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LIKELTHOOD FUNCTIONS LEADING TO ACCURATE
APPROXIMATIONS FOR DISTRIBUTION FUNCTIONS
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Abstract: A very accurate saddlepoint approximation formula for the distribution
function of the sample average was obtained by Lugannani and Rice (1980), and re-
formulated for exponential models in terms of likelihood by Daniels (1958, 1987). In
this paper we obtain a simple third order asymptotic correspondence between cu-
mulant generating functions and corresponding log density functions, leading to a
correspondence between likelihood functions and distribution functions; a multivari-
ate analog is also obtained. We use this correspondence to establish the third order
accuracy of the invariant tail probability formula proposed by Fraser (1990) and of the
conversion of conditional likelihood for an exponential model and marginal likelihood
for a location model to tail probabilities for testing scalar parameters.
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1. Introduction

The saddlepoint approximation for the density and distribution function of
the average § or sum .S = 377 y; based on a sample y1,- -, y, from a density f(y),
is based on the corresponding cumulant generating function c(t). For statistical
purposes the approximation is more convenient if based on the likelihood function
for an embedding exponential model

f(%:6) = f(y)exp {¢'y - c(6) ]}, (L.1)

where y and 6 are p x 1 vectors and interest lies in § = 0; the connection was
suggested by Daniels (1958).

The saddlepoint approximation (Daniels (1954)) for the density of the sample
sum S from the model (1.1) is

1(8;6) = nf(5:6) = (2m)7P215(8)| ™/ exp {1(6) - 1(6) } (1.2)



68 D. A. S. FRASER AND N. REID

where [(6) = 1(6;y) = 6'S ~ nc(6) is the likelihood function from the sample,
6 = 6(y) is the maximum likelihood estimate, and j(f) = nc”(8) is the observed
information matrix —8%1(6)/8686¢' at § = §. The approximate density is related
to the exact density by £(S;8) = £(S;6)(1 + R,) where R, is O(n™!) and has
its leading term recorded in Daniels (1954) for the scalar case and in McCullagh
(1984) for the vector case. As § is a monotone function of S = ny with dS =
l7 (9)|d0 the density of the maximum likelihood estimate is approximated by

f(6;6) = (2m)7?2)5(8)"/ exp {1(6) - 1(0) }. (1.3)

For the scalar parameter case the Lugannani and Rice (1980) saddlepoint
approximation for the distribution function F(S;6) of S = nj or of 6 is given by

F(6;6) = () + 6(r) [% - ﬂ O(n=3/2) (1.4)

where ¢ and ® are the standard normal density and distribution functions and
o . . 1/2
r = r(6;6) = sga(d - 0)[2(1(6) - 1(6)}] " (1.5)

g =q1(6;0) = (8 — 0);/%(8) (1.6)

are respectively the signed likelihood ratio quantity and the data-standardized
maximum likelihood departure. The computation is easily implemented with an
observed likelihood function tabulated on a fine grid (see Fraser, Reid and Wong
(1991)).

A density function f(y) can also be embedded in a location model f(y — 6),
and an appropnate distribution for 4 is conditional on the configuration statistic
a=(y1—0,...,yn — 6) (Fisher (1934)). The likelihood function 1(6;y) for the
original or the conditional model when substituted into (1.3) gives the exact
density when renormalized (Barndorff-Nielsen (1986)). A modification of (1.4)
approximates F(f|a;6) using the data standardized score

g=q2(6;0) = 61(;)03;) (1.7)

in place of (1.6). This is accurate to O(n~3/2) (DiCiccio, Field and Fraser (1990)).

The two tail area approximations, (1.4) with 7 in (1.5) and ¢ given by (1.6) or
(1.7), are special cases of different invariant versions of the Lugannani and Rice
formula (1980). The invariant versions are due to Barndorff-Nielsen (1988, 1990b)
and Fraser (1990). Fraser’s (1990) invariant version, discussed in Section 3, uses
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a data dependent parameter ¢ that is obtained as the sample space derivative of
the observed likelihood and is given by (1.4) with 7 in (1.5) and ¢ specified as

a = a3(6;6) = {i(6) - i(6) }k ™ (v)5"/2(9) (18)

where 1(6;y) = 8i(6;y)/0y and k(y) = 6i(9;y)/80|é. The derivation was based
on an approximating exponential model (see Fraser (1988)) and the O(n—3/2)
accuracy established in the technical report, Fraser and Reid (1990); the proof is
recorded in Section 3. The resulting approximation seems to be more accurate
than asymptotically equivalent approximations based on adjusting the mean and
variance of the likelihood ratio statistic. Barndorff-Nielsen’s invariant version
replaces g with u, defined in Section 3.

In Section 2, for a third order asymptotic model, it is shown that the co-
efficients in the expansions of log density functions and cumulant generating
functions can be put into a simple one-to-one correspondence. This then gives
a simple procedure for assessing approximations based on appropriate likelihood
functions. All the results come from Taylor series expansions, which provide an
easy method for handling the asymptotic accuracy of the density and distribu-
tion function approximations. Section 3 uses approximating exponential models
to show that the parameterization invariant tail formula is accurate to O(n=3/2),
The multivariate version of the log density and cumulant generating function
connection is derived in Section 4. Tail probability formulas based on likelihood
in the presence of nuisance parameters are derived in Section 5. Some numerical
examples are given in Section 6.

2. Asymptotic Connection: Log Densities and Cumulant Generating
Functions

A large part of applied statistical inference is based on the log density ap-
proaching the quadratic form of a normal distribution. By including cubic and
quartic terms the accuracy of the approximation can be substantially increased.
We approach this by examining higher order terms for the log density and for
the cumulant generating function and obtaining a simple correspondence.

Consider some Op(n_l/ 2) variable whose log relative density is assumed to
be O(n) at each point and has a unique maximum; this can arise in conditional
analysis of location or location-scale models (see Fraser and McDunnough (1984)).
A location-scale standardization then gives a variable y, with location 0 and scale
1 which is Op(1) as n — oo and has log density, except for the normalizing
constant, of the form

I(y) = 24 -\/:%3 + 9-?‘—2— + O (n%/%) (2.1)
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where a3 and a4 are O(1) and will be referred to as pseudo-cumulants for a
nominal variable corresponding to n = 1. Note that the leading term in the
approximation to exp{l(y)} is the standard normal density function.

The expression exp{l(y)} can be integrated (see Hinkley (1978)) to determine
the norming constant giving

b 2 a 3 4
- -1/2 2 Y L By MY
where )
3ag + 5a3
b= "m (23)

and terms of order O(n~3/2) are omitted, a pattern to be followed below.
Similarly, consider some variable whose cumulant generating function is O(n)
at each point other than zero; this can happen with simple convolution of inde-
pendent variables as in the Central Limit Theorem context. Then a mean and
variance standardization gives a cumulant generating function of the form

c(t) = ~t2 + o3 1 + —1—1—~—4— + O(n~3/2) (2.4)

where a3 and a4 are the standardized third and fourth cumulants for a nominal
variable corresponding to n = 1.

Simple computation outlined below then shows that the log density in (2.1),
after a mean and standard deviation adjustment

_ a3 _ as + 2a§
b= c=1+ yma— (2.5)
has cumulant generating function (2.4) with
a3 = a3, 04 = a4+ 3a§. (2.6)

Similarly, a cumulant generating function for a variable z, say, has a log density
after a location and scale adjustment, '

2
o3 a4 — o
s=1 3

T opl/2’ T 4n

m =

(2.7)

given by (2.1), with
a3 = a3, a4 = g — 301%. (2.8)

In other words the density of the variable y = (z — m)/s is given by (2.2).
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The cumulant generating function &(t), say, of the variable y in (2.2), is given
by

b 2 3 3 a4
exp{é(t)} = / (2m) 1/2exp[—5+yt—-—-+-m-6—+ 2y4de

and can be simplified by the change of variable

2nl/2 6n t+

2 2
as o a4+ 3a3 3] [ as 2a4 + 5a3 2]
t 14 t
* + 2nl/2 8n

y=:c+t+[

which fully recenters the exponent. The normalization implicit in (2.2) then gives

_ aq + 20%] t2 a3 3 , (ag+3a3)tt
t) = 14+ ——=|— t
&) o i [ T I = v L S Y
as ag + 2a§ t2
= t t — 2.
o)+ 2t o 2’ (2:9)

which verifies the correspondence between the log density and the cumulant gen-
erating function.

As mentioned in Section 1 the approximations can be more easily described
in terms of a corresponding exponential model. From the standardized density
(2.2) with cumulant generating function (2.9) we obtain the exponential model

fly; 6) = ﬁl—ﬁ exp{ - —g +(y) + yb — 6(0)}. (2.10)

Ezample 2.1. The asymptotic exponential model (2.10) has a simple connection
with the saddlepoint density approximation (1.2) with first correction term, which
for the case § =0 is

fy) = @m) 72 57 exp {103y) ~ 10w} - 8/2) (211

where 6 = (503 — 3a4)/12n = —(3aq + 4a%)/12n, 1(0;y) = I(y) is the likelihood
function from (2.10) and —§/2 is the leading term of the remainder R, (see
Daniels (1954)). The components needed for (2.11) have asymptotic expansions

as

b=—omr

2
a4 + a3 as a4 4
1—
+y[ on ] 212y " ¥
a4+a§ a4+a§ 9
+ Yo,
2n 2n

7(6) = exp [ 132 +
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A 1
1(05y) = UB9) = -5 (2.12)
1 a3 a3 3 1 a3 ag+af 5 a4 4
= TVttt TR Tt T VY |

Substitution of these in (2.11) together with (2.6) then gives the density (2.2).

Ezample 2.2. The Lugannani and Rice (1980) formula (1.4) with (1.5) and (1.6)
and 6 = 0, say, can be obtained by simple integration of the asymptotic model
(2.10), reexpressed as (2.11). From —r2/2 = &(8) — yf we obtain rdr = fdy =
7'/2¢dy and thus

[om’iar = o)+ [0t - g ager)
q
= N+ g6 - [e)de - g, (213)

From (2.12), we obtain with z as the mean and variance standardized version of y

_ n asg ﬁ 9oy — 13a§£
= "7 n 72’ 214)
r = _ 8 2 3as+adf ,
6nl/2 72n ’
~1 -1 _ a3 1 r
r —q = WE—(SE (215)

Thus 77! —¢7lis O(n~Y2) and d(r~1 — ¢~ 1) = —-%d'r, which yields formula (1.4)
by rearranging terms. Also the density f(y) can be transformed to the density
of the exponential likelihood root r using (2.12), showing that 7 is normally dis-
tributed to O(n~3/2) with mean —a3/(6n!/2) and variance 1— (2a4—13a%)/(36n);
these are the Bartlett corrections for the exponential model (see, e.g., DiCiccio,
Field and Fraser (1990)).

Ezample 2.3. The location model tail probability formula (1.4) and (1.5) with
g given by (1.7) can also be obtained by the same integration pattern. In the
model f(y — §) based on the density f(y) in (2.2), we have 6 =y, j(6) =] = 1,
and d(r~! — ¢71) = —(b/2)dr. Also, the density f(y) in (2.2) can be transformed
to the density for the location likelihood root 7, showing that 7 is asymptotically
normal with mean and variance given by az/(3n1/2) and 1 + (9a4 + 11a2)/(36n).

3. Third Order Asymptotic Model and the Invariant Tail Probability
Formula

In this section we derive a canonical third order asymptotic model, and then
establish the O(n=3/2) accuracy of the invariant tail probability formula proposed
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by Fraser (1990) (see also Barndorff-Nielsen (1988)). For a model f(y;#), where
both y and 8 are scalars, the approximation uses

p(6) = F(@0) = 36°) +6(0") (5 - ) (3.1)

0

where 7" is, as usual, the signed square root of the log likelihood ratio statistic,

® = {i(€®)-i(®) k1052
= (% - )i"*(¢°) (3.2)

is the standardized maximum likelihood estimate for the constructed parameter

¢ = 1(8;4°), (3.3)

k(y®) = 6i(6;y°)/ 8040, 6° = 4(y°), and y° designates the observed data value.
The observed data value is emphasized in (3.1) and (3.2) because the constructed
parameter ¢ depends on it, and it is the value for which significance and confi-

dence intervals are usually required; the formulas, however, apply for arbitrary

y0.

Consider some relative density f(y;@) with scalar variable y and parameter
6 and assume that for each 6 the variable y is Op('n_l/ 2) about the maximum
density value §(0), and that I(6;y) = log f(y;0) with either argument fixed is
O(n) and has a unique maximum. We now derive various expansions for this
model in the neighbourhood of a parameter value 6y, and for a Taylor’s series

4
1(0;9) = 3 Aii(6 - 80)'(y — wo)? /ilg}, (34)
1,7=0
we record just the 5 X 5 matrix of derivatives,

ot o
A’J = 69; a—y]l(e;y)'(ao,'yo)' (3.5)

These are initially of order O(n), but various standardizations modify this. As
an initial expansion point for y, let yo be the point at which the density f(y;6p)
is maximized. We describe successive transformations of variable and parameter
but do not record the lengthy details here.

First, we standardize the variable with respect to its second derivative at
the maximum, and standardize the parameter with respect to the cross Hessian
between 6 and y at the reference value 6. The new coefficients A;; are of order
O(1),0(n=1/2), O(n™1), respectively for i + j = 2,3,4. Second, we transform
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the variable so that the new mixed derivatives A12 and Aj3 are zero, as in a
canonical exponential model; the new variable is y + A12y2/2 + A1373 /6, and the
Jacobian introduces linear and quadratic terms. Third, we recenter the variable
so that the null density has maximum at zero; the new variable is y — Ag;.
Fourth, we define a new parameter so that the new mixed derivatives A5; and
As; are O(n~3%/2); the new parameter is 6 + A2162/2 + A316%/6. Finally, we
rescale the variable and parameter so that the null density curvature is —1. The
new variable and parameter are, respectively, (—Ao2)/2y and (—Ap2)~1/26. The
resulting coefficient array is

[ ago 0 -1 aogn_1/2 agan™ ! ]
aio 1 0 0 -
.a20 0 en?! - - , (3.6)
azon~1/2 0 - -~ -
agn™! - - - -

where we now explicitly show the asymptotic order.

If c = 0 the expansion is that for the canonical exponential model (2.10) and
the coefficients in the first column can be expressed in terms of a3 = ag3 and a4 =
ags. The integral of the non-exponential term exp(cy?62?/4n) = 1+ cy?62/(4n) is
obtained by noting that to O(n~1/2), y is N(0,1) and E(y?) = 1 + 62 so that the
integral is 1 + c(1 + 62)62?/(4n). Thus, the asymptotic expansion for the density
is given by the array

[ —(1/2)1log(27) — (3as + 5a3)/(24n) 0 —1 a3/nY? ay/n ]
—a3/(2n1/?) 1 0 0 -
—{1 + (ag + 2a% + ¢)/(2n)} 0 c/n - - . (3.7)
—a3/nl/2 0 - - -
| —(ag + 3a2 + 6¢)/n - - - - ]

We call (3.7) the canonical third order asymptotic model.

We can now establish the third order accuracy of the invariant tail probability
formula (3.1) with (3.2) and (3.3) using the canonical model (3.7). We do this
for y = 0 and general §p without loss of generality. For the value 6 the density
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given by (3.7) coincides with the following exponential model

[ a — (3aq + 5a3 + 6¢63)/(24n) 0 —(1—c2)/(2n) a3/nl/? ay/n ]
—ag/(2n1/?) (1 - cb3)/(4n) 0 0 -
—{1+ (ag +2a3)/n} 0 0 - -
—-a3/n1/2 0 - - -
| (st 3ad)/n - - - -

(3.8)
with parameter ¢, say, set equal to 8p(1 + c62)/(4n). For this, let Fy(0,6p)
designate the Lugannani and Rice (Example 2.2) approximation with associated
71 and q;, and let F5(0,0p) be the parameterization invariant expression (3.1)

with associated r9 and g¢s.

. . cd3  cho
Simple calculation shows that 79 —r1 = —cfp/n and g2 — ¢ = — ~— —,
n n

from which it follows that (Fy — Fy)/¢(r1) = O(n~3/2), thus verifying the param-
eterization invariant formula.

The parameterization invariant version is closely related to an approxima-
tion given by Barndorff-Nielsen (1988, 1990b) which involves differentiation with
respect to the maximum likelihood estimate conditional on an ancillary, and uses

0 . o} R Ca-1/2
u= {3_9‘1(9;9’“)|e=é - -a—él(G;O,a)HJ(G)I , (3.9)
in place of the ¢ given by (1.8). Using quite different techniques, Barndorff-Nielsen
(1991) indicates that results from Barndorff-Nielsen (1986) give the O(n=3/2)
accuracy to this formula, extending the O(n™!) accuracy in Barndorff-Nielsen
(1990b). In (1986), (1990a), (1991) he also discusses the adjusted likelihood root
r* = r 4+ r~llog(r/u), which attains the corresponding accuracy as a standard
normal variable.

4. Multivariate Connections: Log Densities and Cumulant Generating
Functions

The univariate connection between the log density and the cumulant gener-
ating function in Section 2 extends to the multivariate case and provides a basis
for various inference analyses which we do not examine here.

Consider a relative density function in p variables, and assume that it is
O(n~1/2) and that the log density is O(n) at each point. We assume a location and
scale standardization has been made, so that y has log density without norming
constant in the form
1
6

1. g 1 . _
i(y) = —5Tyy; + ARy + ﬂA"“yiwywz +0(n~3/?) (4.1)
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where the indices run from 1 to p and summation over repeated indices is implied.
The standardized log density takes its maximum at 0, and has asymptotic infor-
mation matrix such that I/ = O(1); thus A** = O(n~1/2), and A¥¥ = O(n™1),
as would be the case if y were a standardized sum of independent random vectors,
or the conditioned variable in a transformation model. The normalizing constant
e® for (4.1) has

a = (—p/2)log(2m) + (1/2)log |1f{| +0(n™Y),
= (—p/2)log(2m) + (1/2)log |I"| — b/2 + O(n~%/?) (4.2)

where

_ 1

bl2

{3Aijk1IijIkl + 3Aijk_4’m"I,-jIklImn + 2AijkAlm”IiIIijkn] (4.3)

and consists of scalar contractions of the arrays A%k . 4/ and A%* contracted
by I;;, the inverse of I . These scalars are denoted Fy3, Fg7, Fg g in DiCiccio,
Field and Fraser (1990).

The moment generating function, exp{é(t)} say, is obtained by integrating
an expression whose logarithm is

.1 . 1 .. 1 ..
a+yt' — 511 Tyiy; + EA" vy + EZAU Myyiveyr. (4.4)
As a first step in centering this quartic let y; = z; + I;#/, giving
i 1o ij 1 ~ijk 1 i
a+ Py(t) + z:&* — -2-(P + D ):c,-:cj -+ EA z;TiTh + ﬁA Z;TiTRT, (4.5)
where
1 aub ]'ijk azbyc 1 17kl atbyc,d
Py(t) = §Iabt t° + EA Lio Iy Ip 1720 + —2~4:A Lia Iy Ik T4t %0841,

. 1 . g g 1 s
¢ = % -éA;bct“tth, DY = - AJt" — S AGtet,

Aijk=Aijk+Aijkta, Akl — gijkl

Abtotd + (4.6)

Indices for the coefficient arrays are lowered by multiplying by the matrix I;;; for
example, Afzb = AijkIjaIkb, etc.. A linear term in « is still present and can be
removed by the further recentering z; = z; + D,-jfi, giving

L 1 - 1 -..
a+ P(t) — —;—(P’ + DY)zz; + EA'sz,'ijk + ﬁA'Jklzizjzkzl, (4.7)
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where
1
P(t) = Py(t) + 5 Dis€'€,
D% = DY _ AUkpuet = pi - %AiikA’mIk,ImaInbtatb. (4.8)

The moment-generating function is then obtained as

exp{(t)} = exp{a + P(t) — A(t)}
where exp{—A(t)} is given by
L i o ;ij 1 ik 1 ik
/exp - -2-(11‘7 + D J)z,‘Zj + EA J Zizjzp + ﬂA J 2224 2] dz
= exp{ - |(=p/2)log(2m) + (1/2) 1og | Dy| + B(2)/2] },
as in (4.2). Note however that B(t) = b to order O(n=3/2) as a consequence of
the fact that the ¢{-terms in A;;; are of higher order than the leading term. We

then obtain 1 1
&(t) = P(t) + ; log || — 5 log | + DY,

Using the expansion given in McCullagh (1987, p.21) for log |I + X|, we obtain

1 1 1
&(t) = pat® + Eaabt“tb + 6aabct“tbt° + ﬂaabcdt“tbtctd (4.9)

where
1 ;. 1 '
Ra = §Ad7Iij, Oap = Iop + EAab (4.10)
tabe = A LoLipTne,  gbed = A Lo LI g + 344, AL (4.11)
which gives the multivariate version of (2.5) and (2.6) using
Ay = AL + AVAF L Ly + A% AL L T,
For the reverse connection, the standardized cumulant generating function

1 1 1
e(t) = 5o—abt“t” + 6aabct“tbt° + EZoza,,,m,t“t”tCtﬂf (4.12)

corresponding to a variable z leads to expression (4.1) for y; = 2; — m;, where

1 1
m; = —Eaiabo'ab, IY = o% + EA’J (4.13)

At]k — aabcazaa]bakc, Aijkl — aabcdo,iaajbo,kca.ld _ 3aijaicla,ab (414)
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using 0" as the inverse of o;; and

AY = Ayoitolt
= (acdabICd - 3aklmaamek1 + ozfaaib + acdkaﬁbICd) e, (4.15)

In these formulas, 0*/ can be taken equal to I/, since A¥ is O(n™1).

5. Accurate Tail Probability Approximation with Nuisance Parame-
ters

5.1. Exponential models

For the general exponential model with scalars 1 and y,

f(2,;8) = exp {9y + N = k(¥,)) + h(z,3)}, (5.1)

inference for 1 is usually based on the conditional distribution of y given z. For
this, the joint log likelihood for (z,y) is exact,

L, \z,y) =a+ vy + Nz — k@, ),

and is, of course, available from whatever original variables preceded the sufficient
statistic (z,y). The marginal log likelihood from z alone is available from (2.11),

: 1 ) . 1
lm("p’A; m) = l(")b))‘;z)y) - l(¢;A¢;m>y) - '2'10g |]AA(¢7’\1/))' - 56($a¢»A) (52)

and is accurate to order O(n~3/2). The term 6 is of order O(n~1) but is constant
to order O(n~3%/2); thus the conditional likelihood from y given z is

L) = 108, 39) + 5 1og i, 34)| + O(n%/%). (5.3)

From the connection established in Section 2 it then follows that the conversion
of I, using (1.4) and (1.5) with ¢ given by (1.6) gives a conditional significance
function for ¢ that is accurate to O(n=3/2). This verifies the accuracy O(n~3/2)
for the sequential saddlepoint proposed by Fraser, Reid and Wong (1991) as part
of the development of a computer program to numerically convert a likelihood
function to a significance function.

In contrast, Skovgaard (1987) obtained a Lugannani and Rice (1980) type tail
probability approximation using a double saddlepoint approach (see Barndorff-
Nielsen and Cox (1979)). Further discussion of the two approaches with numerical
examples can be found in Butler, Huzurbazar and Booth (1992a,b) and Pierce
and Peters (1992).
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5.2. Transformation models

Consider the location model

fly—v,z=A) = f(t,u) (5.4)

where y and % have dimension 1; this reduced form could have come from a
general location model by the usual conditioning on the configuration statistic.
The standard inference procedure would use the marginal density for y or for
t=y—1.

An approximation to the marginal density of ¢ is available from DiCiccio, -
Field and Fraser (1990): let #@(t) be the value of u that maximizes l(t,u) =
log f(t,u) for given ¢, let 7, (t) be the negative Hessian of I (t,u) with respect to
u for given ¢ at the maximizing point 4(t), and let b = b(t) be the correction term -
(2.3) or (4.3) for the conditional density of u given t. The marginal log density
for t is then

Im(t) = 1(¢,4(t)) — —;—log [Fun ()| + b_(2Q + O(n=3/2), (5.5)

and it follows easily that b(t) is constant to O(n=3/2). This gives the marginal
likelihood for 1,

In(8) =108, 39) = 5 Tog |ira (¥, Ay)| + O(n=272), (56)

and then, using (1.4) and (1.5) with ¢ given in (1.7), gives a marginal significance
function for v accurate to O(n~3/2). This corresponds to DiCiccio, Field and
Fraser (1990) but is expressed in terms of likelihood, thus permitting the direct
use of the numerical conversion of Fraser, Reid and Wong (1991).

5.3. Discussion

The difference between (5.3) for the exponential model and (5.6) for the
translation model is partly explained by the type of nuisance parameterization.
If (5.3) is reexpressed in terms of the expectation parameterization which would
be approximately location, then the sign on the log | 7 | term would reverse, thus
bringing it into line with (5.6). Of course, the two likelihoods are converted to
significance functions by using different numerical inversions.

For more general models, versions of the canonical parameter are obtained
by differentiating the likelihood in various directions in the sample space. One
proposed technique is to try to find an appropriate direction of differentiation
directly (Fraser and Reid (1989), or Fraser (1991)). A related technique is to
find approximate ancillary statistics on which to condition (see Barndorff-Nielsen
(1986, 1991)).
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6. Numerical Results

To illustrate the parameterization invariant version of the tail probability
approximation, we construct a single parameter model by shifting and tilting a
logistic density:

ez—@

{1 + e(=—6)}2 ¢

where c(0) = log{(78)/ sin(w@)} is the cumulant generating function for the basic
logistic density. Table 1 shows the exact and approximate tail areas for § = 0
and selected values of z. The approximate values were computed using ¢ given
in (1.8); the constructed parameter ¢ is given by 1+ 6 — e(®=9) /{1 + (==},

f(z;0) = 6(z—6)—c(6) (6.1)

Table 1. Exact and approximate values of pr(X > z) for the logistic

z | 2 3 4 5 6

exact .2689 .1192 .0474 .0180 .0067 .0025
param. invariant | .2786 .1200 .0462 .0173 .0065 .0024
Lugannani-Rice | .2669 .1177 .0466 .0179 .0067 .0025

The logistic distribution function can also be approximated by the Lugannani
and Rice (1980) formula with ¢ given in (1.6); and with the saddlepoint connection
this should be more accurate. The final row of Table 1 shows the tail areas by
this approximation.

We find the accuracy of the general model version to be remarkably good.
The surprising accuracy of the more specialized exponential version has been
discussed in the literature. We found it to be accurate to six decimal places
for a sample of size 11 from the standard exponential distribution, for extreme
tail areas, and somewhat less accurate in the center of the distribution. A large
deviation approximation derived by Fu, Leu and Peng (1990) is slightly less accu-
rate, except in the far tails (P < .0004) of that distribution. Fu et al’s approach
has the advantage of providing uniform asymptotic error bounds, which is not
available using our techniques.

Examples illustrating the accuracy of the formulas in the multiparameter
setting discussed in Section 5 also appear in several papers, including Fraser,
Reid and Wong (1991), Pierce and Peters (1992), Butler, Huzurbazar and Booth
(1992a,b) and Jensen (1992) for the exponential model version, DiCiccio, Field
and Fraser (1990), and Fraser, Lee and Reid (1990) for the transformation model
version.

In all the published examples, the tail area approximation is surprisingly
accurate. Butler et al.(1992a) and Pierce and Peters (1992) provide a good
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discussion of different methods of implementing the approximation for the ex-
ponential case, and Pierce and Peters (1992) provide a discussion of the role of
continuity corrections for discrete models.
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