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AUTOCORRELATIONS AND RELATED TESTS OF FIT
FOR A CLASS OF NONLINEAR TIME SERIES MODELS

Sun Young Hwang, I. V. Basawa and J. Reeves

University of Georgia

Abstract: We derive the joint asymptotic distribution of the sample autocorrelation
functions pr(i) of lag 4, i = 1,...,l, based on the residuals {R:}, t = 1,2,...,n,
obtained after fitting a nonlinear time series model. Tests of fit based on the residuals
and on the autocorrelations of residuals are also presented. Some simulation results
are reported.
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1. Introduction

In a seminal paper, Box and Pierce (1970) obtained the joint limit distribu-
tions of sample autocorrelation functions (ACF) of the residuals after fitting a
linear time series model. As shown by Box and Pierce (1970), the ACF of the
residuals can be used as a diagnostic tool; and portmanteau type tests based on
the residual ACF’s can be developed to test model adequacy. See Brockwell and
Davis (1991) for a general discussion of the problem of diagnostic testing. Box
and Pierce (1970) and Durbin (1970) showed that the variances of the ACPF’s
based on the residuals from a linear autoregressive process are different from
those of the ACF’s based on a sample of independent and identically distributed
observations. Furthermore, the residual ACF’s were shown to be correlated even
for large n. The study of the asymptotic covariance matrix of the residual ACF’s
enabled Box and Pierce (1970) to make a detailed investigation of the problem
of diagnostic checking of linear time series models.

In this paper, we obtain the joint limit distribution of the residual ACF’s
obtained from fitting a nonlinear autoregressive process. Li (1992) has recently
discussed the limit distribution of the residual ACF’s for nonlinear models with
fixed coefficients. The nonlinear autoregressive model that we consider includes
standard models such as threshold autoregression, exponential autoregression and
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random coefficient autoregressive models. Our results reduce to those of Box and
Pierce (1970) in the special case of a linear autoregressive model and to those of
Li (1992) for nonlinear models with fixed coefficients. In this sense, our paper
can be viewed as a generalization of the paper by Box and Pierce (1970) and
by Li (1992). The covariance structure of the residual ACF’s for the nonlinear
model is seen to be much more complicated than in the case of a linear model.
However, there are some qualitative similarities between the results for the linear
and nonlinear models. In both models, the ACF’s with lower lags have asymptotic
variances significantly different from unity, whereas for higher lags, they quickly
converge to unity.

The paper is organized as follows. The nonlinear model and some special
cases are presented in Section 2. The consistency and asymptotic normality of
the conditional least squares estimators of the model parameters are discussed
in Section 3. Section 4 contains the main result of the paper, viz., the joint
limit distribution of the residual ACF’s. Some tests of fit based on the residuals
and their ACF’s are derived in Section 5. Finally, some simulation results are
presented in Section 6.

2. The Model and Examples

Consider a pth-order nonlinear autoregressive time series {Y;,¢ > 1} defined
by )
Y, = H(Yt_l,Zt;H) + €, (2.1)

where {e:} is an unobserved sequence of i.i.d. random errors with mean zero
and variance ag, H is a known function, Yio1 = (Yt_l,...,Yt_p)T, and 6 is an
unknown vector parameter, § € © C R’. The unobserved random vectors {Z;}
are assumed to be i.i.d. with mean zero, and independent of {¢;}. Typically, {Z;}
represents uncertainty about the parameter § and H depends on Z; and 0 via
the “random parameter” (6 + Z:). The model in (2.1) covers several standard
nonlinear models in addition to linear models. Note also that random coefficient
linear and nonlinear models are also included in the class of processes given by
(2.1). We now consider some examples of (2.1).

Examples

Ex. 1. Random coefficient autoregressive (RCA) processes
H(Yi1,24;60) = (61 + Z0)Yec1 + -+ + (6p + Zip)Yep, (2.2)

where {Z;;, j =1,...,p} are i.i.d. scalar random variables with mean zero. (See
Nicholls and Quinn (1982) and Feigin and Tweedie (1985).) If we set Z;; = 0,
j=1,...,p, in the above model, we get standard linear autoregressive processes.
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Ex. 2. Threshold autoregressive (TAR) processes
The first-order threshold autoregressive process TAR(1) is defined by (2.1)
with )

H(Yi1, 24;6) = Y55 + 0¥y, (2.3)
where Yf_’l =Y, 1I(Y;-1 20), Y, = Y;_1I(Y;-1 < 0) and where I(-) denotes
the indicator function of the event enclosed. The model in (2.3) can easily be
generalized to higher order TAR models. For instance, if R;, i = 1,...,k, denote

k disjoint regions with R = \UX_, Ri, and I;; denotes the indicator function of the
event (Y;—; € R;), the TAR(p) model is specified by (2.1) with

kK p
H(Y:1,24;0) =YY 0iYi 5155 (2.4)
i=1j=1

(See Tong (1990) for these and related models.)

Ex. 3. Random coefficient threshold autoregressive (RCTAR) pro-
cesses

Replacing 6; and 6; in (2.3) by Zy + 61 and Zy + 02 we get a RCTAR(1)
model. Also, replacing 6;; in (2.4) by Z:(4,5) + 6;; we can extend the TAR(p)
model to a RCTAR(p) model. (See Hwang and Basawa (1991), and Brockwell et
al. (1992).)

Ex. 4. Exponential Autoregression (EAR)

Take
P

H(Yie1, Z6;6) = Y {615 + 05 exp(—63;Y2 D} Yis (2.5)
j=1

(See Tong (1990, p.129) for further details on this model.)

Ex. 5. Random coefficient exponential autoregression (RCEAR)

Replace 61; and 65; in (2.5) by 61; + Z1(j) and 625 + Z2(j) respectively to
get an RCEAR(p) model. (See Hwang and Basawa (1991) for further details.)

3. The Consistency and Asymptotic Normality of the Conditional Least
Squares Estimators

Define
M(Yi_1;0) = Eo(Ys | Aemr) = Eo(H(Vee1, Z656) | Ara), (3.1)

where :
A1 = G(Y—p-}-l, <. 7Y07 s a}/t-—l)’ t>1,
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is the o-field generated by {Y_p+1,...,Y0,...,Yi—1}. The conditional least squares
(CLS) estimator ,, of § is then obtained by minimizing 37, U2(8), where

Uy(8) = Ye — M(Y:-1;6) (3.2)

denotes the prediction error. Consider the following regularity conditions:

(C.0) For each § € © C R’, {Y;,t > 1} admits a unique initial distribution for
(Y_p+1,...,Yp) so that {Y:,t > —p + 1} is stationary and ergodic.

(C.1) The conditional expectation M (}.’t-l;ﬁ) is a function of Y;—; and 6 only,
not depending on any nuisance parameters.

(C.2) The J x J matrix V defined by
V = By [(VM(Fior; 0))(VM(¥io1;6))"]

exists and is positive definite for each § € ©, where VM denotes the (J x 1)
vector of first derivatives of M with respect to 6.

(C.3) There exist square integrable random variables
ai(Yi-1;0), Bij(Vi-1;0), ¥ijr(Ye-1;6),

and a positive constant ¢ such that for all § with Ié — 0| < ¢, we have

o |OM(Yii1; 0 ~
6) [PLED < o hisio),
o |PM (Y16 ~
(i) 6;59? )} < Bij(Yi-1;0),
10U
and
o |BBM(Yi_1;0 -
(iii) 89529;81& )l < Yijk(Yee150),
i k=1,...,J.

Remarks. Sufficient conditions for (C.0) for the type of processes considered in
this paper are discussed, for instance, by Tong (1990) and the references therein.
The condition (C.1) is satisfied in all the examples mentioned in Section 2. It is
possible to relax (C.1) and permit M(Y;_1;8) to depend on unknown nuisance
parameters. This would involve further regularity conditions in order to stabilize
the Taylor expansion of M (Y;_1;6). For simplicity, we retain (C.1). Condition
(C.2) implies that the elements of the derivative vector VM (Y;_1;8) are linearly
independent. Condition (C.3) is the usual Cramer type condition and is similar
to the one imposed by Klimko and Nelson (1978). It can be shown that (C.3) is
satisfied for all the examples mentioned in Section 2.
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Theorem 3.1. Under conditions (C.0) to (C.3), there exists a sequence of esti-
mators {0,} such that Qn = 3t UZ(9) attains a relative minimum at 6, and

-

a.S.
0, = 0, as n — 0.

Proof. Conditions (C.0) to (C.3) imply the relevant conditions (C.1 and C.2) of
Tjostheim (1986) and hence the result follows from his Theorem 3.1.

Lemma 3.1. Under (C.0) to (C.3), we have

R 1 < -
Vn(ln —6) = V1= U() VM (Yie1;6) + 0p(1), (3.3)
vn
where V is defined in (C.2), Us(8) = — M(Y;_1;6) and op(1) is a term con-

verging to zero in probability.

Proof. First, note that we have

t=1

By the Taylor expansion of U:(0) at 0., we have
1 < ~ ~ A
7— Z VM (Yi-1;0,)[U:(6n) — U(6)]

= \/_ EVM(Yt 1 60)VMT (YVi1;8)(6n — 6) + 05(1).
It is seen by (C.3) that

\/_ZUt(G)VM(Y’t 1, n) — \/—zUt(a)VM(YVt 1)0)+0P( )

and
—ZVM(Yt 130 VMT (Yio1;0) =V + 0p(2).

t'—l

Consequently,
\/_ Z Uy(8)VM (Vi1 6) = V/n(n — 6) + 0p(1),

which implies the result in (3.3), since V is positive definite.

Theorem 3.2. Under conditions (C.0) to (C.3) we have

V(bn — 8) S N(O,VTTAVTY), (3.4)
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where ‘
A= B [UR(0)(VM (Vorr; 0))(VM (Yer; 6))7 ).

Proof. First, note that {U;()VM (Y;_1;0)} forms a sequence of stationary and
ergodic martingale differences with zero mean and covariance matrix A. The
result then follows from Lemma 3.1 and an application of Billingsley’s (1961)
central limit theorem for martingales.

4. The Joint Asymptotic Distribution of the Residual Autocorrelations

Let
Ry =Uy(6n) = Y: — M(Yi-1;6,), (4.1)

denote the estimated prediction error which we shall also refer to as the residual.
The sample autocorrelation function jg(%) of lag 7 based on the residuals {R;,t =
1,...,n} is defined by

n—i n
pr(8) = D (R: — R)(Riys = B)/ 3" (Re - R, (4.2)
t=1 t=1
where R=n"137  R;,and i = 1,...,1, | < n. In this section, we shall derive
the joint limit distribution of {pg(i),7i = 1,...,1}, as n — oo, for some fixed .

First, we need some preliminary results.

Lemma 4.1. Under (C.0) to (C.3), we have

1 n
(1) —= ) R: = 0p(1), i.e., bounded in probability,
N P
t=1

(i) = S (R~ B)? 2 o2,
n t=1

where o2 = EUZ(6).

n—1 n—1
1

1 _ _
(iii) 7n tzzl(Rt — R)(Re+i — R) = 7n ;RtRHi + 0p(1),
fori=1,...)l<n.

) = V:,;l UO){M (¥io1; b)) — M(Yio1;6)} 2 0.
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Proof. The proofs follow standard arguments. As an illustration, we shall verify
the result in (i) and omit the proofs of (ii)-(iv). Consider

i —U46))

= —} zn: [M(i/t-l;én) - M(}}t‘-lie)]
_ %i VM7 (Yio1; 6,0Vl ~ 0),
t=1

where 0}, is between 6, and 8.
From (C.3), it follows that

|V M (F;-1;67)

! |
<> ai(Yi-130), (4.3)
=1

for all sufficiently large n.
Hence, from Lemma 3.1,

1 & 1 &
— Y R,=—=)> U0)+ Op(1).
\/7—1 ; t \/’E ; t( ) P( )
It also follows from the central limit theorem for martingales (see, Billingsley

(1961)) that
\/_ EUt(o <, N(0,02), (4.4)
where o2 = EUZ(9). Consequently, —= = 3oty Re = Op(1).

For the main theorem, the following addltlonal condition (C.4) is assumed to be
satisfied.

(C.4) The stationary and ergodic sequence {U:(6)} has a finite fourth moment.
Theorem 4.1. Under (C.0) to (C.4), we have

Valpr(L), .., bR 5 Ni(0, %), (4.5)
where T is the (I x 1) matriz with the (i,j)th element given by
Sy = ox E[U(0){Uemi(6) - mIV VM (¥er; 6)}
AU5(0) - m] VI IM (Fro; 0)}], (4.6)
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with
m; = E[Ut(O)VM(Y}H_l;O)] :J x 1 vector,1=1,...,1,

and

ol = EUZ(6).

Proof. We first show that, for each : =1,...,1,
1 n—i _ _
== Y (Re — B)(Rusi - B)
z > (R: - R)?
n t=1

2 N(0,Za),

Vnpr(i) =

(4.7)

and then derive the joint limit distribution of (46g(1),..., pr(l)) using the Cramer-
Wold device (see, for instance, Serfling (1980, p.18)). By (ii) and (iii) of Lemma

4.1, we have
Vnpr(i) = o2 \/_ Z RiRyyi + 0p(1).
Now,

Z= YRR

t=1
_ \/Lﬁg [U(0) = { M (¥irs;80) = M(Vi-s;0) ]

X [Ut+i(0) - {M(Y’Hi—l; On) — M(Yepioa; 9)}]

(

_% ni U:(6) [Ut+i(0) - {M(ﬁﬂ'—l; én) - M(Ytﬂ‘—l; 9)}]

N\

\FZUH,(H){M()@ 130n) = M(¥i-1;6) }

(4.8)

(4.9)

+7’ﬁ ; {M(?t—ﬁ én) ~ M(Yi3; 9)}{M(?t+i—1; 0r) — M(Yepioy; 9)}.

Using the result (iv) in Lemma 4.1, the second term in (4.9) goes to zero in

probability and it follows via (4.3) that the third term is of order Oy(n

—1/2>.
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Consequently,
1 n—1
—\7—; 2 RiR¢y;
- _\}Ti 2—: U(6) [Ut“(e) — VMT (YViyi-1;65)(0n — 9)] +0,(1)  (4.10)
t=1
= \}5 > UL(8) [Uei(8) — mi v/n(fn - 0)] + op(1). (4.11)
t=1

Note that (4.11) follows by noting that

m; = E[Ut(e)VM(ﬁ+,-_1; 9)]

and by applying the ergodic theorem. We then have, by Lemma 3.1,

1 n—i
— > RtRiy
\/ﬁ t=1

1n—i 1 n _
= ST U0 Usi(6) — mI V== U(0)VM (Yi-1560) + 0p(1). (4.12
ﬁ;()d) ﬁ;() (Yi-1;0) + 0p(1). (4.12)

By changing the subscript in the second term in (4.12), we have,

\/_ ZRth+, - ZUt+,(0)[Ut(0) mIVIVM (Verion; 0)] +0p(1). (4.13)
t=1
Note that

{Ut+i(9) [U’(a) = mIVIYM (Yeriog; 0)]}

is a sequence of zero mean martingale differences. Consequently,

1 n—i
\/—ZRt‘Rt'H — N(O 'Uz)

where

= B[Uets(8){U(6) = mTV IV M (Frics; 0}, (4.14)

which in turn, is identical to ¢4Z;;. Hence, we conclude, via (4.8),

Vapr(i) S N(0,Sx), i=1,...,L
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In order to obtain the joint limit distribution of (pr(1),...,pr(l)), we consider,
for a = (as,...,q;), any real vector,

vnaipr(1) + -+ + vnapr(l) Zaz{ ZRth—H} +o0p(1).  (4.15)

Note that (4.15) follows from (4.8). Using similar arguments as in (4.9), (4.10)
and (4.11), we have

\/‘ Z a,{ TithRt+1}
= Zl a; [\/— Tf Ui (6)Ue+i(0) — ?V_I% g U(0)V M (Y;_1; 0)} + 0p(1)

l

= “\}"‘1—; PRAC) [Z ai{Ut—i(e) —mIVIVM (T 0)}] + 0,(1).
t=1

=1

It may be noted that

B T—

i=1
forms a sequence of zero mean martingale differences. We then have

n—i

\/_ Z a,{ > Rth+,} = N(0,aTTa), (4.16)

t=1
where I' = ((T'i;)) : I x [ matrix with
Ty = E[UH0){Uii(8) ~ mIVIVM(¥;oy; 0)}
AU4(0) - mIVIVM(Fio1;0)}]
= oi%y, i,7=1,...,L

Consequently, using the Cramer-Wold device, we finally obtain

Va(pr(D),.- ., pr(D)T 5 N(O,T),
where ¥ is defined in (4.10).

Remarks. (i) The existence of £,; in (4.6) follows from (C.4). (ii) It should be
noted that ¥;; is free of “nuisance” parameters for linear time series. However, for
nonlinear time series, £;; may depend on “nuisance” parameters to be estimated.
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(iii) For fixed coefficient models where {Z:} degenerates at zero, ¥;; reduces to
Eij = (Sij - O'E—ng‘v_lmj, (4.17)

where 02 = Ee? and §;; is the Kronecker delta. This agrees with the result in Li
(1992).

(iv) For the special case when {Y;} is linear AR(1),
Y: = 0Y;_1 + €, |9| <1,

it can be shown that %;; reduces to

0i+j _ 0i+j—2 ; :
= { ) 17 (4.18)

1-—626-1(1 - 6?), i=j.

The result in (4.18) agrees with that in Box and Pierce (1970). Furthermore, for
linear AR(p), p > 2, it can be shown that

Eij=5,‘j—'l7ij, i,j=1,...,1

with 7;; = o7 2mIV~lm; and 7;; satisfying the recurrsive equations:
P
nij =Y Oumij—v, for jZp+1. (4.19)
v=1

5. Tests of Fit

We now consider some tests of fit of the composite hypothesis: H,: The
sample {Y;}, t = 1,2,...,n, comes from a stationary nonlinear time series given
by (2.1). The tests are based on the estimated prediction errors {R:} and their
sample autocorrelation functions (ACF), {pr(é),i = 1,...,1}.

Tests based on the sample ACF
Consider the statistics

Qn(l) = WL~ W, (5.1)

where W,, = (vnpr(1),...,vnpr(l))T, £~ is a generalized inverse of  given by
(4.6), and ¥~ is a consistent estimate of ¥™.
It can be shown, using Theorem 4.1 and standard arguments, that, as n — oo,

Qn 4, xf, under Hy, (5.2)
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where r = rank(E). The rejection region for the test of fit is therefore {Qn > x?}.

The computation of (5.1) requires the knowledge of £~ which may be compli-
cated for some nonlinear models especially because ¥ involves certain moments
of the stationary distribution. It is therefore desirable to look for alternative
simpler statistics. The portmanteau type statistic given below is useful in this
context:

k
Dn(k) =n)_ pa(i) (5.3)

1=1
If {pr(1)}, i = 1,2,..., were to behave like the ACF’s of i.i.d. observations, one
would expect D, to have xZ_; as the limiting distribution. Theorem 4.1, however,
shows that the covariance matrix ¥ of {\/npr(i),i = 1,...,k} is different from
the one corresponding to the ACF’s of i.i.d. observations. However, this difference
is only pronounced for lower lags, mainly ¢ = 1, and approaches zero for higher
lags. One may therefore continue to use D, as an approximate X%_; random

variable. This is demonstrated in the simulation in the next section.

A test based on the prediction errors

A test statistic based on {R;} can be derived using the approach of Basawa
(1987). Suppose we have observed the sample {Y1,...,Yn, Yni1, ..., Yayi}. First,
pretend that {Y,4,4=1,...,k} are unknown and find their one-step predictors
successively, i.e. find

M(}}n+-,;_1; 0) = Eg(Yn+ilAn+i_1), 1= 1, caey k.
The corresponding prediction errors are
Un+i(0) = Yn+i - M(}-}n—{-i—-l; 9)7 1=1,..., k)

and the estimated prediction errors are R,; = Upnyi(6,), where 8, is the CLS
estimator of # based on {¥1,...,Y,}. Even though it is possible to update 6,
using the first n + 7 — 1 observations, we ignore this possibility since it will not
affect the asymptotic distributions. We have

Roti = Un4i(6) + (VUn1i(6))5- (6n = 6), (5.4)

where 6* lies between 6 and f,. From, Theorem 3.2, we have \/n(f, — ) =
Op(1), and, for all the examples mentioned in Section 2, it can be shown that
n~Y2(VU,+i(6)) = 0p(1), for each i = 1,...,k. Consequently, the second term
on the right of (5.4) is 0,(1). The limit distribution of any statistic based on
{Rn4i,i = 1,...,k} will therefore be the same as that based on {Up4:(6),i =
1,...,k}.
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To proceed further, we assume that {e:}, and {Z:} in (2.1) are normally

distributed with zero mean and known variances 02,02. As before, denote

M(i/n+i—1; 9) = E(Yn+i l A'n+i—1),

and let
7-121+i = Va‘r(Yn+i l An+i—1)- (55)

For instance, for the RCA model in Ex. 1, it can be seen that
2 2 SN
T’I’%-{-‘i =0, +022Yn+i—-j' (56)
—

It will be assumed for simplicity that o and o2 are known. Conditionally on
Antio1, {Un+i(6),i=1,...,k} are independent N(0,72.;). It is seen that

k
_o d
Z Uﬁ_l_i(G)Tn_fi = xi, under Hj. (5.7)
=1
Consider the statistic

k k
W(n) = Z R?wm:fi = Z Ur%+i(9)7773i + 0p(1)
=1

i=1

LN x2, under Hp. (5.8)

The rejection region of the test is therefore given by {F  R2 +i"';4%i > x2}.

As seen above in (5.6), 72,; typically depends on nuisance parameters o?
and o?. Under the normality assumption one can estimate 0, o? and o2 by the
maximum likelihood (ML) method. The likelihood function based on the first n
observations {Y71,...,Yn} is given by

Ln(6,0%,02) = <—\/_1§7>n ,=f11 77 exp { - %Ti—2UE(9)} (5.9)

where U;(8) = Y; — Eg(Yi|Ai-1) and 7# = Varg(Y;|Ai—1). The ML estimates 9,52
and 62 can be obtained by maximizing Ln(6, o2, 02). The asymptotic properties

of the ML estimators are discussed by Hwang and Basawa (1991).

In Table 5.1 below, we present some simulation results involving the distri-
bution of the statistic W(n) (Eq. 5.8) for the RCA model of Ex. 1. For these

simulations, the true § = .250, and the variances of the Z and error distributions

are .25 and 1.00, respectively, so the stability condition: 0 < 02 + 02 < 1, is
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satisfied. For each of the simulations, the process was run for n time periods
(n = 50,100, 200, and 400), MLE estimates of § were obtained, and 1-step-ahead
predictions of Y(n + 1), Y(n + 2), and Y(n + 3) were made. From this, the
W (n) statistic (Eq. 5.8) was calculated. This process was repeated randomly for
400 simulations for each n, once assuming that the variances of the Z and er-
ror distributions are known, and once assuming that these variances (and 8) are
unknown.

Table 5.1 displays the results of these simulations. The mean and variance
of W(n) over the 400 simulations are given, along with the proportion of the
simulations whose W(n) values exceeded the 95th percentile [7.815) of a Chi-
squared(3) distribution, since W(n) should be distributed as a Chi-squared(3)
random variable under the null hypothesis. As can be seen, the means, variances,
and exceeding probability are close to the expected 3.0, 6.0, and 0.05 for all values
of n when the o2 and the error variance are assumed known. For the unknown
variances cases, the fit is not quite as good, but seems fair for n > 200. In both
cases, as expected, the fit of W(n) to the Chi-squared(3) distribution improves
as n increases, and is very good for large n.

Table 5.1. Results of 400 simulations of W(n) from RCA model
n  Known Mean Variance Pr > 7.815

(Expected) 3.00 6.00 .0500
50 Yes 3.2143 8.1389 .0700
50 No 3.6503 17.5308 .0900
100 Yes 2.9555 5.3833 .0450
100 No 3.1283 6.9586 .0825
200 Yes 3.1081 6.9387 .0700
200 No 3.2763 8.8892 .0875
400 Yes 2.9775 6.0576 .0525
400 No 3.0266  6.3258 .0575

6. Some Simulation Results for a Threshold Autoregressive Model

A simulation study was carried out to compute the limiting variances of the
residual ACF’s of the following TAR(1) model.

Yi =01V ) +6:,Y,7; + e,

where 8; < 1, 65 <1 and 6,6, < 1.
It can be shown that

Yij = bij —mij

_ ¥L)? o
V = Eo[ 01 (}ft:l)zjl
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and

Mj = 06—2[Eestytj;-i—l][Eoet(ytij——l)2]/E9(Yttl)2
+ ng[EGEthli-l][Eﬂst}’;;j—1]/E€(3Q:1)2) (6.1)

where the expectation +is taken under the stationary distribution of the process.
Since the stationary moment structure is not explicity available as yet for the
TAR(1) process, the expressions Egethii_l and Eg(Y,~;)? are replaced by their
consistent estimators n~! 7, (Y —01Y,T, —6:Y,7)Y,E, ; and n P T, (Y, 0,),
respectively. Some results are summarized in Table 6.1. Here {et} are drawn
from N(0,1) and a total of 16 points of (1, 62) are chosen with various é-values,
§ =0,0.1,0.5,0.6,1.0 and 2.25 where § = |61 —62|. 500 observations are simulated
for each pair (81,67) using SAS (Statistical Analysis System) and the limiting
variances %, 1 = 1,...,8, are calculated via (6.1). As in the case of the linear
time series models, see Box and Pierce (1970), we find that for higher lags (i =
6,7,8, say), Ui is very close to 1, and hence, only the smaller lag ACF’s need to
be carefully checked for the diagnostic purposes. (See also Li (1992) for similar
simulation results.)

Table 6.1. Asymptotic variances of the residual autocorrelations of lag ¢ =1,...,8
(n = 500)

(61,62) 1=1 1=2 1=3 i=4 1=5 1=6 1=7 1=8

(0.1,0.1) [|0.01241 |0.98478 |0.999968 |0.9985280.9982280.999618 0.9972180.998413
(0.5,0.5) ||0.26403 |0.84074 |0.944316|0.9908570.985062 0.992734(0.998650{0.999354
0 (0.9,0.9) |/0.80469 |0.83415 |0.86283 |0.97787 |0.90915 |0.92333 0.92717 }0.93866
0.1 {(0.1,0.2) [/0.02957 |0.96980 |0.997818|0.9990360.997802|0.996474 |0.996302 0.998988
0.1 {(0.5,0.6) {/0.33595 {0.78066 |0.93517 |0.96489 |0.991905/0.987349|0.989888 0.993412
0.1 {(0.8,0.9) [0.71358 |0.78458 |0.85613 |0.90031 [0.93745 10.93716 0.94268 {0.965505
0.5 {(0.1,0.6) |0.27399 |0.85722 |0.96272 |0.97776 |0.98265 0.994394 (0.993935 1 0.997882
0.6 (0.3,0.9) 1l0.60766 |0.79660 |0.89420 |0.94024 |0.96297 0.97048 |0.981616|0.991414
1.0 [(0.2,-0.8) {/0.206099|0.963969|0.999093 |0.999845 |0.999826 0.994209|0.999485 1 0.996256
1.0 |(0.5,-0.5) |/0.10199 [0.96512 |0.9912880.990060(0.991673 0.996973(0.998110|0.991251

O OO

1.0 |(0.9,-0.1) {|0.68044 [0.88656 {0.91696 |0.94571 0.97615310.988449(0.991028|0.992399
1.0 |(-0.8,0.2) {/0.09052710.970646|0.994836|0.997634 0.992266 |0.998883 0.998548 1 0.994695
1.0 |{(-0.5,0.5) ||0.16492 |0.96925 [0.999815|0.998048 0.996525 [0.996806 {0.9942820.999068
1.0 {(-0.1,0.9) {/0.62588 }0.84094 |0.91487 |0.96209 |0.95942 0.981761 (0.984655|0.990249
2.25(~2.0,0.25) ||0.363910|0.904802 | 0.998202 | 0.999462 0.996091 [0.999671 {0.9973170.996348
2.25/(0.25,-2.0)|/0.397701 |0.88561 {0.998098|0.99181 |0.999722 0.99583410.997216 |0.996857

In order to study the effect of smaller sample sizes on the asymptotic variance
and the associated “power”, seven different TAR models were used with sample
sizes n = 50,100 and 200. Each entry in the table below is the result from 250
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simulations. Note that § = |§; — 02| and § = 0 indicates an AR(1) model. The
sense in which we have used the term “power” is explained below.

Table 6.2 shows simulations for p(k), (k = 1,2,3) as defined by Equation
(4.2). The first value shown within each cell is the mean over the simulations of
the asymptotic variance. These should in theory converge to the values denoted
as ¥; in Equation (4.6). For k > 1, the variance is again very close to 1.00.
For each simulation, in addition to estimating 6; and 6, by their ML estimators
under TAR (and using these to calculate j), we also obtained estimates of 6 (and
associated means and variances for j) assuming that the true model was AR(1).
Using the mean (always very near zero) and variances of f(k) as estimated under
TAR, and assuming normality, we obtained a symmetric 95% confidence region
for p(k). We then calculated the probability that a 5(k) value estimated by the
AR(1) process (assuming normality and using the mean and variance of j(k)
estimated by AR(1) over the simulations) would fall in the rejection region of
the TAR process. This is the value called “power” entered in the second column
of Table 6.2. As expected, the power is approximately 5% for p(2) or 'ﬁ(3),
since there is no difference in the behavior of 5(k) between the TAR and AR(1)
methods in this case. For p(1), power increases as n increases and is somewhat
positively associated with increases in 6. This makes sense, since large values
of § are associated with models where there are two quite different 8’s, so using
AR(1) methods should fail in those cases.

Table 6.2. Results of 250 simulations of s(k); k =1,2,3
p(1): Asymptotic variance/Power

] 6, 6, n = 50 n = 100 n = 200

0.0 | .5 .5[0.2049 0.0931|0.3116 0.08100.2317 0.0718
03 | .6 .3]0.2657 0.1255|0.2250 0.1708|0.2188 0.2169
0.3 |-6 -.310.2332 0.0644|0.2084 0.0578(0.2328 0.0759
0.5 0 .5(0.1504 0.2120|0.1633 0.3038|0.1510 0.4596
06 | .3 .9]0.5431 0.1114|0.5143 0.2367|0.5875 0.3677
1.0 | .5 -51]0.1771 0.5243|0.1740 0.7521|0.1701 0.9558
2.25| .25 -2.{0.3642 0.8788|0.3080 0.9995}0.3528 1.0000

p(2): Asymptotic variance/Power

00 | .5 .5 10.7477 0.0534|0.9226 0.0498|0.6643 0.0498
03} .6 .3 10.8492 0.0556 |0.7452 0.0571|0.8197 0.0553
0.3 |-6 -.3[0.7281 0.0464|0.7922 0.0523 |0.8571 0.0488
0.5 0 .5(0.8475 0.0554{0.9366 0.0503|0.9411 0.0537
0.6 3 .9 10.8077 0.0619|0.8061 0.0608|0.8119 0.0912
1.0 | .5 -.50.9337 0.0568{0.9444 0.0561|0.9181 0.0428
2.25| .25 -2.[0.7580 0.0340|0.8855 0.0611|1.0181 0.0495
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6 6, 0, n =950 n = 100 n = 200

0.0 ) 5 10.9582 0.0496|0.9813 0.0524 0.8953 0.0503
0.3 .6 310.8852 0.0507|0.9127 0.0473 0.9307 0.0519
0.3 |-.6 -.3/0.8712 0.0492 0.9993 0.0463|1.0208 0.0524
0.5 0 5 10.9370 0.0525|0.8810 0.0522 1.1265 0.0508
0.6 3 910.9364 0.0546|0.6847 0.0785 1.0603 0.0687
1.0 5 —5109192 0.0416|0.9171 0.0523 0.8260 0.0564
295! .25 -2.|/0.8510 0.05990.8097 0.0763|0.9005 0.0922
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Table 6.3 gives some computations for the statistic Qn(3) of Equation (5.1). The
three entries in each cell are the simulated (over 250 simulations) mean, variance,
and Pr{Q, > Chi-Squared (3, .95)} values of the Qn(3) statistic. The convergent
distribution is theoretically Chi-squared with 3 d.f., so the three values within
each cell should be 3.0, 6.0, and .05 respectively. The seven rows indicate the
seven model configurations examined previously (presented in the same order
here), while the four columns are the initial sample size (n = 50,100, 200, 400)
from which the parameters are estimated.

In each case, the distribution appears to get closer to Chi-squared(3) as n be-
comes larger. For 250 independent simulations, 95% C.I. for the three parameters
are approximately (assuming Chi-squared(3) is true distribution):

[2.70, 3.30]
Variance: [4.95, 7.05]
Tail Area: [.023, .077].

Mean:

Thus, configurations B-G are “indistinguishable” from Chi-squared(3) with
respect to Mean or Tail criteria by n = 200, and by all three criteria by n = 400.
For configuration A, the fit is clearly getting better as n increases, but a much
larger sample size than n = 400 is needed for the result to be approximately
correct. The parameter § = |61 — 62| seems to be a key determinant of rapidity
of convergence. As 6 increases (i.e. as model alphabetical order increases from
A,B,...,G) the initial sample size (n) needed for the Chi-squared(3) approxima-
tion to work becomes smaller. For example, models F and G are approximately
Chi-squared(3) by all three criteria even when n = 50, whereas model A needs
an n well over 400 for convergence to be approximated.
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Table 6.3. Results of 250 simulations of Q,,(3)
Qn(3)
Mean variance tail
n = 50 n = 100 n = 200 n = 400
8.557 99.426 0.3365.740 67.334 0.212/4.393 21.025 0.1403.602 12.990 0.096
4.320 22.585 0.132{3.604 12.724 0.112(3.135 8.446 0.072/3.129 6.834 0.076
4.696 39.482 0.148|3.519 17.980 0.068]3.042 9.233 0.060/2.614 5.110 0.032
3.372 8.505 0.0563.306 9.058 0.104|3.109 7.120 0.044{2.934 7.121 0.060
3.121 9.204 0.088|2.704 5.633 0.040(2.878 4.516 0.036(3.032 6.439 0.052
3.289 7.611 0.052|3.234 7.001 0.068(3.193 7.152 0.060|3.317 6.518 0.056
2.829 5.259 0.036/2.834 4.517 0.036(3.121 5.886 0.044|3.056 5.416 0.032
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