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Abstract: The two-stage random-e�ects model (Harville (1977), Laird and Ware (19-

82)) o�ers a powerful and 
exible tool for the analysis of longitudinal data. This

method assumes individual response may be modeled as the sum of an overall popu-

lation e�ect, a random individual deviation, and random error. When individuals are

nested within families or companies, this source of variability should also be consid-

ered. Building a model for hearing loss for minimally noise-exposed workers with data

compiled from multiple sources motivated extending the two-stage model to include a

nested random e�ect. Computational methods to compute population e�ects, random

e�ects, and variance components in this more general setting using the EM algorithm

are given.

Key words and phrases: Random e�ects models, EM algorithm, restricted maximum

likelihood, mixed models, hierarchical models.

1. Introduction

Longitudinal studies are typically designed to investigate changes over time

in a characteristic that is measured repeatedly for each study participant. When

all data are present and measurements are made at the same time point for each

of many individuals, standard multivariate methods may be used to analyze such

data. When measurements are missing, when there is considerable variation in

the number or timing of observations, or when samples are small, estimation

using standard methods is impossible.

Harville (1977), Dempster, Rubin and Tsutakawa (1981) and Laird and Ware

(1982), among others, have proposed and investigated the use of two-stage ran-

dom e�ects models in this setting. These models assume a patterned covariance

structure (block diagonal), which allows for estimation of variance components.

The EM algorithm may be invoked to provide maximum likelihood (or restricted

maximum likelihood) estimates of the variance components. These estimated

variance components are then typically considered known to provide empirical

Bayes estimates of �xed and random e�ects.

This method, however, does not incorporate nested random e�ects as when

individuals are nested within families or companies. When combining data from
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multiple studies, random variability between data sources is important. For ex-

ample, suppose individuals being monitored for hearing loss are nested within dif-

ferent companies, then estimation of both company-to-company and individual-

to-individual variability is necessary. We will focus on an example where data

come from multiple companies to extend current methodology to allow for estima-

tion of company-to-company variability as well as subject-to-subject variability.

With this more general model, appropriate estimates of �xed e�ects and their

variances will be possible.

2. The Problem

The Occupational Safety and Health Administration (OSHA) mandates au-

diometric testing of employees exposed to time-weighted average (TWA) indus-

trial noise levels greater than 85 Db. Various methods have been proposed to

analyze such data (Melnick (1984), Royster and Royster (1986)), but as yet no

model which incorporates both longitudinal and cross-sectional data exists.

The problem for our analysis was to describe hearing loss in a population with

minimal noise exposure. Although companies are legally liable for hearing loss

in employees from industrial noise, there is no well-accepted model for hearing

loss where there is no noise exposure. Thus, establishing that industrial noise is

the cause of speci�c hearing loss is di�cult. With a baseline model established,

companies could compare their employee experience with what would be expected

with minimum noise exposure. If employee hearing loss exceeded that expected

in a control setting, the need for remedial measures would be established. Such

a baseline model could also be used by regulatory agencies to monitor company

performance with regard to employee hearing loss.

The National Technical Information Service (NTIS) of the U.S. Department

of Commerce has a data tape available which was prepared for the National

Institute for Occupational Safety and Health (NIOSH) by Environmental Noise

Consultants, Inc: (1987). This tape contains audiometric data on over 45,000

individuals from 22 companies in the U.S. and Canada. Over 15,000 of the

individuals had at least 4 audiograms and roughly 4,000 individuals had at least

8 audiograms.

Data were prepared for this analysis by eliminating all individuals for whom

birth date, race, gender or noise exposure was not known. Also, since this analysis

was to focus on subjects with minimal noise exposure, once an individual's TWA

noise exposure was 75 Db or greater, any subsequent measurements on that

individual were eliminated. This left 3,562 individuals from 6 companies with

8,768 observations for analysis. The dependent variable was left and right ear

average hearing level at 4000 Hz. (An increased hearing level indicates hearing
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deterioration.) Explanatory variables considered in the analysis were gender,

race (white, black, Hispanic), age at �rst test, and time from �rst test.

In an environment where noise exposure is limited, cross-sectional hearing

loss (i.e. loss across many individuals associated with age) should be the same as

longitudinal hearing loss (i.e. loss on a single individual associated with time).

Thus, it is necessary to have both cross-sectional and longitudinal data included

in the analysis. In our formulation, cross-sectional loss may be estimated using

the covariate \age at �rst test" while longitudinal loss is associated with \time

from �rst test".

3. The Model

In the standard formulation, the response is modeled as the sum of �xed

e�ects (unknown population parameters) and random e�ects (individual devi-

ations). In our more general formulation, individual e�ects are nested within

company e�ects which are assumed to be random.

In general, let yij denote the responses for the jth individual in the ith data

set. Let � denote a p��1 vector of unknown population parameters, and Xij be

a known nij � p� design matrix linking � to the responses yij . Let ci denote a

pc � 1 vector of unknown company random e�ects and Wij be a known nij � pc

design matrix linking ci to yij . Finally, let bij denote a pb� 1 vector of unknown

individual random e�ects for individuals nested within companies, and Zij be a

known nij � pb design matrix linking bij to yij . We propose the following model

for multivariate normal data. For each individual unit, ij,

yij = Xij�+Wijci + Zijbij + eij ; (1)

where eij � MVN(0; �2Inij ); ci � MVN(0;E) and bij � MVN(0;D), all indepen-

dent of each other. E is a pc � pc positive-de�nite covariance matrix, and D is

a pb � pb positive-de�nite covariance matrix. In the Bayesian formulation, � is

also considered to be normally and independently distributed with Var(�) = �.

In our problem, hearing loss was assumed to be a linear function of time (a

term de�ning a quadratic function of time was found to be insigni�cant). The

random e�ects, both company and individual, were mean and slope of hearing

loss based on time from �rst test. Illustrative design matrices, Zij and Wij , for

these random e�ects for an imaginary individual are shown below. Population

or �xed e�ects were the overall mean, overall slope of hearing loss as a function

of time from �rst test (the longitudinal e�ect of time) (time from �rst test was

centered by subtracting 2.7), covariates for age (centered by subtracting 40) at

�rst test (the cross-sectional e�ect of time), gender, race (black vs. non-black)

(a second degree of freedom comparing white to Hispanic was found to be non-
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signi�cant), and an age at �rst test by gender interaction. A hypothetical design

matrix, Xij , for these e�ects for an imaginary individual is shown below.

These matrices describe an individual who was 42.0 years old at the time

of his �rst test, (2nd column is age �40) who was a black male (3rd column is

gender, 0 = female, 1 = male; 4th column is race, 0 = non-black, 1 = black) and

who has had 5 tests over a span of 5 years. The test for the second year after the

initial test was missing. (The 6th column is time since �rst test �2:7.) Column

5 is an age at �rst test by gender interaction.

Xij =

2
666664

1 2 1 1 2 �2:7

1 2 1 1 2 �1:6

1 2 1 1 2 0:2

1 2 1 1 2 1:5

1 2 1 1 2 2:4

3
777775 ; Zij =Wij =

2
666664

1 �2:7

1 �1:6

1 0:2

1 1:5

1 2:4

3
777775 :

In general, let ki be the number of individuals in the ith company, m be the

number of companies,
Pm

i=1 ki = k, and
Pm

i=1

Pki
j=1 nij = n, be the total number

of individuals and total number of observations, respectively.

The model for all individuals within all data sets may now be written as:

y = X�+Wc+ Zb+ e; (2)

with

y
0 = (y0

11
; y

0

12
; : : : ; y

0

mkm
); X0 = (X0

11
;X

0

12
; : : : ;X

0

mkm
); e0 = (e0

11
; e

0

12
; : : : ; e

0

mkm
);

W = diag(W1;W2; : : : ;Wm) where W
0

i = (W 0

i1;W
0

i2; : : : ;W
0

iki
);

� = diag(E; : : : ;E); Z = diag(Z11; : : : ;Zmkm); � = diag(D; : : : ;D);

c
0 = (c0

1
; : : : ; c

0

m) and b = (b0
11
; b

0

12
; : : : ; b

0

mkm
);

which extends the standard formulation by inserting the Wc term.

4. Estimation Given Hyperparameters

If �2;D;E, and � were known, Bayesian estimates for �; b; c could be ob-

tained as their posterior expectations, given y; �2;D;E, and �. With �
2
;D;E,

and � unknown, an empirical Bayes approach (Deely and Lindley (1981), Efron

and Morris (1975), and Dempster, Laird and Rubin (1977)) replaces �2;D;E,

and � with estimates of these variance components (see Section 5). These em-

pirical Bayes estimates, also called shrinkage or Stein estimates (James and Stein

(1961)), essentially \borrow strength" from the entire data set to estimate any
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particular e�ect. The formulation implies that there is information about a par-

ticular company e�ect contained in all the companies, so that a naive estimate

of a company e�ect may be improved by borrowing strength from the other

companies.

We let ��1 = 0, indicating vague prior information about �, and use esti-

mates of �2;D and E obtained by maximizing the limiting (as ��1 ! 0) marginal

normal likelihood of �2;D and E given y after integrating over �; b and c (see

Section 5). These estimates are the restricted maximum likelihood (REML) es-

timates (Harville (1977) and Dempster, Rubin and Tsutakawa (1981)).

If the variance components are known, it is possible to show that the posterior

distributions of �; b; c are normal with mean and variance

�̂ = E[�j�2; y;D;E] = (X0��1
X)�1X0��1

y (3)

and

Var(�j�2; y;D;E) = (X0��1
X)�1; (4)

where � =W�W 0 + Z�Z0 + �
2
In. Also,

b̂ = E[bj�2; y;D;E] = (Z0

GZ+ �

2��1)�1Z0

Gy (5)

and

Var[bj�2; y;D;E] = �

2(Z0
GZ+ �

2��1)�1; (6)

where

G=H�HW(W 0

HW)�W 0

H+HW(W 0

HW+�2��1)�1�2��1(W 0

HW)�W 0

H

and H = I � X(X0
X)�1X0, with \�" indicating a generalized inverse. These

results reduce to those of Laird and Ware (1982) in the case where there is no

company e�ect.

Also,

ĉ = E[cj�2; y;D;E] = (W 0

FW+ �

2��1)�1W 0

Fy (7)

and

Var[cj�2; y;D;E] = �

2(W 0

FW+ �

2��1)�1; (8)

where

F = H�HZ(Z0

HZ)�Z0

H+HZ(Z0

HZ+ �

2��1)�1�2��1(Z0

HZ)�Z0

H:

5. Finding MLE's of Hyperparameters Using EM

To apply the results of Section 4, it is necessary to have estimates of �2;D and

E. We estimate the variance components using the EM algorithm (Dempster, et
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al. (1977)). These estimated variance components are then used in the estimation

of the other model parameters.

Application of the EM algorithm in the current setting is done by considering

the complete data to consist of y; c; b and e. If we were to observe c; b and e as

well as y, we could �nd closed form maximum likelihood estimates of �2;D and

E based on quadratic forms in e; b and c. We would use

�̂

2 =
e
0
e

n

=
t1

n

; (9)

Ê =
1

m

mX
i=1

cic
0

i =
t2

m

; (10)

and

D̂ =
1

k

mX
i=1

kiX
j=1

bijb
0

ij =
t3

k

; (11)

the su�cient statistics for �2;E and D being t1 and the non-redundant compo-

nents of t2 and t3.

If estimates of �2;D and E are available (call these estimates !̂ and estimates

of b and c based on !̂ call b̂(!̂) and ĉ(!̂)), we use them to calculate estimates

of the missing su�cient statistics by setting them equal to their expectations,

conditional on y and !̂. In this case the estimates are

t̂1 =E(e
0

ejy; !̂) = ê(!̂)0ê(!̂) + trVar(ejy; !̂); (12)

t̂2 =E

"
mX
i=1

cic
0

ijy; !̂

#
=

mX
i=1

ĉi(!̂)ĉi(!̂)
0 +Var(cijyi; !̂); (13)

t̂3 =E

2
4 mX
i=1

kiX
j=1

bijb
0

ij jy; !̂

3
5 =

mX
i=1

kiX
j=1

b̂ij(!̂)b̂ij(!̂)
0 +Var(bij jyij ; !̂): (14)

After choosing suitable starting values for �2;D and E, we iterate between

(12), (13) and (14) (which de�ne the E-step) and (9), (10) and (11) (which de�ne

the M-step) until convergence. At convergence, we obtain not only the variance

components, but also estimates for �; c; b, and their variances based on the esti-

mated variance components (see Section 4). Since for even a few individuals, the

formulas for estimating e�ects and their variances are quite unwieldy, we present

equivalent computational formulas in the Appendix.

6. Analysis

It is important to reiterate that the current analysis uses data from only

six companies. Thus, estimation of the variance components matrix E might be
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called into question. However, our experience with the asymptotics even with

small samples has been positive. We do feel extreme caution should be used

if any of the random e�ect distributions appear to be skewed (Fellingham and

Raghunathan (1994)). This was not the case in this analysis.

We actually analyzed a number of models before settling on the one which

we present here. Early models included a term for quadratic hearing loss and

additional degrees of freedom for race, as well as interaction terms. We also

checked for a possible learning e�ect (i.e., the possibility that subjects perform

better on later tests as they become familiar with the testing procedure). The

model we present is used for two main reasons. One, it is parsimonious. Two,

all terms included in the model are ones which other researchers in the area have

suggested should be important (see Melnick (1984), Royster and Royster (1986)).

The �nal model includes �xed e�ects for the intercept, age (the cross-sectional

e�ect), race (non-black vs. black), gender, a gender by age interaction, and time

since �rst test (the longitudinal e�ect). Random e�ects include the intercept and

time since �rst test. The design matrices are as shown in more detail in Section

3.

The results of the analysis are given in Table 1.

Table 1. Results of nested random e�ects analysis of audiometric data from six companies

Variance Components
�̂
2 = 27:79 �̂ = 5:27 (within-individual)

Ê =

�
13:65 0:264

0:052

�
(between-companies)

D̂ =

�
226:9 1:030

0:697

�
(between-individuals)

Population E�ects
Standard

Estimate deviation Z-score p-value

Mean 14.40 1.707 8.43 < 0:001

Age at �rst test (�40) 0.3792 0.047 8.07 < 0:001

Gender 17.36 0.819 21.2 < 0:001

Race (black vs. non-black) �5:833 0.694 �8:41 < 0:001

Gender by age interaction 0.6243 0.057 11.1 < 0:001

Time since �rst test 0.1590 0.120 1.33 < 0:184

The within subject variability, 5.27 seems reasonable since the measurement

in an audiometric test is typically accurate to 5 Db. Individual intercepts have a

standard deviation on the order of 15 Db (variance = 226.9). Since audiometric

tests typically cover a range from 0 to 99, and 6 standard deviations cover 90

Db, this variance component seems reasonable as well. Individual slopes have



104 GILBERT W. FELLINGHAM AND MORGAN D. WISE

a standard deviation of .835 (variance = .697), which indicates a high degree

of individual to individual variability. There is very little relationship between

individual slopes and intercepts (covariance = 1.03, correlation = .08).

Between company variability is much lower than between individual variabil-

ity. Company to company intercepts have a standard deviation of only 3.7, and

slopes have a standard deviation of only 0.23. The correlation of intercepts and

slopes is much greater within companies than within individuals (.31 to .08). It

may be that di�erences in monitoring equipment, testing procedures, or testing

personnel that are consistent within a company but not between companies are

associated with this di�erence.

Population e�ects indicate that females hear better than males and blacks

hear better than non-blacks. Mean hearing loss with age is on the order of .4dB

per year. However, the cross-sectional hearing loss in this group is more severe

for males than for females. That is, as individuals age, males lose hearing faster

than do females.

Of major importance in this study is the relationship of the cross-sectional

hearing loss (age at �rst test) to the longitudinal loss (time since �rst test). If

there was no accelerated hearing loss, as there should not be in this control group,

then cross-sectional and longitudinal components should be similar. Comparing

longitudinal and cross-sectional components yields a z-score of 1.71 and a p-value

of .087. Of course, in this case, we would be concerned only if the longitudinal

loss exceeded cross-sectional loss, which is not the case here.

It is interesting to compare this result to an analysis which ignores the com-

pany e�ect. Laird and Ware's model was used to perform such an analysis. The

results are given in Table 2.

Table 2. Results of random e�ects analysis of audiometric

data when data set e�ect is ignored

Variance Components
�̂
2 = 27:66 �̂ = 5:26

D̂ =

�
228:8 1:053

0:790

�
Population E�ects

Standard

Estimate deviation Z-score p-value

Mean 15.39 0.618 24.9 < 0:001

Age at �rst test (�40) 0.3388 0.045 7.58 < 0:001

Gender 18.58 0.728 25.5 < 0:001

Race (black vs. non-black) �5:902 0.696 �8:48 < 0:001

Gender by age interaction 0.6856 0.054 12.7 < 0:001

Time since �rst test (�2:7) 0.0944 0.041 2.29 < 0:022
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Estimates for �2;D, and the population e�ects are quite similar to those

in Table 1. However, because we have failed to account for variability between

companies, the population e�ects have been estimated with variances which are

too small.

Although the di�erences at �rst glance appear to be small, it is possible to

see where analysis with the less general model could lead one to di�erent con-

clusions. For example, if we compare cross-sectional to longitudinal components

in this model, the z-score for the di�erence is 4.02 with a p-value of 0.000. With

this analysis we would conclude that longitudinal loss is signi�cantly less than

cross-sectional loss. That is, hearing loss prior to the implementation of a test-

ing program signi�cantly exceeded hearing loss after a monitoring program was

installed. We believe this rather odd conclusion to be the result not of inappropri-

ate estimates of �xed e�ects, but of incorrect estimates of variance components.

Estimates of the variance of the �xed e�ects mean (intercept) and time since �rst

test (slope) are on the order of eight times smaller for the model which ignores

company-to-company variance. Thus, inappropriate model speci�cation could

well lead to inappropriate conclusions.

7. Discussion and Further Remarks

There are other approaches which might be applied in the hierarchical set-

ting. A considerable body of literature exists on analyzing hierarchical models

using maximum likelihood methods (see e.g. Bryk and Raudenbush (1992)).

Goldstein (1986, 1989) has shown that iterative generalized least-squares esti-

mates used in the hierarchical linear model are equivalent to maximum likelihood

estimates under multivariate normality. He also shows how to correct for bias in

these estimates.

From the Bayesian point of view, there is an emerging body of literature on

the use of sampling-based methods to estimate posterior densities. Such methods

are quite general and implementation is possible in a variety of settings. Gelfand

and Smith (1990) provide an extensive overview. These techniques also allow for

the comparison of di�erent models applied to the same data. (See e.g. Belin and

Rubin (1994) who use these methods to compare various models of Schizophrenic

reaction times.) Simulation-based methods are, however, somewhat controver-

sial. Gelman and Rubin (1992a,b) point out that naive use of the Gibbs sampler

(and other iterative simulation methods) can give falsely precise answers, and so

should be applied with care.

In conclusion, we have developed methods to analyze longitudinal data where

measures come at varying intervals and there is a nested random e�ect. The

EM algorithm is implemented to estimate variance components from a restricted
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likelihood surface. Empirical Bayes methodology is used to estimate population

and random e�ects given the estimated variance components. We conjecture

that failure to account appropriately for all sources of variability may be leading

analysts to conclude that certain model e�ects are signi�cant when they are not.

Appendix

Computational Formulas:

(Note: In the summation, i ranges from 1 to m and j ranges from 1 to ki)

Call Vij = (Z 0

ijZij + �̂

2
D̂

�1)�1;

Tij = Inij � ZijVijZ
0

ij ;

Ui = (
X
j

W

0

ijTijWij + �̂

2
Ê

�1)�1;

and A =
hX

i

X
j

X

0

ijTijXij �X

0

ijTijWijUiW
0

ijTijXij

i
�1

:

Then

�̂ = A�i�jX
0

ijTijyij �X

0

ijTijWijUiW
0

ijTijyij ;

Vâr(�̂) = �̂

2
A;

ĉi = Ui�j(W
0

ijTijyij �WijTijXij �̂);

Vâr(ĉi) = �̂

2
Ui(Ipc +�jW

0

ijTijXijAX
0

ijTijWijUi);

b̂ij =�

h
VijZ

0

ijXij � VijZ
0

ijWijUi

X
j

W

0

ijTijXij

i
�̂

+ VijZ
0

ijyij � VijZ
0

ijWijUi

X
j

W

0

ijTijyij ;

Vâr(b̂ij) = �̂

2

n
Vij + VijZ

0

ij

nh
Xij �WijUi

X
j

W

0

ijTijXij

i

� A

hX
j

X

0

ijTijWijUiW
0

ij �X

0

ij

i
+WijUiW

0

ij

o
ZijVij

o
;

Côv(�̂; ĉi) =� �̂

2
A

X
j

X

0

ijTijWijUi;

Côv(�̂; b̂ij) = (��̂2AX 0

ij +Côv(�̂; ĉi)W
0

ij)ZijVij ;

Côv(ĉi; b̂ij) =� �̂

2
UiW

0

ijZijVij � Ui

X
j

W

0

ijTijXijCôv(�̂; b̂ij):
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