : :, a discrete parameter covariance stationary

time series; for the sake of simplicity we suppose Xt is also Gaussian, though

our conclusions have more general relevance. Denote the lag-j autocovariance

of Xt by j = E[(Xj � E(X0))(X0 � E(X0))], j = 0;�1;�2; : : :, so f(�), the

spectral density of Xt, satis�es j =
R �
��

f(�) cos j� d�. For a realization of size

n, introduce the periodogram I(�) = (2�n)�1jPn

t=1Xte
it�j2.

All estimates in the paper depend on I(�) computed at frequencies �j =

2�j=n for integer j, where 1 � j < n. Note that E(X0) is not assumed to be

zero (or known) and for j 6= 0(mod(n)), I(�j) is invariant to location change in

the Xt.

We focus on estimation around zero frequency when dealing with long range

dependence, in which case f(0) =1. However, suppose �rst that 0 < f(0) <1
and

f(�)=f(0) = 1 +E��
� + o(j�j�); as �! 0+; (2:1)

for some � 2 (0; 2], where 0 < jE�j < 1. This condition essentially says that,

in a neighbourhood of � = 0, f(�) satis�es a Lipschitz condition of degree �

for 0 < � � 1, or f(�) is di�erentiable and its derivative satis�es a Lipschitz

condition of degree � � 1, and is zero at � = 0, for 1 < � � 2. We have
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E1 = d log f(0)=d� and E2 = (d2f(0)=d�2)=(2f(0)). Consider estimating f(0)

(see e.g. Brillinger 1975, Robinson 1983) by

f̂(0) = m�1

mX
j=1

I(�j); (2:2)

where m is an integer between 1 and n such that

m�1 +mn�1 ! 0 as n!1: (2:3)

Under (2.3) and additional regularity conditions the scaled mean squared error

of f̂(0),

Ef[f̂ (0)� f(0)]=f(0)g2 � m�1 +E2
��

2�
m =(� + 1)2; (2:4)

and an optimal m, minimizing the right hand side is

mopt =

�
(�+ 1)2

2�(2�)2�E2
�

� 1
2�+1

n
2�

2�+1 : (2:5)

Now consider processes with spectral density satisfying

f(�) � g
H
(�) = G�1�2H as �! 0+; (2:6)

1=2 < H < 1, 0 < G < 1. Because f(0) is now in�nite it is no longer mean-

ingful to estimate it, but it is of interest to investigate the impact on optimal

bandwidth in case one attempts to estimate f(0) in the incorrect belief that it is

�nite. Additionally, Robinson (1994a) has shown that an optimal type of spectral

bandwidth is relevant to the choice of bandwidth in the semiparametric estimate

of H proposed by Robinson (1994b). The criterion (2.4) is no longer relevant,

but Robinson (1994a) suggested the extended criterion

Ef(F̂ (�m)� FH(�m))=FH (�m)g2; (2:7)

where

F̂ (�m) =
2�m

n
f̂(0); FH(�) = G�2(1�H)=(2(1 �H)): (2:8)

To extend condition (2.1) it is assumed for � 2 (0; 2],

f(�)=G �1�2H = 1 +E�(H)�� + o(��) as �! 0+; (2:9)

where 0 < jE�(H)j <1, 1=2 < H < 1. In general E�(H) depends on H as well

as �, as will be illustrated subsequently. In case 1=2 < H < 3=4, under (2.3) and

additional conditions Robinson (1994a) established that

(2:2) � 4(1 �H)2
�

1

(3� 4H)m
+
n E�(H)

2� 2H + �

o2
�2�m

�
; as n!1; (2:10)
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and an optimal m is

mopt(H) =

�
(2� 2H + �)2

2�(2�)2�E2
�(H)(3 � 4H)

�1=(2�+1)

n2�=(2�+1): (2:11)

The rate of convergence in (2.11) is identical to that in (2.5), so that long range

dependence a�ects only the multiplying factor in the optimal m. Note �nally

that the formulae (2.10) and (2.11) reduce to (2.4) and (2.5) on taking H = 1=2

and G = f(0). Robinson (1994a) showed that (2.10) and (2.11) also hold when

G in (2.6) is replaced by a function that varies slowly with �.

When 3=4 < H < 1, f(�) is no longer square-integrable on a neighbourhood

of the origin, and under (2.3) and additional conditions Robinson (1994a) showed

that, with DH = 2�(2(1 �H)) cos((1 �H)�),

(2:7) � A1(2�m)4H�4 +A2(2�m)2H�2+�n�� +A3(2�m)2�n�2�; (2:12)

where

A1 = 2D2
H(1�H)2

�
1

(4H � 3)(2H � 1)
+

1

2H2(2H � 1)2
� 1

H2(4H � 1)

�4�(2H � 1)2

�(4H)

�
;

A2 = � 4DHE�(H)(1�H)2

H(2H � 1)(2 � 2H + �)
; A3 =

4E�(H)2(1�H)2

(2� 2H + �)2
;

and it is minimized with respect to m by

mopt(H) �n
�

2�2H+�

2�

nDH(2�2H+�)

4�

h 2H�2+�
E�(H)(2H�1) +

1

jE�(H)j
h(2�2H+�)2

H2(2H�1)2

+16�(1�H)
n 1

(4H�3)(2H�1) �
1

H2(4H�1) �
4�(2H�1)2
�(4H)

oi1=2io 1
2�2H+�

:

(2:13)

3. Fractional ARIMAs

A fractional di�erencing representation is given by

f(�) = j1� ei�j1�2Hh(�); (3:1)

where 0 < h(0) <1. In the ARFIMA(p;H � 1=2; q) model,

h(�) =
�2

2�

jb(ei�)j2
ja(ei�)j2 ; (3:2)
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where

a(z) = 1�
pX

j=1

ajz
j ; b(z) = 1�

qX
j=1

bjz
j ; (3:3)

all zeros of a and b are outside the unit circle in the complex plane, and �2 > 0

(see e.g. Adenstedt (1974); Hosking (1981)). In general, and as is the case in

the ARFIMA model, assume that h(�) has �rst derivative h0(0) = 0, and second

derivative h00(0). Then

f(�)

G �1�2H
=

h(�)

G

�
sin(�=2)

�=2

�1�2H

� G�1
n
h(0) + h00(0)�2=2

o n
1� (�=2)2=6

o1�2H
� G�1

n
h(0) + h00(0)�2=2

o n
1� (1� 2H)�2=24

o
� 1 +

n
h00(0)=2h(0) + (2H � 1)=24

o
�2; (3:4)

on taking G = h(0). Thus

E2(H) = h00(0)=2h(0) + (2H � 1)=24: (3:5)

The second component of E2(H) is positive and takes values zero when H = 1=2,

1=48 when H = 3=4, and 1=24 when H = 1. Note that E2(H) = (2H � 1)=24 in

the ARFIMA(0;H � 1=2; 0) case. The �rst component of (3.5) can be positive

or negative and it can be large or small.

We can get a more useful picture of the variability in E�(H) by studying the

ARFIMA case (3.1)-(3.3). Put

a = a(1) = 1�
pX

j=1

aj ; b = b(1) = 1�
qX

j=1

bj ;

a0 =
d

d�
a(ei�)

���
�=0

= �i
pX

j=1

jaj ; b0 =
d

d�
b(ei�)

���
�=0

= �i
qX

j=1

jbj ;

a00 =
d2

d�2
a(ei�)

���
�=0

=
pX

j=1

j2aj ; b00 =
d2

d�2
b(ei�)

���
�=0

=
qX

j=1

jb2j :

It is easily shown that

h00(0)

h(0)
=

 
�b00

�b
+
b00

b
+ 2

jb0j2
jbj2

!
�
�
�a00

�a
+
a00

a
+ 2

ja0j2
jaj2

�
;
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a1= �0:9
a1= �0:5

a1= 0
a1= 0:5
a1= 0:9

H

Figure 1. Plots of mopt(H)n�4=5 for the ARFIMA(1; H � 1=2; 0) model for

1=2 < H < 3=4, (1� a1L)(1� L)H�1=2Xt = "t.

a1= �0:9
a1= �0:5
a1= 0
a1= 0:5

a1= 0:9

H

Figure 2. Plots of mopt(H) for the ARFIMA(1; H�1=2; 0) model for 3=4 <

H < 1, (1� a1L)(1� L)H�1=2Xt = "t, n = 800.
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where the overbar denotes complex conjugation. In the ARFIMA(1;H � 1=2; 0)

case we have

h00(0)

2h(0)
= �

(
a1

1� a1
+

�
a1

1� a1

�2
)
= � a1

(1� a1)2
; (3:6)

and in the ARFIMA(2;H � 1=2; 0) case

h00(0)

2h(0)
= �

�
a1 + 4a2

1� a1 � a2
+

�
a1 + 2a2

1� a1 � a2

��2

=
a1 � a1a2 + 4a2

(1� a1 � a2)2
: (3:7)

Corresponding ARFIMA(0;H � 1=2; 2) formulae are obtained by replacing a's

by b's and changing sign. For the ARFIMA(1;H � 1=2; 1) case

h00(0)

2h(0)
=

b1

(1� b1)2
� a1

(1� a1)2
: (3:8)

Focusing on the ARFIMA(1;H � 1=2; 0) case, (3.6) indicates that h00(0)=2h(0)

approaches minus in�nity when a1 approaches 1; for example, it is �90 when

a1 = 0:9 and �990 when a1 = 0:99. Thus, for large or moderate a1, E2(H) will

be dominated by the h00(0)=2h(0) component. In Figure 1, we plotmopt(H)n�4=5,

� = 2, versus H, for 1=2 < H < 3=4, using (2.11). When a1 = 0, E2(H) is

very small, mopt(H)n�4=5 takes very large values, and E2(H) ! 0 as H ! 1=2

(i.e. mopt(H)!1 as H ! 1=2). For other a1 values mopt(H)n�4=5 su�ers little

variation with respect to H, but as (2.11) indicates, for any a1, mopt(H) increases

quickly when H is close to 3=4. Figure 2 shows plots of mopt(H) against H for

n = 800 when 3=4 < H < 1 using (2.12). The magnitudes of mopt(H) have the

same ordering with respect to a1 as in Figure 1. (qualitatively similar results

were obtained here, and in subsequent numerical work we describe, for n = 400).

In the ARFIMA(2;H � 1=2; 0) case, for a21 + 4a2 < 0 the roots of the char-

acteristic polynomial are complex conjugate, corresponding to a �nite peak in

h(�), and hence possibly in f(�), at a nonzero frequency. Figure 3 shows plots of

log f(�) for di�erent H values. We present two examples where a peak in f(�) at

� 6= 0 is present. The precise location of such peak is a�ected by H. In the short

memory case (H = 1=2), the peak is located at � = �=4 if a1(a2�1)=4a2 = 1=
p
2,

which can happen if a1 = 1:172 and a2 = �0:707; while a peak is located at �=6

if a1(a2 � 1)=4a2 =
p
3=2, which can happen if a1 = 1:268 and a2 = �0:577.

However, for this latter (a1; a2) value, there is hardly a peak for � > 0 for the

larger H. Nevertheless, when there is a peak, and if m is chosen su�ciently large

so that �m is to the right of the peak, then an estimate of H based on the I(�j)

for 1 � j � m (such as that discussed in the following section) might have a

serious negative bias.
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H= 0:5
H= 0:6
H= 0:7
H= 0:8
H= 0:9

a1=1:172; a2=�0:707 a1=1:268; a2=�0:577

� �

Figure 3. Log spectral density of the ARFIMA(2; H � 1=2; 0) model with

a peak at � 6= 0, (1� L)H�1=2(1� a1L� a2L
2)Xt = "t.

4. Feasible Approximations to the Optimal Bandwidth

In order to approximate the optimal bandwidth, we need an estimate of H.
Robinson (1994b) has suggested the estimate

Ĥmq = 1� logfF̂ (q�m)=F̂ (�m)g
2 log q

; (4:1)

where q 2 (0; 1). This estimate is consistent for H even when G in (2.6) is
replaced by a function that varies slowly at � = 0. As noted by Robinson (1994b),
we always have Hmq � 1, so (as with Yule-Walker estimation of autoregressive
coe�cients) a \stationary" estimate will almost certainly result even if the data
come from a nonstationary process (e.g. one with a unit root). There are a
number of tests for a unit root that can be applied at an initial stage. The bulk
of these are directed against autoregressive alternatives, but one that is directed
against fractional alternatives, and may thus be more relevant in our setting, is
a special case of the class of Robinson (1994d).

In order to illustrate the behaviour of Ĥmq evaluated at the optimal band-
width values, we performed a small Monte Carlo experiment, generating data
according to a Gaussian ARFIMA(1;H�1=2; 0) with a1 = 0:5. Figure 4 presents

plots of sample root mean squared errors (RMSE) and biases of Ĥmq (q = 1=2)
from 5000 replications against m, for various values of H and n = 1000. Biases
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can be positive or negative, increasing with H and decreasing with m. The m
which minimizes the MSE di�ers from mopt(H). Even the theoretical MSE of

Ĥmq will di�er from that of mopt(H), depending, among other things, on q.
H= 0:5

H= 0:6

H= 0:7

H= 0:8

H= 0:9

RMSE BIAS

m m

Figure 4. Monte Carlo Bias and RMSE of H estimates in ARFIMA(1; H�

1=2; 0), a1 = 0:5. Sample size n = 800, based on 5000 replications.

Table 1 below compares m values minimizing Monte Carlo RMSE of Ĥmq,
~m say, and corresponding mopt(H), for di�erent values of H. The ~m are signi�-

cantly greater than mopt(H), but the RMSEs of Ĥmopt(H)q are fairly close to the
minimum achievable RMSE.

Table 1. m values minimizing the RMSE of Ĥmq in the Monte Carlo, ~m,

versus mopt(H) in the ARFIMA(1; H � 1=2; 0) with a1 = 0:5, q = 1=2,

(Monte Carlo RMSE in parenthesis.)

n = 1000

~m mopt(H)

0.5 67 51

(0.0921) (0.1021)

0.6 69 56

(0.0770) (0.0839)

0.7 86 67

(0.0623) (0.0634)

0.8 96 73

(0.0415) (0.0490)

0.9 148 83

(0.0216) (0.0498)
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Once H has been estimated we need to approximate E�(H), which in general

depends on H and, possibly, the parameters explaining the short memory part of

the model, as (3.5) indicates. Given Ĥmq and a preliminary value of h00(0)=2h(0),

E2(H) can be estimated according to

E2(Ĥmq) = h00(0)=2h(0) + (2Ĥmq � 1)=24: (4:1)

Starting from a pilot value of m, m̂(0) say, mopt(H) and H can be estimated

by the following iterative procedure,

Ĥ(k+1)
q = Ĥm̂(k)q; where m̂

(k+1) = mopt(Ĥ
(k+1)
q ); k = 0; 1; : : : ; (4:2)

and where (4.1) is used in the computation of mopt(H) by (2.11) and (2.13).

Tables 2 and 3 below summarize Monte Carlo results for the iterative pro-

cedure (4.2), taking h00(0)=2h(0) = �a1=(1� a1)
2 as known. Convergence is typ-

ically achieved after two iterations. The estimates of mopt(H) values are fairly

close to the true ones, and the RMSE are also close to the minimum achiev-

able ones. However, the procedure is not truly automatic since the true value

h00(0)=2h(0) is unknown. Table 3 also includes results for a modi�ed version of

the estimate of Geweke and Porter-Hudak (1983). The version we use is that of

Robinson (1995),

~H =
1

2

"
1�

Pm

j=`+1 log I(�j)flog j � 1

m�`

Pm

j=`+1 log jgPm

j=`+1flog j � 1

m�`

Pm

j=`+1 log jg2
#
;

where ` is a trimming number introduced in this setting by K�unsch (1986). We

took ` = 1; 2; 3 in the computations for Table 3. We consider ~H with m = [n1=2],

a simple \rule-of-thumb" choice sometimes appearing in the applied literature, in

order merely to provide some comparison of our approach with methods popular

in that literature. The iterated averaged periodogram is often more biased than
~H computed with the arbitrary m, but its RMSE's are always less.

Table 2. Monte Carlo mean values of m̂(k) for (4.2) based on 2000 replica-

tions of the ARFIMA(1; H�1=2; 0) with a1 = 0:5 and h00(0)=2h(0) known,

m̂(0) = n4=5, q = 1=2.

n = 1000

H 0.5 0.6 0.7 0.8 0.9

m̂(1) 88 74 79 90 104

m̂(2) 55 62 77 78 83

m̂(3) 54 61 75 78 81

m̂(1) 53 60 75 76 81

mopt(H) 51 56 67 73 83
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Table 3. Monte Carlo RMSE and BIAS of Ĥ
(k)
q for (4.2) and ~H based

on 2000 replications of the ARFIMA(1; H � 1=2; 0) with a = 0:5 and

h00(0)=2h(0) known, m̂(0) = n4=5, q = 1=2.

n = 1000

H 0.5 0.6 0.7 0.8 0.9

Ĥ
(1)
q RMSE 0.2561 0.2134 0.1648 0.1085 0.0436

BIAS �0:255 �0:219 �0:163 �0:076 �0:0421

Ĥ
(2)
q RMSE 0.1077 0.0792 0.0619 0.0432 0.0379

BIAS �0:076 �0:039 �0:025 �0:009 0:021

Ĥ
(3)
q RMSE 0.1017 0.0878 0.0795 0.0455 0.0550

BIAS �0:034 �0:027 �0:024 0.002 0.037

Ĥ
(1)
q RMSE 0.0991 0.0861 0.0740 0.0499 0.0572

BIAS �0:021 �0:019 �0:018 0.001 0.039

` = 1 RMSE 0.1591 0.1591 0.1593 0.1594 0.1604

BIAS �0:018 �0:018 �0:019 �0:021 �0:024
~H ` = 2 RMSE 0.1863 0.1863 0.1868 0.1861 0.1847

BIAS �0:021 �0:020 �0:021 �0:022 �0:027

` = 3 RMSE 0.2146 0.2145 0.2144 0.2138 0.2119

BIAS �0:020 �0:020 �0:020 �0:021 �0:024

It is possible to obtain a more \automatic" m by using an expansion of the

semiparametric spectral density

f(�) = j1� ei�j1�2Hh(�):

Given a pilot m value m̂(0), estimate H by Ĥ = Ĥm̂(0)q. Then perform the least

squares regression

I(�j) =
2X

k=0

Zjk(Ĥ)�̂k + "̂j ; j = 1; : : : ; m̂(0); (4:3)

where Zjk(H) = j1 � ei�jj1�2H�kj =k!. �̂0 and �̂2 are estimates of h(0) and h00(0)

respectively. Thus h00(0)=2h(0) is estimated by �̂2=2�̂0. This estimate is plugged

in (4.1) in order to implement the iterative procedure (4.2).

Tables 4 and 5 summarize Monte Carlo results for the feasible estimates

of mopt(H) and corresponding H estimates based on the algorithm (4.2). The

h00(0)=2h(0) estimate given by (4.3) is not updated at each iteration. We tried

updating it but this made matters worse. The mopt(H) estimates in Table 4 are

more biased than those using the infeasible procedure (Table 2). TheH estimates
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in Table 5 are less e�cient than those in Table 3. They are again more e�cient

than ~H using the arbitrary m = [n1=2], and usually less biased (see Table 3). The

Monte Carlo results do not seem so bad as to eliminate our automatic iterative

procedure from practical consideration, and they suggest that further study be

directed at theoretically justifying and re�ning it.

Table 4. Monte Carlo mean values of m̂(k) in procedure (5.5) based on 2000

replications of the ARFIMA(1; H � 1=2; 0) with a1 = 0:5 and h00(0)=2h(0)

estimated by �̂2=2�̂0, and starting value m̂(0) = n4=5.

n = 1000

H 0.5 0.6 0.7 0.8 0.9

m̂(1) 61 53 71 127 227

m̂(2) 39 45 70 121 228

m̂(3) 39 45 72 124 228

m̂(1) 38 44 68 118 180

mopt(H) 51 56 67 73 83

Table 5. Monte Carlo RMSE and BIAS of Ĥ(k) in (4.2) based on 2000

replications of the ARFIMA(1; H � 1=2; 0) with a1 = 0:5 and h00(0)=2h(0)

estimated by �̂2=2�̂0, and starting value m̂(0) = n4=5.

n = 1000

H 0.5 0.6 0.7 0.8 0.9

Ĥ
(1)
q RMSE 0.2561 0.2135 0.1648 0.1086 0.0437

BIAS �0:254 �0:2122 �0:164 �0:151 �0:042

Ĥ
(2)
q RMSE 0.1125 0.1002 0.0944 0.0946 0.1220

BIAS �0:031 �0:003 �0:005 0:008 0:033

Ĥ
(3)
q RMSE 0.1321 0.1171 0.1057 0.0965 0.1171

BIAS �0:005 �0:004 �0:008 0.014 0.039

Ĥ
(1)
q RMSE 0.1281 0.1170 0.1121 0.1071 0.1104

BIAS �0:007 �0:016 �0:016 0.019 0.037

5. Empirical Examples

The minimum water levels of the Nile River measured at the Roda Gorge

near Cairo during years 622 through 1284 (see Toussoun (1925)) have been used

in several studies dealing with long-range dependence. The periodogram of these

data is presented in Figure 6. It is very large at frequencies near zero. In fact
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using the \automatic" procedure discussed in last section we obtain the estimate

Ĥ = Ĥ
(1)
0:5 = 0:845 with optimal m̂ = m̂(1) = 70. Graf (1983) obtained H

estimates between 0.828 and 0.847 using a robust but parametric estimate, and

Robinson (1994b) obtained semiparametric estimates (using (4.1)) between 0.832

and 0.859 for m = 20j, j = 1; : : : ; 9.

Periodogram Spectral density estimates under long and short memory

Long memory

Short memory, m=10

Short memory, m=30

Short memory, m=70

�j �j

Figure 5. Peridogram and spectral density estimates for the Nile River data.

To estimate f(�) near � = 0 we use Ĥ and m̂ in the estimate

Ĝ = ĜĤ;m̂ = 2(1 � Ĥ)F̂ (�m̂)�
2(Ĥ�1)

m̂ ; (5:1)

proposed by Robinson (1994b). Plugging Ĝ and Ĥ into (2.6), we plot in Figure

7

f̂(�) = Ĝ�1�2Ĥ : (5:2)

Now suppose that we proceed more conventionally by estimating f(�) under

the assumption that Xt has short memory, that is f(�) is smooth at � = 0, so

H = 1=2 is assumed in (2.6). We estimate f(�) by

~f(�) = (1 + 2m)�1
mX

j=�m

I(�+ �j); (5:3)

for m = 10; 30 and 70, and plot these estimates in Figure 7. We have used

Daniell weights for the sake of comparability with f̂(�); notice that replacing Ĥ

in (5.1) and (5.2) by 1/2, and m̂ by m gives (2.2) and nearly leads to (5.3) for

� = 0, speci�cally f̂(0) = (1 + 1=2m) ~f (0). Although the m used in (5.3) are not
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larger than m̂, and in two cases much smaller, the resolution achieved by (5.2)

is much greater, and (5.2) seems the more plausible approximation, bearing in

mind Figure 5.

There is evidence of long-memory in economic aggregates. Robinson (1978)

and Granger (1980) found that aggregates of Markov processes can, under certain

assumptions, have long-memory. Granger and Joyeux (1980) found evidence of

long-memory in monthly food ination rate for the USA economy, where ination

rate is de�ned as the �rst di�erence of the logarithms of consecutive observed

price indeces. They estimated H parametrically, proposing di�erent ARFIMAs,

and found an H estimate close to 1. Geweke and Porter-Hudak (1983) illustrated

their semiparametric estimation procedure (an alternative to (4.1)) by means of

an application to monthly consumer price indices. They found strong evidence

of long-memory in the ination rate, with an H estimate close to 1. Geweke and

Porter-Hudak (1983) illustrated their semiparametric estimation procedure (an

alternative to (4.1)) by means of an application to monthly consumer price in-

dices. They found strong evidence of long-memory in the ination rate, with an

H estimate of 0.923 for the food ination rate and 1.201 for the aggregate ina-

tion rate, using USA data. Delgado and Robinson (1994) analyzed the monthly

aggregate consumer price index for the Spanish economy from July 1939 to Oc-

tober 1991, so n = 628. Di�erent semiparametric H estimators were compared,

and they always provided values between 0.78 and 0.85 for m values between 75

and 244.

Using the consumer price index data of Delgado and Robinson (1994), H

was re-estimated using the automatic method of the previous section, giving

Ĥ = 0:831 and m̂ = 140. Figure 6 presents the periodogram and the estimates

(5.2) and (5.3) for this series. The broad comments made about the Nile river

data example apply here: the short-memory estimates do not seem sensible in

view of Figure 6. We also re-examined the Spanish food ination rate for the same

period, considered by Delgado and Robinson (1994). This more dissaggregated

price index produces, as might be expected, a smaller H estimate, Ĥ = 0:712.

Here m̂ = 179, for n = 628. Figure 7 presents the periodogram and spectrum

estimates for this series, where once again (5.3) fails to reect the magnitude of

the periodogram near zero.
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Periodogram Spectral density estimates under long and short memory

Long memory

Short memory; m=10

Short memory; m=30

Short memory; m=70

�j �j

Figure 6. Periodogram and spectral density estimates for aggregate ina-

tion rate (Spain 1939-1991)

Periodogram Spectral density estimates under long and short memory

Long memory

Short memory; m=10

Short memory; m=30

Short memory; m=70

�j �j

Figure 7. Periodogram and spectral density estimates for food ination

rate (Spain 1939-1991)
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