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Abstract: Assume that we observe a small set of entries or linear combinations of

entries of an unknown matrix A0 corrupted by noise. We propose a new method for

estimating A0 that does not rely on the knowledge or on an estimation of the stan-

dard deviation of the noise σ. Our estimator achieves, up to a logarithmic factor,

optimal rates of convergence under Frobenius risk and, thus, has the same predic-

tion performance as previously proposed estimators that rely on the knowledge of

σ. Some numerical experiments show the benefits of this approach.
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1. Introduction

In this paper we focus on the problem of high-dimensional matrix estimation

from noisy observations with unknown variance of the noise. Our main interest

is the high dimensional setting, that is, when the dimension of the unknown

matrix is much larger than the sample size. Such problems arise in a variety of

applications. In order to obtain a consistent procedure in this setting we need

some additional constraints. In sparse matrix recovery a standard assumption is

that the unknown matrix is exactly or near low-rank. Low-rank conditions are

appropriate for such applications as recommendation systems, system identifi-

cation, global positioning and remote sensing (for more details see Candes and

Plan (2010)).

We propose a new method for approximate low-rank matrix recovery that

does not rely on the knowledge or on an estimation of the standard deviation of

the noise. Two particular settings are analysed in more details: matrix comple-

tion and multivariate linear regression.

In the matrix completion problem we observe a small set of entries of an un-

known matrix. Moreover, the entries that we observe may be perturbed by some

noise. Based on these observations we want to predict or reconstruct exactly the

missing entries. A well-known example of matrix completion is the Netflix rec-

ommendation system. Suppose we observe a few movie ratings from a large data
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matrix in which rows are users and columns are movies. Each user only watches

a few movies compared to the total database of movies available on Netflix. The

goal is to predict the missing ratings in order to be able to recommend movies

to a person that he/she has not yet seen.

In the noiseless setting, if the unknown matrix has low rank and is “incoher-

ent”, it can be reconstructed exactly with high probability from a small set of

entries. This result was first proved in Candès and Recht (2009) using nuclear

norm minimization. A tighter analysis of the same convex relaxation was carried

out in Candès and Tao (2010). For a simpler approach see Recht (2009) and

Gross (2011). An alternative line of work was developed in Keshavan, Montanari

and Oh (2010).

In a more realistic setting the observed entries are corrupted by noise. This

question has been addressed by several authors, see, e.g., Candes and Plan (2010);

Keshavan, Montanari and Oh (2010); Rohde and Tsybakov (2011); Negahban and

Wainwright (2011, 2010); Koltchinskii (2011); Koltchinskii, Lounici and Tsy-

bakov (2011); Gaiffas and Lecué (2011); Klopp (2011)). These results require

knowledge of the noise variance, however, in practice such an assumption can be

difficult to meet, and the estimation of σ is non-trivial in large scale problems.

Thus, there is a gap between theory and practice.

The multivariate linear regression model is given by

Ui = ViA0 + Ei i = 1, . . . , l, (1.1)

where Ui are 1 × m2 vectors of response variables, Vi are 1 × m1 vectors of

predictors, A0 is an unknown m1 × m2 matrix of regression coefficients and Ei

are random 1 × m2 vectors of noise with independent entries and mean zero.

This model arises in such applications as the analysis of gene array data, medical

imaging, astronomical data analysis, psychometrics and many more.

Multivariate linear regression with unknown noise variance has been consid-

ered in Bunea, She and Wegkamp (2011); Giraud (2011). These papers study

rank-penalized estimators. Bunea, She and Wegkamp (2011), who first intro-

duced such estimators, proposed an unbiased estimator of σ that required an

assumption on the dimensions of the problem. This assumption excludes an

interesting case, the case when the sample size is smaller than the number of

covariates. The method proposed in Giraud (2011) can be applied to this last

case under a condition on the rank of the unknown matrix A0. Our method, un-

like the method of Bunea, She and Wegkamp (2011), can be applied to the case

when the sample size is smaller than the number of covariates and our condition

is weaker than the conditions in Giraud (2011). For more details see Section 3.

Usually, the variance of the noise is involved in the choice of the regularization

parameter. Our main idea is to use the Frobenius norm instead of the squared
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Frobenius norm as a goodness-of-fit criterion, penalized by the nuclear norm,
which is now a well-established proxy for rank penalization in the compressed
sensing literature Candès and Tao (2010); Gross (2011). Roughly, the idea is
that in the KKT condition, the gradient of this “square-rooted” criterion is the
regression score, which is pivotal with respect to the noise level, so that the
theoretically optimal smoothing parameter does not depend on the noise level
anymore.

This cute idea for dealing with an unknown noise level was first introduced
for the square-root lasso by Belloni, Chernozhukov and Wang (2011) in the vector
regression model setting. The estimators proposed in the present paper require
a different analysis, with proofs that differ from the vector case. Other meth-
ods dealing with the unknown noise level in high-dimensional sparse regression
include e.g., the scaled Lasso Sun and Zhang (2012) and the penalized Gaussian
log-likelihood Städler, Bühlmann and van de Geer (2010). For a complete and
comprehensive survey see Giraud, Huet and Verzelen (2012). It is an interest-
ing open question whether these other methods could be adapted in the matrix
setting.

1.1. Layout of the paper

This paper is organized as follows. In Section 1.2 we set notations. In Section
2 we consider the matrix completion problem under uniform sampling at random
(USR). We propose a new square-root type estimator for which the choice of
the regularization parameter λ is independent of σ. The main result, Theorem 2,
shows that, in the case of USR matrix completion and under some mild conditions
that link the rank and the “spikiness” of A0, the prediction risk of our estimator
measured in Frobenius norm is comparable to the sharpest bounds obtained until
now.

In Section 3, we apply our ideas to the problem of matrix regression. We
introduce a new square-root type estimator. For this construction, as in the
case of matrix completion, we do not need to know or estimate the noise level.
The main result for matrix regression gives, up to a logarithmic factor, minimax
optimal bound on the prediction error ∥V (Â−A0)∥22.

In Section 4 we give empirical results that confirms our theoretical findings.

1.2. Notation

For any matrices A,B ∈ Rm1×m2 , we define the scalar product ⟨A,B⟩ =
tr(ATB), where tr(A) denotes the trace of the matrix A.

For 0 < q ≤ ∞ the Schatten-q (quasi-)norm of the matrix A is defined by

∥A∥q =
(min(m1,m2)∑

j=1

σj(A)q
)1/q

for 0 < q < ∞ and ∥A∥∞ = σ1(A),

116
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bakov (2011); Gaiffas and Lecué (2011); Klopp (2011)). These results require
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imaging, astronomical data analysis, psychometrics and many more.
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duced such estimators, proposed an unbiased estimator of σ that required an

assumption on the dimensions of the problem. This assumption excludes an

interesting case, the case when the sample size is smaller than the number of

covariates. The method proposed in Giraud (2011) can be applied to this last

case under a condition on the rank of the unknown matrix A0. Our method, un-

like the method of Bunea, She and Wegkamp (2011), can be applied to the case

when the sample size is smaller than the number of covariates and our condition

is weaker than the conditions in Giraud (2011). For more details see Section 3.

Usually, the variance of the noise is involved in the choice of the regularization

parameter. Our main idea is to use the Frobenius norm instead of the squared
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where (σj(A))j are the singular values of A ordered decreasingly.
We summarize the notations which we use throughout this paper: ∂G is the

subdifferential of G; S⊥ is the orthogonal complement of S; PS is the orthogonal
projector on the linear vector subspace S and P⊥

S = 1−PS ; ∥A∥sup = maxi,j | aij |
where A = (aij). In what follows we denote by c a numerical constant whose value
can vary from one expression to the other and is independent from n,m1,m2. Set
m = m1+m2, m1∧m2 = min(m1,m2) and m1∨m2 = max(m1,m2). The symbol
� means that the inequality holds up to multiplicative numerical constants.

2. Matrix Completion

In this section we construct a square-root estimator for the matrix com-
pletion problem under uniform sampling at random. Let A0 ∈ Rm1×m2 be an
unknown matrix, and consider the observations (Xi, Yi) satisfying the trace re-
gression model

Yi = tr(XT
i A0) + σξi, i = 1, . . . , n. (2.1)

Here, Yi are real random variables; Xi are random matrices with dimension
m1 × m2. The noise variables ξi are independent, identically distributed and
having distribution Φ such that

EΦ(ξi) = 0, EΦ(ξ
2
i ) = 1, (2.2)

and σ > 0 is the unknown standard deviation of the noise.
We assume that the design matrices Xi are i.i.d. uniformly distributed on

the set
X =

{
ej(m1)e

T
k (m2), 1 ≤ j ≤ m1, 1 ≤ k ≤ m2

}
, (2.3)

where el(m) are the canonical basis vectors in Rm. Note that when Xi =
ej(m1)e

T
k (m2) we observe the (j, k)th entry of A0 perturbed by some noise. When

the number of observations, n, is much smaller then the total number of coeffi-
cients, m1m2, we consider the problem of estimating of A0, i.e., the problem of
reconstruction of many missing entries of A0 from n observed coefficients.

In Koltchinskii, Lounici and Tsybakov (2011), the authors introduce the
following estimator of A0

Â = argmin
A∈Rm1×m2

{
∥ A−X ∥22 +λ∥A∥1

}
, (2.4)

where

X =
m1m2

n

n∑
i=1

YiXi. (2.5)

For this estimator, the variance of the noise is involved in the choice of the
regularisation parameter λ. We propose a new square-root type estimator

Âλ,µ = argmin
A∈Rm1×m2

{∥A−X∥2 + λ∥A∥1} . (2.6)
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The first part of our estimator coincides with the square root of the data-

depending term in (2.4). This is similar to the principle used to define the

square-root lasso for the usual vector regression model, see Belloni, Chernozhukov

and Wang (2011). Despite taking the square-root of the least squares criterion

function, the problem (2.6) retains global convexity and can be formulated as a

solution to a conic programming problem. For more details see Section 4.

We will consider the case of sub-Gaussian noise and matrices with uniformly

bounded entries. Let a denote a constant such that

∥A0∥sup ≤ a. (2.7)

We suppose that the noise variables ξi are such that

E(ξi) = 0, E(ξ2i ) = 1 (2.8)

and that there exists a constant K such that

E [exp(tξi)] ≤ exp

(
t2

2K

)
(2.9)

for all t > 0. Normal N(0, 1) random variables are sub-Gaussian with K = 1

and (2.9) implies that ξi has Gaussian type tails:

P {|ξi| > t} ≤ 2 exp

{
−t2

2K

}
.

Condition Eξ2i = 1 implies that K ≤ 1. We set

M =
1

m1m2
(X−A0) , (2.10)

and note that M is centred. Its operator and Frobenius norms play an important

role in the choice of the regularisation parameter λ. We set

∆ =
∥M∥∞
∥M∥2

. (2.11)

We provide a general oracle inequality for the prediction error of our estima-

tor,with proof given in Appendix A.1.

Theorem 1. Suppose that ρ/
√
2rank(A0) ≥ λ ≥ 3∆ for some ρ < 1, then

∥Â−A0∥22 ≤ inf√
2rank(A)≤ρ/λ

{
(1− ρ)−1 ∥A−A0∥22 +

(2λm1m2

1− ρ

)2
∥M∥22 rankA

}
,

where ∆ and M are defined in (2.11) and (2.10).

118
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In order to specify the value of the regularization parameter λ, we need to

estimate ∆ with high probability. Therefore we use the following two lemmas.

Lemma 1. For n > 8(m1 ∧ m2) log
2m, with probability at least 1 − 3/m, one

has

∥M∥∞ ≤ (c∗σ + 2a)

√
2 log(m)

(m1 ∧m2)n
, (2.12)

where c∗ is a numerical constant that depends only on K. If ξi are N(0, 1), then

we can take c∗ = 6.5.

Proof. The bound (2.12) is stated in Lemmas 2 and 3 in Koltchinskii, Lounici

and Tsybakov (2011). A closer inspection of the proof of Proposition 2 in

Koltchinskii (2011) gives an estimation on c∗ in the case of Gaussian noise. For

more details see Appendix A.4.

The next result is proven in Appendix A.5.

Lemma 2. Suppose that 4n ≤ m1m2. Then, for M defined in (2.10), with

probability at least 1− 2/m1m2 − c1 exp{−c2n}, one has

(i)

2
( ∥A0∥22
nm1m2

+
σ2

n

)
≥ ∥M∥22 ≥

σ2

2n
;

(ii) ��� 1
n

n∑
i=1

YiXi

���
2

2
≥

∥A0∥22
nm1m2

≥
4 ∥A0∥22
(m1m2)2

;

(iii)

∥M∥2 ≥
1

2

��� 1
n

n∑
i=1

YiXi

���
2
,

where (c1, c2) are numerical constants that depend only on K, a and σ.

The condition on λ in Theorem 1 is that λ ≥ 3∆. Using Lemmas 1 and 2,

we can choose

λ = 2c∗

√
logm

m1 ∧m2
+ 4a

√
2n logm

m1 ∧m2

1

∥
∑n

i=1 YiXi∥2
. (2.13)

In (2.13) λ is data-driven and independent of σ. With this choice of λ, the

assumption of Theorem 1, ρ/
√

rank(A0) ≥ λ, takes the form

ρ√
rank(A0)

≥ 2c∗

√
logm

m1 ∧m2
+ 4a

√
2n logm

m1 ∧m2

1

∥
∑n

i=1 YiXi∥2
. (2.14)
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Using (ii) of Lemma 2 we get that (2.14) is satisfied with a high probability if

ρ√
rank(A0)

≥ 2 c∗

√
logm

m1 ∧m2
+

4 a
√
m1m2

∥A0∥2

√
2 logm

m1 ∧m2
. (2.15)

As m1 and m2 are large, the first term on the rhs of (2.15) is small. Thus (2.15)

is essentially equivalent to

ρ ≥ 4

√
2 logm

(m1 ∧m2)

√
rank(A0)αsp, (2.16)

where αsp =
√
m1m2 ∥A0∥sup/∥A0∥2 is the spikiness ratio of A0. The notion

of “spikiness” was introduced in Negahban and Wainwright (2010). We have

that 1 ≤ αsp ≤
√
m1m2 and is large for matrices where some “large” coefficients

emerge as spikes among very “small” coefficients. For instance, αsp = 1 if all the

entries of A0 are equal to some constant and αsp =
√
m1m2 if A0 has only one

non-zero entry.

Condition (2.16) is a kind of trade-off between “spikiness” and rank. If αsp

is bounded by a constant then, up to a logarithmic factor, rank(A0) can be of the

order m1∧m2, which is its maximal possible value. If our matrix is “spiky”, then

we need low rank. To gain some intuition consider the case of square matrices.

Typically, matrices with both high spikiness ratio and high rank look almost

diagonal. Under uniform sampling if n ≪ m1m2, with high probability we do

not observe diagonal (i.e. non-zero) elements.

Theorem 2. Suppose (2.8)−(2.7) are satisfied and λ is as in (2.13). Assume

that 8(m1 ∧ m2) log
2m < n ≤ m1m2/4 and that (2.15) holds for some ρ < 1.

Then, with probability at least 1− 4/m− c1 exp{−c2n},
1

m1m2
∥Â−A0∥22 ≤ C∗

(m1 ∨m2)

n
rank(A0) logm. (2.17)

Here C∗ = 16
(
2c∗σ

2 + (18 + 2c∗)a
2
)
/(1− ρ)2, c∗ is an absolute constant that

depends only on K and (c1, c2) are numerical constants that depend only on K, a

and σ.

Proof. This is a consequence of Theorem 1 for A = A0. From (2.13) we get

∥Â−A0∥22 ≤
8(m1m2)

2

(1− ρ)2

(
c∗

√
4 logm

m1 ∧m2
+ 2a

√
2n logm

m1 ∧m2

1

∥
∑n

i=1 YiXi∥2

)2

×∥M∥22 rank(A0). (2.18)

Using the triangle inequality and (ii) of Lemma 2, we compute
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6 STÉPHANE GAÏFFAS AND OLGA KLOPP

In order to specify the value of the regularization parameter λ, we need to
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we can take c∗ = 6.5.

Proof. The bound (2.12) is stated in Lemmas 2 and 3 in Koltchinskii, Lounici

and Tsybakov (2011). A closer inspection of the proof of Proposition 2 in

Koltchinskii (2011) gives an estimation on c∗ in the case of Gaussian noise. For

more details see Appendix A.4.

The next result is proven in Appendix A.5.

Lemma 2. Suppose that 4n ≤ m1m2. Then, for M defined in (2.10), with

probability at least 1− 2/m1m2 − c1 exp{−c2n}, one has

(i)

2
( ∥A0∥22
nm1m2

+
σ2

n

)
≥ ∥M∥22 ≥

σ2

2n
;

(ii) ��� 1
n

n∑
i=1

YiXi

���
2

2
≥

∥A0∥22
nm1m2

≥
4 ∥A0∥22
(m1m2)2

;

(iii)

∥M∥2 ≥
1

2

��� 1
n

n∑
i=1

YiXi

���
2
,

where (c1, c2) are numerical constants that depend only on K, a and σ.

The condition on λ in Theorem 1 is that λ ≥ 3∆. Using Lemmas 1 and 2,

we can choose

λ = 2c∗

√
logm

m1 ∧m2
+ 4a

√
2n logm

m1 ∧m2

1

∥
∑n

i=1 YiXi∥2
. (2.13)

In (2.13) λ is data-driven and independent of σ. With this choice of λ, the

assumption of Theorem 1, ρ/
√
rank(A0) ≥ λ, takes the form

ρ√
rank(A0)

≥ 2c∗

√
logm

m1 ∧m2
+ 4a

√
2n logm

m1 ∧m2

1

∥
∑n

i=1 YiXi∥2
. (2.14)
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Using (ii) of Lemma 2 we get that (2.14) is satisfied with a high probability if

ρ√
rank(A0)

≥ 2 c∗

√
logm

m1 ∧m2
+

4 a
√
m1m2

∥A0∥2

√
2 logm

m1 ∧m2
. (2.15)

As m1 and m2 are large, the first term on the rhs of (2.15) is small. Thus (2.15)

is essentially equivalent to

ρ ≥ 4

√
2 logm

(m1 ∧m2)

√
rank(A0)αsp, (2.16)

where αsp =
√
m1m2 ∥A0∥sup/∥A0∥2 is the spikiness ratio of A0. The notion

of “spikiness” was introduced in Negahban and Wainwright (2010). We have

that 1 ≤ αsp ≤
√
m1m2 and is large for matrices where some “large” coefficients

emerge as spikes among very “small” coefficients. For instance, αsp = 1 if all the

entries of A0 are equal to some constant and αsp =
√
m1m2 if A0 has only one

non-zero entry.

Condition (2.16) is a kind of trade-off between “spikiness” and rank. If αsp

is bounded by a constant then, up to a logarithmic factor, rank(A0) can be of the

order m1∧m2, which is its maximal possible value. If our matrix is “spiky”, then

we need low rank. To gain some intuition consider the case of square matrices.

Typically, matrices with both high spikiness ratio and high rank look almost

diagonal. Under uniform sampling if n ≪ m1m2, with high probability we do

not observe diagonal (i.e. non-zero) elements.

Theorem 2. Suppose (2.8)−(2.7) are satisfied and λ is as in (2.13). Assume

that 8(m1 ∧ m2) log
2m < n ≤ m1m2/4 and that (2.15) holds for some ρ < 1.

Then, with probability at least 1− 4/m− c1 exp{−c2n},
1

m1m2
∥Â−A0∥22 ≤ C∗

(m1 ∨m2)

n
rank(A0) logm. (2.17)

Here C∗ = 16
(
2c∗σ

2 + (18 + 2c∗)a
2
)
/(1− ρ)2, c∗ is an absolute constant that

depends only on K and (c1, c2) are numerical constants that depend only on K, a

and σ.

Proof. This is a consequence of Theorem 1 for A = A0. From (2.13) we get

∥Â−A0∥22 ≤
8(m1m2)

2

(1− ρ)2

(
c∗

√
4 logm

m1 ∧m2
+ 2a

√
2n logm

m1 ∧m2

1

∥
∑n

i=1 YiXi∥2

)2

×∥M∥22 rank(A0). (2.18)

Using the triangle inequality and (ii) of Lemma 2, we compute

121
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∥M∥2 ≤
��� 1
n

n∑
i=1

YiXi

���
2
+

1

m1m2
∥A0∥2

≤ 3

2

��� 1
n

n∑
i=1

YiXi

���
2
. (2.19)

Using (i) of Lemma 2 and (2.19), from (2.18) we get

∥Â−A0∥22 ≤
16 log(m)(m1m2)

2

(1− ρ)2(m1 ∧m2)

(
2 c∗

( ∥A0∥22
nm1m2

+
σ2

n

)
+

18a2

n

)
rank(A0).

Then, we use ∥A0∥22 ≤ a2m1m2 to obtain

∥Â−A0∥22
m1m2

≤ 16 log(m)(m1 ∨m2)

(1− ρ)2n

(
2c∗σ

2 + (18 + 2c∗)a
2
)
rank(A0).

This completes the proof of Theorem 2.

Theorem 2 guarantees that the normalized Frobenius error ∥ Â−A0 ∥2
/
√
m1m2 of the estimator Â is small whenever n > C(m1 ∨m2) log(m)rank(A0)

with a constant C large enough. This quantifies the sample size, n, necessary

for successful matrix completion from noisy data with unknown variance of the

noise. Remarkably, this sampling size is the same as in the case of known variance

of the noise. In Theorem 2 we have an additional restriction 4n ≤ m1m2. In

the matrix completion setting the number of observed entries n is always smaller

then the total number of entries m1m2 and this condition can be replaced by

n ≤ αm1m2 for some α < 1.

Theorem 2 leads to the same rate of convergence as previous results on

matrix completion which treat σ as known. In order to compare our bounds to

those obtained in past works on noisy matrix completion, we start by describing

the result of Keshavan, Montanari and Oh (2010). Under sampling without

replacement sampling scheme and sub-Gaussian errors, the estimator proposed

in Keshavan, Montanari and Oh (2010) satisfies, with high probability,

1

m1m2
∥Â−A0∥22 � k4

√
α
(m1 ∨m2)

n
rank(A0) log n. (2.20)

Here k = σmax(A0)/σmin(A0) is the condition number and α = (m1 ∨m2)/(m1 ∧
m2) is the aspect ratio. Comparing (2.20) and (2.17), we see that our bound is

better: it does not involve the multiplicative coefficient k4
√
α which can be large.

Negahban and Wainwright (2010) propose an estimator which, in the case

of USR matrix completion and sub-exponential noise, satisfies

1

m1m2
∥Â−A0∥22 � αsp

m

n
rank(A0) logm. (2.21)
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Here αsp is the spikiness ratio of A0. For αsp bounded by a constant, (2.21)

gives the same bound as Theorem 2. The construction of Â in Negahban and

Wainwright (2010) requires a priori information on the spikiness ratio of A0 and

on σ. This is not the case for our estimator.

The estimator proposed in Koltchinskii, Lounici and Tsybakov (2011) achieves

the same bound as ours. In addition to prior information on ∥A0∥sup, their

method also requires prior information on σ. In the case of Gaussian errors,

this rate of convergence is optimal up to a logarithmic factor (cf., Theorem 6

of Koltchinskii, Lounici and Tsybakov (2011)) for the class of matrices A(r, a)

defined as follows: for given r and a, A0 ∈ A(r, a) if and only if the rank of A0

is bounded by r and all the entries of A0 are bounded in absolute value by a.

An important difference with previous works on matrix completion is that

Theorem 2 requires an additional growth restriction on λ, ρ/
√
2rank(A0) ≥ λ.

The consequence of this restriction is that our method can not be applied to

matrices which have both large spikiness ratio and large rank. Note that the

square-root lasso estimator also requires an additional growth restriction on λ

(see Theorem 1 in Belloni, Chernozhukov and Wang (2011)). We may think that

these restrictions is the price of not knowing σ in our framework.

3. Matrix Regression

In this section we apply our method to matrix regression. The matrix re-

gression model is given by

Ui = ViA0 + Ei i = 1, . . . , n, (3.1)

where Ui are 1 × m2 vectors of response variables; Vi are 1 × m1 vectors of

predictors; A0 is an unknown m1 × m2 matrix of regression coefficients; Ei are

random 1 × m2 noise vectors with independent entries Eij . We suppose that

Eij has mean zero and unknown standard deviation σ. Set V =
(
V T
1 , . . . , V T

n

)T
,

U =
(
UT
1 , . . . , U

T
n

)T
and E =

(
ET

1 , . . . , E
T
n

)T
.

We propose new estimator of A0 using again the idea of the square-root

estimators:

Â = argmin
A∈Rm1×m2

{∥U − V A∥2 + λ∥V A∥1} ,

where λ > 0 is a regularization parameter. This estimator can be formulated as

a solution to a conic programming problem. For more details see Section 4.

With PV denote the orthogonal projector on the linear span of the columns

of matrix V , set

∆′ =
∥PV (E)∥∞

∥E∥2
.

Minor modifications in the proof of Theorem 1 yield the following result.
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∥M∥2 ≤
��� 1
n

n∑
i=1

YiXi

���
2
+

1

m1m2
∥A0∥2

≤ 3

2

��� 1
n

n∑
i=1

YiXi

���
2
. (2.19)

Using (i) of Lemma 2 and (2.19), from (2.18) we get

∥Â−A0∥22 ≤
16 log(m)(m1m2)

2

(1− ρ)2(m1 ∧m2)

(
2 c∗

( ∥A0∥22
nm1m2

+
σ2

n

)
+

18a2

n

)
rank(A0).

Then, we use ∥A0∥22 ≤ a2m1m2 to obtain

∥Â−A0∥22
m1m2

≤ 16 log(m)(m1 ∨m2)

(1− ρ)2n

(
2c∗σ

2 + (18 + 2c∗)a
2
)
rank(A0).

This completes the proof of Theorem 2.

Theorem 2 guarantees that the normalized Frobenius error ∥ Â−A0 ∥2
/
√
m1m2 of the estimator Â is small whenever n > C(m1 ∨m2) log(m)rank(A0)

with a constant C large enough. This quantifies the sample size, n, necessary

for successful matrix completion from noisy data with unknown variance of the

noise. Remarkably, this sampling size is the same as in the case of known variance

of the noise. In Theorem 2 we have an additional restriction 4n ≤ m1m2. In

the matrix completion setting the number of observed entries n is always smaller

then the total number of entries m1m2 and this condition can be replaced by

n ≤ αm1m2 for some α < 1.

Theorem 2 leads to the same rate of convergence as previous results on

matrix completion which treat σ as known. In order to compare our bounds to

those obtained in past works on noisy matrix completion, we start by describing

the result of Keshavan, Montanari and Oh (2010). Under sampling without

replacement sampling scheme and sub-Gaussian errors, the estimator proposed

in Keshavan, Montanari and Oh (2010) satisfies, with high probability,

1

m1m2
∥Â−A0∥22 � k4

√
α
(m1 ∨m2)

n
rank(A0) log n. (2.20)

Here k = σmax(A0)/σmin(A0) is the condition number and α = (m1 ∨m2)/(m1 ∧
m2) is the aspect ratio. Comparing (2.20) and (2.17), we see that our bound is

better: it does not involve the multiplicative coefficient k4
√
α which can be large.

Negahban and Wainwright (2010) propose an estimator which, in the case

of USR matrix completion and sub-exponential noise, satisfies

1

m1m2
∥Â−A0∥22 � αsp

m

n
rank(A0) logm. (2.21)
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Here αsp is the spikiness ratio of A0. For αsp bounded by a constant, (2.21)

gives the same bound as Theorem 2. The construction of Â in Negahban and

Wainwright (2010) requires a priori information on the spikiness ratio of A0 and

on σ. This is not the case for our estimator.

The estimator proposed in Koltchinskii, Lounici and Tsybakov (2011) achieves

the same bound as ours. In addition to prior information on ∥A0∥sup, their

method also requires prior information on σ. In the case of Gaussian errors,

this rate of convergence is optimal up to a logarithmic factor (cf., Theorem 6

of Koltchinskii, Lounici and Tsybakov (2011)) for the class of matrices A(r, a)

defined as follows: for given r and a, A0 ∈ A(r, a) if and only if the rank of A0

is bounded by r and all the entries of A0 are bounded in absolute value by a.

An important difference with previous works on matrix completion is that

Theorem 2 requires an additional growth restriction on λ, ρ/
√
2rank(A0) ≥ λ.

The consequence of this restriction is that our method can not be applied to

matrices which have both large spikiness ratio and large rank. Note that the

square-root lasso estimator also requires an additional growth restriction on λ

(see Theorem 1 in Belloni, Chernozhukov and Wang (2011)). We may think that

these restrictions is the price of not knowing σ in our framework.

3. Matrix Regression

In this section we apply our method to matrix regression. The matrix re-

gression model is given by

Ui = ViA0 + Ei i = 1, . . . , n, (3.1)

where Ui are 1 × m2 vectors of response variables; Vi are 1 × m1 vectors of

predictors; A0 is an unknown m1 × m2 matrix of regression coefficients; Ei are

random 1 × m2 noise vectors with independent entries Eij . We suppose that

Eij has mean zero and unknown standard deviation σ. Set V =
(
V T
1 , . . . , V T

n

)T
,

U =
(
UT
1 , . . . , U

T
n

)T
and E =

(
ET

1 , . . . , E
T
n

)T
.

We propose new estimator of A0 using again the idea of the square-root

estimators:

Â = argmin
A∈Rm1×m2

{∥U − V A∥2 + λ∥V A∥1} ,

where λ > 0 is a regularization parameter. This estimator can be formulated as

a solution to a conic programming problem. For more details see Section 4.

With PV denote the orthogonal projector on the linear span of the columns

of matrix V , set

∆′ =
∥PV (E)∥∞

∥E∥2
.

Minor modifications in the proof of Theorem 1 yield the following result.
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10 STÉPHANE GAÏFFAS AND OLGA KLOPP

Theorem 3. If ρ/
√
2rank(V A0) ≥ λ ≥ 3∆′ for some ρ < 1, then

���V
(
Â−A0

)���
2

2
≤ inf√

2rank(V A)≤ρ/λ

{
∥V (A−A0)∥22

1− ρ
+

(
2λ

1− ρ

)2

∥E∥22 rank(V A)

}
.

Proof. The proof follows the lines of the proof of Theorem 1, it is given in

Appendix A.7.

To get the oracle inequality in a closed form it remains to specify the value of

regularization parameter λ such that λ ≥ 3∆′. This requires some assumptions

on the distribution of the noise (Eij)i,j . We consider the case of Gaussian errors.

Suppose that Eij = σξij where ξij are normal N(0, 1) random variables. In order

to estimate ∥PV E∥∞ we use the following.

Lemma 3 (Bunea, She and Wegkamp (2011), Lemma 3). Let r = rank(V ) and

assume that Eij are independent N(0, σ2) random variables. Then

E(∥PV E∥∞) ≤ σ(
√
m2 +

√
r)

and

P {∥PV E∥∞ ≥ E(∥PV E∥∞) + σt} ≤ exp

{
−t2

2

}
.

We use Bernstein’s inequality to get a bound on ∥E∥2. Let α < 1. With

probability at least 1− 2 exp
{
−c α2 nm2

}
, one has

(1 + α)σ
√
nm2 ≥ ∥E∥2 ≥ (1− α)σ

√
nm2. (3.2)

Let β > 0 and take t = β
(√

m2 +
√
r
)
in Lemma 3. Then, using (3.2), we can

take

λ =
(1 + β)

(√
m2 +

√
r
)

(1− α)
√
nm2

. (3.3)

Put γ = [(1 + β)/(1− α)] > 1. Thus, condition ρ/
√
2 rank(V A0) ≥ λ gives

rank(V A0) ≤
ρ2nm2

2γ2
(√

m2 +
√
r
)2 (3.4)

and we get the following result.

Theorem 4. Assume that ξij are independent N(0, 1). Pick λ as in (3.3). As-

sume (3.4) is satisfied for some ρ < 1, α < 1 and β > 0. Then, with probability

at least 1− 2 exp {−c(m2 + r)}, we have that
���V

(
Â−A0

)���
2

2
� σ2(m2 + r) rank(V A0).
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Proof. This is a consequence of Theorem 3.

We now compare condition (3.4) with the conditions obtained in Bunea, She

and Wegkamp (2011); Giraud (2011). In Bunea, She and Wegkamp (2011), the

authors introduce a new rank-penalised estimator and consider both cases when

the variance of the noise is known or not. In the case of known variance of the

noise, minimax optimal bounds on the mean squared errors are established (this

does not need growth restriction on λ and, thus, applies to all rank(V A0)). When

the variance of the noise is unknown, an unbiased estimator of σ2 is proposed:

S2 =
∥U − PU∥22
nm2 − qm2

,

where P is the projection matrix on the column space of V and q is the rank of

V . This estimator requires an assumption on the dimensions of the problem. In

particular it requires that m2(n − r) be large, which holds whenever n ≫ r or

n−r ≥ 1 andm2 is large. This condition excludes an interesting case n = r ≪ m2.

On the other hand (3.4) is satisfied for n = r ≪ m2 if rank(A0) � n where we

used rank(V A0) ≤ r ∧ rank(A0).

The method of Giraud (2011) requires the following condition to be satisfied

rank(A0) ≤
C1(nm2 − 1)

C2

(√
m2 +

√
r
)2 (3.5)

with some constants C1 < 1 and C2 > 1. This is quite similar to (3.4). As

rank(V A0) ≤ rank(A0), (3.4) is weaker than (3.5). To the opposite of Giraud

(2011), our results are valid for all A0 provided that

r ≤ ρ2nm2

2γ2
(√

m2 +
√
r
)2 .

For large m2≫n, this condition roughly means that n>cr for some constant c.

4. Simulations

In this section, we give empirical results that confirms our theoretical find-

ings. We illustrate the fact that using the Frobenius norm instead of the square

Frobenius norm as a goodness-of-fit criterion makes the optimal smoothing pa-

rameter λ independent of the noise level, allowing for a better stability of the

procedure with respect to the noise level, as compared to other state-of-the-art

procedures. We focus on the matrix regression problem only, since our conclu-

sions are the same for matrix completion. We compare in particular the following

procedures:

argminA

{1

2
∥U − V A∥22 + λ∥A∥1

}
, (4.1)
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Theorem 3. If ρ/
√
2rank(V A0) ≥ λ ≥ 3∆′ for some ρ < 1, then
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)���
2

2
≤ inf√

2rank(V A)≤ρ/λ

{
∥V (A−A0)∥22

1− ρ
+

(
2λ

1− ρ

)2

∥E∥22 rank(V A)

}
.

Proof. The proof follows the lines of the proof of Theorem 1, it is given in

Appendix A.7.

To get the oracle inequality in a closed form it remains to specify the value of

regularization parameter λ such that λ ≥ 3∆′. This requires some assumptions

on the distribution of the noise (Eij)i,j . We consider the case of Gaussian errors.

Suppose that Eij = σξij where ξij are normal N(0, 1) random variables. In order

to estimate ∥PV E∥∞ we use the following.

Lemma 3 (Bunea, She and Wegkamp (2011), Lemma 3). Let r = rank(V ) and

assume that Eij are independent N(0, σ2) random variables. Then

E(∥PV E∥∞) ≤ σ(
√
m2 +

√
r)

and

P {∥PV E∥∞ ≥ E(∥PV E∥∞) + σt} ≤ exp

{
−t2

2

}
.

We use Bernstein’s inequality to get a bound on ∥E∥2. Let α < 1. With

probability at least 1− 2 exp
{
−c α2 nm2

}
, one has

(1 + α)σ
√
nm2 ≥ ∥E∥2 ≥ (1− α)σ

√
nm2. (3.2)

Let β > 0 and take t = β
(√

m2 +
√
r
)
in Lemma 3. Then, using (3.2), we can

take

λ =
(1 + β)

(√
m2 +

√
r
)

(1− α)
√
nm2

. (3.3)

Put γ = [(1 + β)/(1− α)] > 1. Thus, condition ρ/
√
2 rank(V A0) ≥ λ gives

rank(V A0) ≤
ρ2nm2

2γ2
(√

m2 +
√
r
)2 (3.4)

and we get the following result.

Theorem 4. Assume that ξij are independent N(0, 1). Pick λ as in (3.3). As-

sume (3.4) is satisfied for some ρ < 1, α < 1 and β > 0. Then, with probability

at least 1− 2 exp {−c(m2 + r)}, we have that
���V

(
Â−A0

)���
2

2
� σ2(m2 + r) rank(V A0).
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Proof. This is a consequence of Theorem 3.

We now compare condition (3.4) with the conditions obtained in Bunea, She

and Wegkamp (2011); Giraud (2011). In Bunea, She and Wegkamp (2011), the

authors introduce a new rank-penalised estimator and consider both cases when

the variance of the noise is known or not. In the case of known variance of the

noise, minimax optimal bounds on the mean squared errors are established (this

does not need growth restriction on λ and, thus, applies to all rank(V A0)). When

the variance of the noise is unknown, an unbiased estimator of σ2 is proposed:

S2 =
∥U − PU∥22
nm2 − qm2

,

where P is the projection matrix on the column space of V and q is the rank of

V . This estimator requires an assumption on the dimensions of the problem. In

particular it requires that m2(n − r) be large, which holds whenever n ≫ r or

n−r ≥ 1 andm2 is large. This condition excludes an interesting case n = r ≪ m2.

On the other hand (3.4) is satisfied for n = r ≪ m2 if rank(A0) � n where we

used rank(V A0) ≤ r ∧ rank(A0).

The method of Giraud (2011) requires the following condition to be satisfied

rank(A0) ≤
C1(nm2 − 1)

C2

(√
m2 +

√
r
)2 (3.5)

with some constants C1 < 1 and C2 > 1. This is quite similar to (3.4). As

rank(V A0) ≤ rank(A0), (3.4) is weaker than (3.5). To the opposite of Giraud

(2011), our results are valid for all A0 provided that

r ≤ ρ2nm2

2γ2
(√

m2 +
√
r
)2 .

For large m2≫n, this condition roughly means that n>cr for some constant c.

4. Simulations

In this section, we give empirical results that confirms our theoretical find-

ings. We illustrate the fact that using the Frobenius norm instead of the square

Frobenius norm as a goodness-of-fit criterion makes the optimal smoothing pa-

rameter λ independent of the noise level, allowing for a better stability of the

procedure with respect to the noise level, as compared to other state-of-the-art

procedures. We focus on the matrix regression problem only, since our conclu-

sions are the same for matrix completion. We compare in particular the following

procedures:

argminA

{1

2
∥U − V A∥22 + λ∥A∥1

}
, (4.1)
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which is based on the classical least-squares penalized by the trace norm,

argminA

{
∥U − V A∥2 + λ∥A∥1} (4.2)

which uses trace norm penalization with square-root least squares, and

argminA

{
∥U − V A∥2 + λ∥V A∥1

}
(4.3)

which is the procedure introduced in this paper. We illustrate in particular

the fact that (4.2) and (4.3), which are based on a goodness-of-fit using the

Frobenius norm instead of the squared Frobenius norm, provide a choice of λ

which is independent of the noise level σ.

4.1. Optimization algorithms

In this section, we describe the convex optimization algorithms used for

solving problems (4.1), (4.2) and (4.3). For this we need to introduce the prox-

imal operator Bauschke and Combettes (2011) proxg of a convex, proper, low-

semicontinuous function g, given by

proxg(W) = argmin
Y

{1

2
∥W −Y∥22 + g(Y)

}
.

In the algorithms described below, we need to compute such proximal operator for

specific functions. The proximal operator of the trace norm is given by spectral

soft-thresholding,

proxtg(W) = St(W) for g(W) = ∥W∥1

for any t > 0, where

St(W ) = UW diag[(σ1(W )− t)+ · · · (σrank(W )(W )− t)+]V
⊤
W ,

with UW diag[σ1(W ) · · · σrank(W )(W )]V ⊤
W the singular value decomposition of

W , with the columns of UW and VW being the left and right singular vectors of

W , and σ1(W ) ≥ · · · ≥ σrank(W )(W ) its singular values.

Problem (4.1) is solved using accelerated proximal gradient, also known as

Fista Beck and Teboulle (2009), since the loss is gradient-Lipschitz. Fista allows

to minimize an objective of the form

F (A) = f(A) + g(A),

where f is smooth (gradient-Lipshitz) with Lipschitz constant L = ∥V ∥∞ (the

operator norm of V ) and g is prox-capable. In our setting we consider f(A) =

(1/2)∥U − V A∥22 and g(A) = λ∥A∥1, so that ∇f(A) = V ⊤(V A − U) and

HIGH DIMENSIONAL MATRIX ESTIMATION 13

Algorithm 1 Fista

Require: Starting points B1 = A0, Lipschitz constant L > 0 for ∇f , t1 = 1
1: for k = 0, 1, 2, . . . do
2: Ak ← proxL−1g(B

k − 1
L∇f(Bk))

3: tk+1 =
1+

√
1+4t2k
2

4: Bk+1 = Ak + tk−1
tk+1

(Ak −Ak−1)

5: end for
6: return Ak

proxtg(A) = St(A). The Fista algorithm is described in Algorithm 1 below. In

our experiments we used backtracking linesearch, instead of fixing the step-size

constant and equal to 1/L.

Problem (4.2) is solved using a primal-dual algorithm Chambolle and Pock

(2011), see Algorithm 2. It allows to minimize an objective of the form

F (A) = f(KA) + g(A), (4.4)

where both f and g are prox-capable (with f non-smooth) and K a linear op-

erator. In our setting we choose this time K = V , f(A) = ∥A − U∥2 and

g(A) = λ∥A∥1. It is easily proved that

proxtf(A) =



U if ∥A− U∥2 ≤ t,

A− t A−U
∥A−U∥2 if ∥A− U∥2 > t,

which allows to instantiate Algorithm 2 for problem (4.2), using also the Moreau’s

identity proxf∗(A) − A − proxf(A), see Bauschke and Combettes (2011), where

f∗ is the Fenchel conjugate of f . In Algorithm 2 we use the heuristics described

in Chambolle and Pock (2011) to choose the step-sizes η and τ .

Algorithm 2 Primal-dual algorithm

Require: Starting points A0, Ā0, Z0, step-sizes η, τ > 0 such that
1: for k = 0, 1, 2, . . . do
2: Zk+1 ← proxηf∗(Z

k + ηVĀk)
3: Ak+1 ← proxτg(A

k − τV⊤Zk+1)
4: Āk+1 ← Ak+1 + θ(Ak+1 −Ak)
5: end for
6: return Ak

Problem (4.3) is solved using parallel splitting Bauschke and Combettes (2011).

First, we need to reformulate the problem. If Â is a solution to (4.3), then any

Â + B with B ∈ ker(V ), where ker(V ) = {A ∈ Rm1×m2 : V A = 0}, is also a

solution. Thus, we solve the problem on a splitted variable W = V A. We define
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the linear space col(V) = {W ∈ Rn×m2 : ∃A ∈ Rm1×m2 ,VA = W}. Then, we

have
V Â = argmin

W∈col(V)
∥U −W∥2 + λ∥W∥1,

so that we end up with the problem

minimize ∥U −W∥2 + λ∥W∥1 + δcol(V)(W ), (4.5)

where δC(X) stands for the indicator function of a convex set C, defined by

δC(X) = 0 when X ∈ C and δC(X) = +∞ when X /∈ C. Then, we solve (4.5)

using parallel splitting Bauschke and Combettes (2011). Each function in (4.5)

is prox-capable. Take

f1(W ) = ∥U −W∥2, f2(W ) = λ∥W∥1, f3(W ) = δcol(V)(W )

with proxf1 and proxf2 as above. We have that

proxf3(W) = Pcol(V)(W) = V(V⊤V)†V⊤W,

where Pcol(V) is the projection operator onto the set col(V), and where Z† stands

for the pseudo-inverse of Z. The parallel splitting algorithm is described in

Algorithm 3.

Algorithm 3 Parallel splitting

Require: Step-sizes γ > 0, τk ∈ [0, 2], initial values W 0
1 ,W

0
2 ,W

0
3

1: for k = 0, 1, 2, . . . do
2: P k ← 1

3 (W
k
1 +W k

2 +W k
3 )

3: Zk
i ← proxγfi(W

k
i ) for i = 1, 2, 3

4: Qk ← 1
3 (Z

k
1 + Zk

2 + Zk
3 )

5: W k+1
i ← W k

i + τk(2Q
k − P k − Zk

i ) for i = 1, 2, 3
6: end for
7: return P k

Convergence is guaranteed for τk ∈ [0, 2] such that
∑

k≥0 τk(2 − τk) = +∞,

see Bauschke and Combettes (2011), we simply choose τk = 1.9 in our exper-

iments. An alternative (but somewhat less direct) method for solving (4.5) is

to write an equivalent conic formulation, and smooth the primal objective by

adding a strongly convex term. Then, the corresponding dual problem can be

solved using first order techniques. This method, called TFOCS, is the one de-

scribed in Becker, Candès and Grant (2011) for solving general convex cone

problems.

4.2. Numerical illustration

We give several numerical illustrations. First, we show that the optimal

choice of λ is almost independent of the noise level for the procedures (4.2) and

HIGH DIMENSIONAL MATRIX ESTIMATION 15

(4.3), while it needs to be increased with σ for procedure (4.1). This fact is illus-

trated in Figures 1 and 2. Then, we compare the best prediction errors (among

prediction errors obtained for several λ) of solutions of problems (4.1), (4.2)

and (4.3). This is illustrated in Tables 1 and 2.

We simulate data as follows. We pick at random A1 and A2 as, respectively,

m1 × r and m2 × r matrices with N(0, 1) i.i.d. entries, and we fix A0 = A1A
⊤
2 ,

which is a m1 ×m2 matrix with rank r a.s. We pick at random a n×m1 matrix

V , with lines Vi ∈ Rm1 , i = 1, . . . , n, distributed as a centered Gaussian vectors

with covariance equal to the Toeplitz matrix Σ = (ρ−|i−j|)1≤i,j≤m1 . We finally

compute U = V A0+σE, where the noise matrix E contains N(0, 1) i.i.d. entries

and σ > 0 is the standard deviation.

We consider the setting n = 1,000, m1 = 200, m2 = 100, r = 10 and ρ = 0.5,

called “experiment 1” in Figures and Tables, while we choose n = 200, m1 = 100,

m2 = 400 and other parameters unchanged for “experiment 2”.

In Figures 1 and 2, Tables 1 and 2 we consider values of σ in {0.1, 0.5, 1.0, 5.0},
and for each value of σ we plot the prediction error ∥V (Âλ −A0)∥2 for a param-

eter λ in a grid. We repeat this 10 times, and plot each time the prediction error

in Figure 1 and print the average best prediction errors (and standard deviation)

in Table 1.

The conclusion of this experiment is the following. The minimum of the

prediction error is achieved for a parameter λ that increases with σ for pro-

cedure (4.1), while it is almost constant for procedures (4.2) and (4.3). This

confirms numerically the fact that when using square-root least-squares instead

of least-squares, the optimal choice of λ can be done independently of the noise

level. Also, the minimum prediction errors of each procedure are of the same

order for experiment 1, with a slight advantage for procedure (4.3) for each

considered value of σ, while there is a strong advantage for procedure (4.3) for

experiment 2, which corresponds to the case where the number of tasks m2 is

larger than the sample size n.

Appendix. Proofs

A.1. Proof of Theorem 1

The proof of Theorem 1 is based on the ideas of the proof of Theorem 1 in

Koltchinskii, Lounici and Tsybakov (2011). However, as the statistical structure

of our estimator is different from theirs, the proof requires several modifications

and additional information on the behaviour of the estimator. This information

is given in Lemmas A.1 and A.2. In particular, Lemma A.1 provides a bound on

the rank of our estimator. Its proof is given in Appendix A.2.

Lemma A.1. rank(Â) ≤ 1/λ2.
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so that we end up with the problem

minimize ∥U −W∥2 + λ∥W∥1 + δcol(V)(W ), (4.5)

where δC(X) stands for the indicator function of a convex set C, defined by
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with proxf1 and proxf2 as above. We have that
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where Pcol(V) is the projection operator onto the set col(V), and where Z† stands

for the pseudo-inverse of Z. The parallel splitting algorithm is described in

Algorithm 3.

Algorithm 3 Parallel splitting
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6: end for
7: return P k

Convergence is guaranteed for τk ∈ [0, 2] such that
∑

k≥0 τk(2 − τk) = +∞,

see Bauschke and Combettes (2011), we simply choose τk = 1.9 in our exper-

iments. An alternative (but somewhat less direct) method for solving (4.5) is

to write an equivalent conic formulation, and smooth the primal objective by

adding a strongly convex term. Then, the corresponding dual problem can be

solved using first order techniques. This method, called TFOCS, is the one de-

scribed in Becker, Candès and Grant (2011) for solving general convex cone

problems.

4.2. Numerical illustration

We give several numerical illustrations. First, we show that the optimal

choice of λ is almost independent of the noise level for the procedures (4.2) and
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(4.3), while it needs to be increased with σ for procedure (4.1). This fact is illus-
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and (4.3). This is illustrated in Tables 1 and 2.

We simulate data as follows. We pick at random A1 and A2 as, respectively,

m1 × r and m2 × r matrices with N(0, 1) i.i.d. entries, and we fix A0 = A1A
⊤
2 ,

which is a m1 ×m2 matrix with rank r a.s. We pick at random a n×m1 matrix

V , with lines Vi ∈ Rm1 , i = 1, . . . , n, distributed as a centered Gaussian vectors

with covariance equal to the Toeplitz matrix Σ = (ρ−|i−j|)1≤i,j≤m1 . We finally

compute U = V A0+σE, where the noise matrix E contains N(0, 1) i.i.d. entries

and σ > 0 is the standard deviation.

We consider the setting n = 1,000, m1 = 200, m2 = 100, r = 10 and ρ = 0.5,

called “experiment 1” in Figures and Tables, while we choose n = 200, m1 = 100,

m2 = 400 and other parameters unchanged for “experiment 2”.

In Figures 1 and 2, Tables 1 and 2 we consider values of σ in {0.1, 0.5, 1.0, 5.0},
and for each value of σ we plot the prediction error ∥V (Âλ −A0)∥2 for a param-

eter λ in a grid. We repeat this 10 times, and plot each time the prediction error

in Figure 1 and print the average best prediction errors (and standard deviation)

in Table 1.

The conclusion of this experiment is the following. The minimum of the

prediction error is achieved for a parameter λ that increases with σ for pro-

cedure (4.1), while it is almost constant for procedures (4.2) and (4.3). This

confirms numerically the fact that when using square-root least-squares instead

of least-squares, the optimal choice of λ can be done independently of the noise

level. Also, the minimum prediction errors of each procedure are of the same

order for experiment 1, with a slight advantage for procedure (4.3) for each

considered value of σ, while there is a strong advantage for procedure (4.3) for
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larger than the sample size n.

Appendix. Proofs

A.1. Proof of Theorem 1

The proof of Theorem 1 is based on the ideas of the proof of Theorem 1 in

Koltchinskii, Lounici and Tsybakov (2011). However, as the statistical structure

of our estimator is different from theirs, the proof requires several modifications
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the rank of our estimator. Its proof is given in Appendix A.2.

Lemma A.1. rank(Â) ≤ 1/λ2.
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Figure 1. Prediction errors (y-axis) for experiment 1 (see text) for a varying
λ (x-axis) for procedure (4.1) (first column), procedure (4.2) (second column)
and procedure (4.3) (third column). We plot the estimation errors over 10
simulated datasets (corresponding to a line in each figure), for an increasing
noise level σ = 0.1 (first line), σ = 0.5 (second line), σ = 1.0 (third line),
σ = 5.0 (fourth line). We can observe that the optimum λ for (4.1) increases
with σ (see the position of minimum along the first column), while it can be
kept almost constant for procedures (4.2) and (4.3).

Lemma A.2. Suppose that ρ/
√
rank(A0) ≥ λ ≥ 3∆ for some ρ < 1, then

∥Â−X∥2 ≥

(
3−

√
1 + ρ2

3 +
√

1 + ρ2

)
∥A0 −X∥2. (A.1)

HIGH DIMENSIONAL MATRIX ESTIMATION 17

Table 1. Average best prediction error (and standard deviation) for exper-
iment 1 of the considered procedures for several values σ. Procedure (4.3)
introduced in this paper always leads to a slight improvement.

Noise level σ 0.1 0.5 1.0 5.0

Procedure (4.1) 3.56e-04 1.03e-02 4.01e-02 1.17e+00
(4.90e-05) (2.23e-04) (4.02e-03) (1.52e-01)

Procedure (4.2) 3.54e-04 8.87e-03 3.54e-02 8.72e-01
(8.66e-06) (2.01e-04) (8.34e-04) (2.17e-02)

Procedure (4.3) 3.47e-04 8.65e-03 3.43e-02 8.54e-01
(5.16e-06) (1.44e-04) (6.73e-04) (1.56e-02)

Table 2. Average best prediction error (and standard deviation) for exper-
iment 2 of the considered procedures for several values σ. Procedure (4.3)
introduced in this paper leads to a strong improvement in this case.

Noise level σ 0.1 0.5 1.0 5.0

Procedure (4.1) 1.50e-02 6.37e-02 2.24e-01 6.87e+00
(7.82e-03) (5.59e-03) (1.42e-02) (1.17e-01)

Procedure (4.2) 2.05e-03 5.01e-02 2.01e-01 4.95e+00
(5.37e-05) (4.93e-04) (1.79e-03) (5.63e-02)

Procedure (4.3) 1.64e-03 4.10e-02 1.64e-01 3.93e+00
(2.61e-05) (4.40e-04) (2.78e-03) (5.87e-02)

If Â = X, then (A.1) implies that A0 = X and we get ∥Â−A0∥2 = 0.

When Â ̸= X, we use the fact that the subdifferential of the convex function

A → ∥A∥1 is the following set of matrices (cf., Watson (1992))

∂∥A∥1 =
{rank(A)∑

j=1

uj(A)vTj (A) + PS⊥
1 (A)WPS⊥

2 (A) : ∥W∥∞ ≤ 1

}
. (A.2)

Here uj(A) and vj(A) are respectively the left and right orthonormal singular

vectors of A, S1(A) is the linear span of {uj(A)}, S2(A) is the linear span of

{vj(A)}. For simplicity we write uj and vj instead of uj(A) and vj(A). A

necessary condition for an extremum in (2.6) implies that there exists V̂ ∈ ∂∥Â∥1
such that, for any A ∈ Rm1×m2 ,

2⟨Â−X, Â−A⟩
2∥Â−X∥2

+ λ⟨V̂ , Â−A⟩ ≤ 0. (A.3)

By the monotonicity of subdifferentials of convex functions we have that

⟨V̂ − V, Â − A⟩ ≥ 0, where V ∈ ∂∥A∥1. Then (A.3) and 2⟨Â − A0, Â − A⟩ =
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(2.61e-05) (4.40e-04) (2.78e-03) (5.87e-02)

If Â = X, then (A.1) implies that A0 = X and we get ∥Â−A0∥2 = 0.

When Â ̸= X, we use the fact that the subdifferential of the convex function

A → ∥A∥1 is the following set of matrices (cf., Watson (1992))

∂∥A∥1 =
{rank(A)∑

j=1

uj(A)vTj (A) + PS⊥
1 (A)WPS⊥

2 (A) : ∥W∥∞ ≤ 1

}
. (A.2)

Here uj(A) and vj(A) are respectively the left and right orthonormal singular

vectors of A, S1(A) is the linear span of {uj(A)}, S2(A) is the linear span of

{vj(A)}. For simplicity we write uj and vj instead of uj(A) and vj(A). A

necessary condition for an extremum in (2.6) implies that there exists V̂ ∈ ∂∥Â∥1
such that, for any A ∈ Rm1×m2 ,

2⟨Â−X, Â−A⟩
2∥Â−X∥2

+ λ⟨V̂ , Â−A⟩ ≤ 0. (A.3)

By the monotonicity of subdifferentials of convex functions we have that

⟨V̂ − V, Â − A⟩ ≥ 0, where V ∈ ∂∥A∥1. Then (A.3) and 2⟨Â − A0, Â − A⟩ =
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Figure 2. Prediction errors (y-axis) for experiment 2 (see text) for a varying
λ (x-axis) for procedure (4.1) (first column), procedure (4.2) (second column)
and procedure (4.3) (third column). We plot the estimation errors over 10
simulated datasets (corresponding to a line in each figure), for an increasing
noise level σ = 0.1 (first line), σ = 0.5 (second line), σ = 1.0 (third line),
σ = 5.0 (fourth line). We can observe that the optimum λ for (4.1) increases
with σ (see the position of minimum along the first column), while it can be
kept almost constant for procedures (4.2) and (4.3).

∥Â−A0∥22 + ∥Â−A∥22 − ∥A−A0∥22 imply that

∥Â−A0∥22 + ∥Â−A∥22 + 2λ∥Â−X∥2
⟨
PS⊥

1 (A)WPS⊥
2 (A), Â−A

⟩

≤ ∥A−A0∥22 + 2⟨X−A0, Â−A⟩ − 2λ∥Â−X∥2

⟨
r∑

j=1

ujv
T
j , Â−A

⟩
.(A.4)
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For B, a m1 ×m2 matrix, let PrA(B) = B − PS⊥
1 (A)BPS⊥

2 (A). Since

PrA(B) = PS⊥
1 (A)BPS2(A) + PS1(A)B

and rank(PSi(A)B) ≤ rank(A) we have that rank(PrA(B)) ≤ 2rank(A).

Consider each term in (A.4) separately. First, using the trace duality and

the triangle inequality, we get

⟨X−A0, Â−A⟩ ≤ ∥X−A0∥∞∥Â−A∥1
≤ ∥X−A0∥∞

���PrA

(
Â−A

)���
1

+∥X−A0∥∞
���PS⊥

1 (A)

(
Â−A

)
PS⊥

2 (A)

���
1
. (A.5)

Note that
���∑r

j=1 ujv
T
j

���
∞

= 1. Then, the trace duality implies that

⟨
r∑

j=1

ujv
T
j , Â−A

⟩
=

⟨
r∑

j=1

ujv
T
j ,PrA

(
Â−A

)⟩
≤

���PrA

(
Â−A

)���
1
. (A.6)

From the trace duality, we get that there exists W with ∥W∥∞ ≤ 1 such that
⟨
PS⊥

1 (A)WPS⊥
2 (A), Â−A

⟩
=

⟨
W,PS⊥

1 (A)

(
Â−A

)
PS⊥

2 (A)

⟩

=
���PS⊥

1 (A)

(
Â−A

)
PS⊥

2 (A)

���
1
. (A.7)

Using (A.1) and the definition of λ we derive

λ∥Â−X∥2
���PS⊥

1 (A) Â PS⊥
2 (A)

���
1

≥ λ
3−

√
1 + ρ2

3 +
√
1 + ρ2

∥A0 −X∥2
���PS⊥

1 (A) Â PS⊥
2 (A)

���
1

≥ 3
3−

√
1 + ρ2

3 +
√
1 + ρ2

∥A0 −X∥∞∥PS⊥
1 (A) Â PS⊥

2 (A)∥1. (A.8)

Since 6[3−
√
1 + ρ2]/[3 +

√
1 + ρ2] ≥ 2 for any ρ < 1, putting (A.5), (A.6) and

(A.8) into (A.4) yields

∥Â−A0∥22 + ∥Â−A∥22 ≤ ∥A−A0∥22 + 2∥X−A0∥∞∥PrA

(
Â−A

)
∥1

+2λ∥Â−X∥2∥PrA

(
Â−A

)
∥1. (A.9)

Using the triangle inequality and the fact that
���PrA

(
Â−A

)���
1
≤

√
2rank(A)∥Â−A∥2
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18 STÉPHANE GAÏFFAS AND OLGA KLOPP

Figure 2. Prediction errors (y-axis) for experiment 2 (see text) for a varying
λ (x-axis) for procedure (4.1) (first column), procedure (4.2) (second column)
and procedure (4.3) (third column). We plot the estimation errors over 10
simulated datasets (corresponding to a line in each figure), for an increasing
noise level σ = 0.1 (first line), σ = 0.5 (second line), σ = 1.0 (third line),
σ = 5.0 (fourth line). We can observe that the optimum λ for (4.1) increases
with σ (see the position of minimum along the first column), while it can be
kept almost constant for procedures (4.2) and (4.3).
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For B, a m1 ×m2 matrix, let PrA(B) = B − PS⊥
1 (A)BPS⊥

2 (A). Since

PrA(B) = PS⊥
1 (A)BPS2(A) + PS1(A)B

and rank(PSi(A)B) ≤ rank(A) we have that rank(PrA(B)) ≤ 2rank(A).

Consider each term in (A.4) separately. First, using the trace duality and

the triangle inequality, we get
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Note that
���∑r

j=1 ujv
T
j

���
∞

= 1. Then, the trace duality implies that

⟨
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T
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⟩
=

⟨
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T
j ,PrA

(
Â−A
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≤
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From the trace duality, we get that there exists W with ∥W∥∞ ≤ 1 such that
⟨
PS⊥

1 (A)WPS⊥
2 (A), Â−A

⟩
=

⟨
W,PS⊥

1 (A)

(
Â−A

)
PS⊥

2 (A)

⟩

=
���PS⊥

1 (A)

(
Â−A

)
PS⊥

2 (A)

���
1
. (A.7)

Using (A.1) and the definition of λ we derive

λ∥Â−X∥2
���PS⊥

1 (A) Â PS⊥
2 (A)

���
1

≥ λ
3−

√
1 + ρ2

3 +
√

1 + ρ2
∥A0 −X∥2

���PS⊥
1 (A) Â PS⊥

2 (A)

���
1

≥ 3
3−

√
1 + ρ2

3 +
√

1 + ρ2
∥A0 −X∥∞∥PS⊥

1 (A) Â PS⊥
2 (A)∥1. (A.8)

Since 6[3−
√

1 + ρ2]/[3 +
√
1 + ρ2] ≥ 2 for any ρ < 1, putting (A.5), (A.6) and

(A.8) into (A.4) yields

∥Â−A0∥22 + ∥Â−A∥22 ≤ ∥A−A0∥22 + 2∥X−A0∥∞∥PrA

(
Â−A

)
∥1

+2λ∥Â−X∥2∥PrA

(
Â−A

)
∥1. (A.9)

Using the triangle inequality and the fact that
���PrA

(
Â−A

)���
1
≤

√
2rank(A)∥Â−A∥2
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we get

2 ∥X−A0∥∞
���PrA

(
Â−A

)���
1
+ 2λ

���Â−X
���
2

���PrA

(
Â−A

)���
1

≤ 2
(
∥X−A0∥∞ + λ ∥X−A0∥2

)√
2rank(A)

���Â−A
���
2

+2λ∥Â−A0∥2
√

2rank(A)∥Â−A∥2. (A.10)

From the definition of λ we get that ∥X−A0∥∞ ≤ λ ∥X−A0∥2 /3. For A such

that λ
√
2rank(A) ≤ ρ, (A.10) implies

∥Â−A0∥22 + ∥Â−A∥22 ≤ ∥A−A0∥22 +
8

3
λ∥X−A0∥2

√
2rank(A)∥Â−A∥2

+2ρ∥Â−A0∥2∥Â−A∥2.

Using 2ab ≤ a2 + b2 twice we compute

(1− ρ)∥Â−A0∥22 ≤ ∥A−A0∥22 +
4

1− ρ
λ2∥X−A0∥22rank(A)

which implies the statement of Theorem 1.

A.2. Proof of Lemma A.1.

That Â is the minimum of (2.6) implies that 0 ∈ ∂F (Â). For Â ̸= X, (A.2)

implies that there exists a matrix W such that ∥W∥∞ ≤ 1 and

Â−X

∥Â−X∥2
= −λ

rank(Â)∑
j=1

uj(Â)vTj (Â)− λPS⊥
1 (Â)WPS⊥

2 (Â). (A.11)

Calculating the ∥ · ∥22 norm of both sides of (A.11) we get that 1 ≥ λ2rank(Â).

When Â = X, instead of the differential of ∥Â−X∥2 we use its subdifferential:
in (A.11) the term (Â−X)/∥Â−X∥2 is replaced by a matrix W̃ such that

∥W̃∥2 ≤ 1 and we get, again, 1 ≥ λ2rank(Â).

A.3. Proof of Lemma A.2.

If A0 = X, then, trivially ∥Â−X∥2 ≥ 0. If A0 ̸= X, by the convexity of the

function A → ∥A−X∥2, we have

∥Â−X∥2−∥A0−X∥2 ≥
⟨A0 −X, Â−A0⟩

∥A0 −X∥2

≥ −∥A0 −X∥∞
∥A0 −X∥2

∥Â−A0∥1

≥ −∥A0−X∥∞
∥A0−X∥2

√
rank(Â)+rank(A0)∥Â−A0∥2. (A.12)
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Using Lemma A.1, the bound ρ/
√
rank(A0) ≥ λ, and the triangle inequality,

from (A.12) we get

∥Â−X∥2 − ∥A0 −X∥2 ≥ −
√
1 + ρ2

λ

∥A0 −X∥∞
∥A0 −X∥2

(
∥Â−X∥2 + ∥A0 −X∥2

)
.

(A.13)

Note that (∥A0 −X∥∞)/(λ∥A0 −X∥2) ≤ 1/3, which finally leads to

(
1 +

√
1 + ρ2

3

)
∥Â−X∥2 ≥

(
1−

√
1 + ρ2

3

)
∥A0 −X∥2,

and completes the proof of Lemma A.2.

A.4. Proof of Lemma 1.

Our goal is to get a numerical estimate of c∗ in the case of Gaussian noise.

Let Zi = ξi (Xi − EXi) and

σZ = max
{��� 1

n

n∑
i=1

E
(
ZiZ

T
i

) ���
1/2

∞
,
��� 1
n

n∑
i=1

E
(
Z

T

i Zi

)���
1/2

∞

}
=

1

m1 ∧m2
.

The constant c∗ comes up in the proof of Lemma 2 in Koltchinskii, Lounici and

Tsybakov (2011) in the estimation of

∆1 =
��� 1
n

n∑
i=1

ξiXi

���
∞

≤
��� 1
n

n∑
i=1

ξi

(
Xi − EXi

)���
∞

+
1

√
m1m2

��� 1
n

n∑
i=1

ξi

���.

A standard application of Markov’s inequality gives that, with probability at

least 1− 1/m
1

√
m1m2

��� 1
n

n∑
i=1

ξi

��� ≤ 2

√
logm

nm1m2
. (A.14)

In Koltchinskii, Lounici and Tsybakov (2011), the authors estimate ∥(1/n)
∑n

i=1

ξi(Xi − EXi)∥∞ using Koltchinskii (2011, Proposition 2). To get a numerical

estimate of c∗ we follow the lines of this proof. In order to simplify notation, we

write ∥ ∥∞ = ∥ ∥ and consider the case of Hermitian matrices of size m′. The

extension to rectangular matrices is straightforward via self-adjoint dilation, cf.,

for example, 2.6 in Tropp (2011).

Let Yn =
∑n

i=1 Zi. In the proof of Koltchinskii (2011, Proposition 2), after

following the standard derivation of the classical Bernstein inequality and using

the Golden-Thompson inequality, the author finds that

P (∥Yn∥ ≥ t) ≤ 2m′e−λt∥EeλZ1∥n (A.15)

and

∥EeλZ1∥ ≤ 1 + λ2
���EZ2

1

[eλ∥Z1∥ − 1− λ∥Z1∥
λ2∥Z1∥2

]���. (A.16)
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we get
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���PrA

(
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Â−X
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2 (Â). (A.11)

Calculating the ∥ · ∥22 norm of both sides of (A.11) we get that 1 ≥ λ2rank(Â).
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Using Lemma A.1, the bound ρ/
√
rank(A0) ≥ λ, and the triangle inequality,

from (A.12) we get

∥Â−X∥2 − ∥A0 −X∥2 ≥ −
√

1 + ρ2

λ

∥A0 −X∥∞
∥A0 −X∥2

(
∥Â−X∥2 + ∥A0 −X∥2

)
.
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In Koltchinskii, Lounici and Tsybakov (2011), the authors estimate ∥(1/n)
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ξi(Xi − EXi)∥∞ using Koltchinskii (2011, Proposition 2). To get a numerical

estimate of c∗ we follow the lines of this proof. In order to simplify notation, we

write ∥ ∥∞ = ∥ ∥ and consider the case of Hermitian matrices of size m′. The

extension to rectangular matrices is straightforward via self-adjoint dilation, cf.,

for example, 2.6 in Tropp (2011).

Let Yn =
∑n

i=1 Zi. In the proof of Koltchinskii (2011, Proposition 2), after

following the standard derivation of the classical Bernstein inequality and using

the Golden-Thompson inequality, the author finds that

P (∥Yn∥ ≥ t) ≤ 2m′e−λt∥EeλZ1∥n (A.15)

and

∥EeλZ1∥ ≤ 1 + λ2
���EZ2

1

[eλ∥Z1∥ − 1− λ∥Z1∥
λ2∥Z1∥2

]���. (A.16)

135
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Using that ∥Z1∥ ≤ 2|ξi|, from (A.16), we compute

���EeλZ1

��� ≤ 1 + λ2

����E[(Xi − EXi)
2]E

(
ξ2i

[e2λ|ξi| − 1− 2λ|ξi|
4λ2ξ2i

])����

≤ 1 + λ2σ2
ZE

(
(2|ξi|)2

2!
+

λ(2|ξi|)3

3!
+ · · ·

)
. (A.17)

If λ < 1, then (A.17) implies
���EeλZ1

��� ≤ 1 + λ2σ2
ZEe2|ξi| ≤ 1 + 2λ2σ2

Ze
2 ≤ exp{2λ2σ2

Ze
2}.

Using this bound, from (A.15) we get

P (∥Yn∥ ≥ t) ≤ 2m′ exp{−λt+ 2λ2σ2
Ze

2}.

It remains now to minimize the last bound with respect to λ ∈ (0, 1) to obtain

that

P (∥Yn∥ ≥ t) ≤ 2m′ exp

{
− t2

4e2σ2
Zn

}
,

where we have supposed that n is large enough.

Putting 2m′ exp
{
−t2/(4σ2

Ze
2n)

}
= 1/(2m′), we get

t = 2e
√
2 log(2m′)n/(m1 ∧m2). Using (A.14) we compute that c∗ ≤ 2e+1 ≤ 6.5.

This completes the proof of Lemma 1.

A.5. Proof of Lemma 2.

Let ϵi = σξi. To prove (i) we compute

⟨M,M⟩ =
∥A0∥22

(m1m2)
2 +

(
1− 2n

m1m2

)
1

n2

n∑
i=1

⟨A0, Xi⟩2

� �� �
I

+
1

n2

n∑
i=1

ϵ2i

� �� �
II

+

(
1− n

m1m2

)
2

n2

n∑
i=1

⟨A0, Xi⟩ ϵi
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III

+
4

n2

∑
i<j

ϵi ⟨A0, Xj⟩ ⟨Xi, Xj⟩

� �� �
IV

+
2

n2

∑
i<j

ϵiϵj ⟨Xi, Xj⟩

� �� �
V

+
1

n2

∑
i̸=j

⟨A0, Xi⟩ ⟨A0, Xj⟩ ⟨Xj , Xi⟩

� �� �
VI

. (A.18)

We estimate each term in (A.18) separately, with a good probability.

I : We have that E((1/n2)
∑n

i=1 ⟨A0, Xi⟩2) = ∥A0∥22/nm1m2 and |⟨A0, Xi⟩| ≤ a.

Using Hoeffding’s inequality, we get that, with probability at least

1− 2 exp{−2σ4n/(8a)2}
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∥A0∥22
nm1m2

+
σ2

8n
≥ 1

n2

n∑
i=1

⟨A0, Xi⟩2 ≥
∥A0∥22
nm1m2

− σ2

8n
.

II: ϵ2i are sub-exponential random variables and E((1/n2)
∑n

i=1 ϵ
2
i ) = σ2/n. Us-

ing Bernstein inequality for sub-exponentials random variables Vershynin (2012,
Proposition 16) we get that, with probability at least
1− 2 exp{−cnmin[σ2K/82, σ

√
K/8]}

σ2

n
+

σ2

8n
≥ 1

n2

n∑
i=1

ϵ2i ≥
σ2

n
− σ2

8n
.

III: We have that E((2/n2)
∑n

i=1 ⟨A0, Xi⟩ ϵi) = 0, using Hoeffding’s type in-
equality for sub-Gaussian random variables Vershynin (2012, Proposition 10) we
get that, with probability at least 1− e exp

{
−cσ2Kn/a2

}
σ2

8n
≥ 2

n2

n∑
i=1

⟨A0, Xi⟩ ϵi ≥ −σ2

8n
.

IV: We compute E((4/n2)
∑

i<j ϵi ⟨A0, Xj⟩ ⟨Xi, Xj⟩) = 0. The following lemma
is proven in Appendix A.6.

Lemma A.3. Suppose that n ≤ m1m2. With probability at least 1−2/(m1m2),∑
i<j

⟨Xi, Xj⟩ ≤ n.

Lemma A.3 and a Hoeffding-type inequality imply that, with probability at
least 1− 2/m1m2 − e exp

{
−cσ2nK/a2

}
,

σ2

8n
≥ 4

n2

∑
i<j

ϵi ⟨A0, Xj⟩ ⟨Xi, Xj⟩ ≥ −σ2

8n
.

V: We have that E
(
2/n2

∑
i<j ϵiϵj ⟨Xi, Xj⟩

)
= 0. Using the Bernstein inequal-

ity for sub-exponentials random variables Vershynin (2012, Proposition 16) and
Lemma A.3 we get that, with probability at least
1− 2 exp{−cnmin[σ2K/82, σ

√
K/8]}

σ2

8n
≥ 2

n2

∑
i<j

ϵiϵj ⟨Xi, Xj⟩ ≥ −σ2

8n
.

VI: We compute that

E
(

1

n2

∑
i̸=j

⟨A0, Xi⟩ ⟨A0, Xj⟩ ⟨Xj , Xi⟩
)

=
1

n2

∑
i̸=j

⟨E (⟨A0, Xj⟩Xj) ,E (⟨A0, Xi⟩Xi)⟩

=
1

n2

∑
i̸=j

∥A0∥22
(m1m2)

2

≤
∥A0∥22

(m1m2)
2 .
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Using that ∥Z1∥ ≤ 2|ξi|, from (A.16), we compute

���EeλZ1

��� ≤ 1 + λ2

����E[(Xi − EXi)
2]E

(
ξ2i

[e2λ|ξi| − 1− 2λ|ξi|
4λ2ξ2i

])����

≤ 1 + λ2σ2
ZE

(
(2|ξi|)2

2!
+

λ(2|ξi|)3

3!
+ · · ·

)
. (A.17)

If λ < 1, then (A.17) implies
���EeλZ1

��� ≤ 1 + λ2σ2
ZEe2|ξi| ≤ 1 + 2λ2σ2

Ze
2 ≤ exp{2λ2σ2

Ze
2}.

Using this bound, from (A.15) we get

P (∥Yn∥ ≥ t) ≤ 2m′ exp{−λt+ 2λ2σ2
Ze

2}.

It remains now to minimize the last bound with respect to λ ∈ (0, 1) to obtain

that

P (∥Yn∥ ≥ t) ≤ 2m′ exp

{
− t2

4e2σ2
Zn

}
,

where we have supposed that n is large enough.

Putting 2m′ exp
{
−t2/(4σ2

Ze
2n)

}
= 1/(2m′), we get

t = 2e
√
2 log(2m′)n/(m1 ∧m2). Using (A.14) we compute that c∗ ≤ 2e+1 ≤ 6.5.

This completes the proof of Lemma 1.

A.5. Proof of Lemma 2.

Let ϵi = σξi. To prove (i) we compute

⟨M,M⟩ =
∥A0∥22

(m1m2)
2 +

(
1− 2n

m1m2

)
1

n2

n∑
i=1

⟨A0, Xi⟩2

� �� �
I

+
1

n2

n∑
i=1

ϵ2i

� �� �
II

+

(
1− n

m1m2

)
2

n2

n∑
i=1

⟨A0, Xi⟩ ϵi
� �� �

III

+
4

n2

∑
i<j

ϵi ⟨A0, Xj⟩ ⟨Xi, Xj⟩

� �� �
IV

+
2

n2

∑
i<j

ϵiϵj ⟨Xi, Xj⟩

� �� �
V

+
1

n2

∑
i̸=j

⟨A0, Xi⟩ ⟨A0, Xj⟩ ⟨Xj , Xi⟩

� �� �
VI

. (A.18)

We estimate each term in (A.18) separately, with a good probability.

I : We have that E((1/n2)
∑n

i=1 ⟨A0, Xi⟩2) = ∥A0∥22/nm1m2 and |⟨A0, Xi⟩| ≤ a.

Using Hoeffding’s inequality, we get that, with probability at least

1− 2 exp{−2σ4n/(8a)2}
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nm1m2
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σ2

8n
≥ 1

n2
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⟨A0, Xi⟩2 ≥
∥A0∥22
nm1m2

− σ2

8n
.

II: ϵ2i are sub-exponential random variables and E((1/n2)
∑n

i=1 ϵ
2
i ) = σ2/n. Us-

ing Bernstein inequality for sub-exponentials random variables Vershynin (2012,
Proposition 16) we get that, with probability at least
1− 2 exp{−cnmin[σ2K/82, σ

√
K/8]}

σ2

n
+

σ2

8n
≥ 1

n2

n∑
i=1

ϵ2i ≥
σ2

n
− σ2

8n
.

III: We have that E((2/n2)
∑n

i=1 ⟨A0, Xi⟩ ϵi) = 0, using Hoeffding’s type in-
equality for sub-Gaussian random variables Vershynin (2012, Proposition 10) we
get that, with probability at least 1− e exp

{
−cσ2Kn/a2

}
σ2

8n
≥ 2

n2

n∑
i=1

⟨A0, Xi⟩ ϵi ≥ −σ2

8n
.

IV: We compute E((4/n2)
∑

i<j ϵi ⟨A0, Xj⟩ ⟨Xi, Xj⟩) = 0. The following lemma
is proven in Appendix A.6.

Lemma A.3. Suppose that n ≤ m1m2. With probability at least 1−2/(m1m2),∑
i<j

⟨Xi, Xj⟩ ≤ n.

Lemma A.3 and a Hoeffding-type inequality imply that, with probability at
least 1− 2/m1m2 − e exp

{
−cσ2nK/a2

}
,

σ2

8n
≥ 4

n2

∑
i<j

ϵi ⟨A0, Xj⟩ ⟨Xi, Xj⟩ ≥ −σ2

8n
.

V: We have that E
(
2/n2

∑
i<j ϵiϵj ⟨Xi, Xj⟩

)
= 0. Using the Bernstein inequal-

ity for sub-exponentials random variables Vershynin (2012, Proposition 16) and
Lemma A.3 we get that, with probability at least
1− 2 exp{−cnmin[σ2K/82, σ

√
K/8]}

σ2

8n
≥ 2

n2

∑
i<j

ϵiϵj ⟨Xi, Xj⟩ ≥ −σ2

8n
.

VI: We compute that

E
(

1

n2

∑
i̸=j

⟨A0, Xi⟩ ⟨A0, Xj⟩ ⟨Xj , Xi⟩
)

=
1

n2

∑
i̸=j

⟨E (⟨A0, Xj⟩Xj) ,E (⟨A0, Xi⟩Xi)⟩

=
1

n2

∑
i̸=j

∥A0∥22
(m1m2)

2

≤
∥A0∥22

(m1m2)
2 .
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Using Lemma A.3 and Hoeffding’s type inequality for sub-Gaussian random vari-

ables (cf., Vershynin (2012, Proposition 10)), we get that, with probability at

least 1− 2/m1m2 − 2 exp
{
−2σ4n/(8a)2

}

1

n2

∑
i̸=j

⟨A0, Xi⟩ ⟨A0, Xj⟩ ⟨Xj , Xi⟩ ≤
∥A0∥22

(m1m2)2
+

σ2

8n
.

To obtain the lower bound, note that, for i ̸= j, ⟨Xi, Xj⟩ ̸= 0 iff Xi = Xj .

This implies that
∑

i̸=j ⟨A0, Xi⟩ ⟨A0, Xj⟩ ⟨Xj , Xi⟩ ≥ 0. We use that 2n < m1m2

to get

∥A0∥22
(m1m2)

2 +

(
1− 2n

m1m2

)
1

n2

n∑
i=1

⟨A0, Xi⟩2 ≥ 0.

Putting the lower bounds in II−V together we compute from (A.18)

∥M∥22 ≥
σ2

2n
.

To obtain the upper bound, we use the upper bounds in I−VI. From (A.18)

we get

∥M∥22 ≤
2 ∥A0∥22
(m1m2)

2 +
∥A0∥22
nm1m2

+
14σ2

8n
≤ 2

(
∥A0∥22
nm1m2

+
σ2

n

)
,

where we have used that 2n ≤ m1m2. This completes the proof of part (i) in

Lemma 2.

To prove (ii) we use that ⟨Xi, Xi⟩ = 1 and ⟨Xi, Xj⟩ ̸= 0 iff Xi = Xj . We

compute

1

n2

⟨
n∑

i=1

YiXi,

n∑
i=1

YiXi

⟩
=

1

n2

n∑
i=1

Y 2
i +

2

n2

∑
i<j

YiYj ⟨Xi, Xj⟩

=
1

n2

n∑
i=1

(
⟨A0, Xi⟩2 + ϵ2i + 2 ⟨A0, Xi⟩ ϵi

)

+
2

n2

∑
i<j

⟨A0, Xi⟩2 ⟨Xi, Xj⟩

+
4

n2

∑
i<j

ϵi ⟨A0, Xj⟩ ⟨Xi, Xj⟩+
2

n2

∑
i<j

ϵiϵj ⟨Xi, Xj⟩ .
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This implies that

1

n2

⟨
n∑

i=1

YiXi,

n∑
i=1

YiXi

⟩
≥ 1

n2

n∑
i=1

⟨A0, Xi⟩2

� �� �
I

+
1

n2

n∑
i=1

ϵ2i

� �� �
II

+
2

n2

n∑
i=1

⟨A0, Xi⟩ ϵi
� �� �

III

+
4

n2

∑
i<j

ϵi ⟨A0, Xj⟩ ⟨Xi, Xj⟩

� �� �
IV

+
2

n2

∑
i<j

ϵiϵj ⟨Xi, Xj⟩

� �� �
V

.

(A.19)

Using the lower bounds for I−V we get from (A.19) that

1

n2

⟨
n∑

i=1

YiXi,
n∑

i=1

YiXi

⟩
≥

∥A0∥22
nm1m2

which proves the part (ii) of Lemma 2.

(iii) is a consequence of (ii). For 4n ≤ m1m2 (ii) implies

1

4n2

⟨
n∑

i=1

YiXi,
n∑

i=1

YiXi

⟩
≥

∥A0∥22
(m1m2)

2 .

Now we complete the proof of part (iii) of Lemma 2 using that

∥M∥2 ≥
��� 1
n

n∑
i=1

YiXi

���
2
−

∥A0∥2
m1m2

.

A.6. Proof of Lemma A.3

For i ̸= j, Xi and Xj are independent. We compute the expectation

E
(∑

i<j

⟨Xi, Xj⟩
)

=
∑
i<j

⟨EXi,EXj⟩ =
n(n− 1)

2m1m2

and the variance

E
((∑

i<j

⟨Xi, Xj⟩
)2

)
−
(
E
(∑

i<j

⟨Xi, Xj⟩
))2

= E
(∑

i<j
i′<j′

⟨Xi, Xj⟩
⟨
Xi′ , Xj′

⟩)
−

∑
i<j
i′<j′

E
(
⟨Xi, Xj⟩

)
E
(⟨
Xi′ , Xj′

⟩)
.

When i, j, i′, j′ are all distinct, E
(
⟨Xi, Xj⟩

⟨
Xi′ , Xj′

⟩)
is cancelled by the corre-

sponding term in
∑
i<j
i′<j′

E (⟨Xi, Xj⟩)E
(⟨
Xi′ , Xj′

⟩)
.

138
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Using Lemma A.3 and Hoeffding’s type inequality for sub-Gaussian random vari-

ables (cf., Vershynin (2012, Proposition 10)), we get that, with probability at

least 1− 2/m1m2 − 2 exp
{
−2σ4n/(8a)2

}

1

n2

∑
i̸=j

⟨A0, Xi⟩ ⟨A0, Xj⟩ ⟨Xj , Xi⟩ ≤
∥A0∥22

(m1m2)2
+

σ2

8n
.

To obtain the lower bound, note that, for i ̸= j, ⟨Xi, Xj⟩ ̸= 0 iff Xi = Xj .

This implies that
∑

i̸=j ⟨A0, Xi⟩ ⟨A0, Xj⟩ ⟨Xj , Xi⟩ ≥ 0. We use that 2n < m1m2

to get

∥A0∥22
(m1m2)

2 +

(
1− 2n

m1m2

)
1

n2

n∑
i=1

⟨A0, Xi⟩2 ≥ 0.

Putting the lower bounds in II−V together we compute from (A.18)

∥M∥22 ≥
σ2

2n
.

To obtain the upper bound, we use the upper bounds in I−VI. From (A.18)

we get

∥M∥22 ≤
2 ∥A0∥22
(m1m2)

2 +
∥A0∥22
nm1m2

+
14σ2

8n
≤ 2

(
∥A0∥22
nm1m2

+
σ2

n

)
,

where we have used that 2n ≤ m1m2. This completes the proof of part (i) in

Lemma 2.

To prove (ii) we use that ⟨Xi, Xi⟩ = 1 and ⟨Xi, Xj⟩ ̸= 0 iff Xi = Xj . We

compute

1

n2

⟨
n∑

i=1

YiXi,

n∑
i=1

YiXi

⟩
=

1

n2

n∑
i=1

Y 2
i +

2

n2

∑
i<j

YiYj ⟨Xi, Xj⟩

=
1

n2

n∑
i=1

(
⟨A0, Xi⟩2 + ϵ2i + 2 ⟨A0, Xi⟩ ϵi

)

+
2

n2

∑
i<j

⟨A0, Xi⟩2 ⟨Xi, Xj⟩

+
4

n2

∑
i<j

ϵi ⟨A0, Xj⟩ ⟨Xi, Xj⟩+
2

n2

∑
i<j

ϵiϵj ⟨Xi, Xj⟩ .

HIGH DIMENSIONAL MATRIX ESTIMATION 25

This implies that

1

n2

⟨
n∑

i=1

YiXi,

n∑
i=1

YiXi

⟩
≥ 1

n2

n∑
i=1

⟨A0, Xi⟩2

� �� �
I

+
1

n2

n∑
i=1

ϵ2i

� �� �
II

+
2

n2

n∑
i=1

⟨A0, Xi⟩ ϵi
� �� �

III

+
4

n2

∑
i<j

ϵi ⟨A0, Xj⟩ ⟨Xi, Xj⟩

� �� �
IV

+
2

n2

∑
i<j

ϵiϵj ⟨Xi, Xj⟩

� �� �
V

.

(A.19)

Using the lower bounds for I−V we get from (A.19) that

1

n2

⟨
n∑

i=1

YiXi,
n∑

i=1

YiXi

⟩
≥

∥A0∥22
nm1m2

which proves the part (ii) of Lemma 2.

(iii) is a consequence of (ii). For 4n ≤ m1m2 (ii) implies

1

4n2

⟨
n∑

i=1

YiXi,
n∑

i=1

YiXi

⟩
≥

∥A0∥22
(m1m2)

2 .

Now we complete the proof of part (iii) of Lemma 2 using that

∥M∥2 ≥
��� 1
n

n∑
i=1

YiXi

���
2
−

∥A0∥2
m1m2

.

A.6. Proof of Lemma A.3

For i ̸= j, Xi and Xj are independent. We compute the expectation

E
(∑

i<j

⟨Xi, Xj⟩
)

=
∑
i<j

⟨EXi,EXj⟩ =
n(n− 1)

2m1m2

and the variance

E
((∑

i<j

⟨Xi, Xj⟩
)2

)
−
(
E
(∑

i<j

⟨Xi, Xj⟩
))2

= E
(∑

i<j
i′<j′

⟨Xi, Xj⟩
⟨
Xi′ , Xj′

⟩)
−

∑
i<j
i′<j′

E
(
⟨Xi, Xj⟩

)
E
(⟨
Xi′ , Xj′

⟩)
.

When i, j, i′, j′ are all distinct, E
(
⟨Xi, Xj⟩

⟨
Xi′ , Xj′

⟩)
is cancelled by the corre-

sponding term in
∑
i<j
i′<j′

E (⟨Xi, Xj⟩)E
(⟨
Xi′ , Xj′

⟩)
.
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It remains to consider the five cases: (1) i = i′ and j = j′; (2) i = i′ and

j ̸= j′; (3) i ̸= i′ and j = j′; (4) i = j′ and j ̸= i′; (5) i′ = j and j′ ̸= i.

Case (1): As ⟨Xi, Xj⟩ takes only two values 0 or 1,

E
(
⟨Xi, Xj⟩2

)
= E (⟨Xi, Xj⟩) =

1

m1m2
.

Cases (2)-(5): in these cases, we need to calculate E (⟨Xi, Xk⟩ ⟨Xk, Xj⟩) for

i ̸= j and k /∈ {i, j}. Note that PXk
= ⟨ · , Xk⟩Xk is the orthogonal projector on

the vector space spanned by Xk. We compute

EPXk
=

1

m1m2
Id,

where Id is the identity application on Rm1×m2 . Then, we get

E (⟨⟨Xi, Xk⟩Xk, Xj⟩) = E (⟨PXk
(Xi) , Xj⟩)

= ⟨E (PXk
) (EXi) ,EXj⟩

=
1

m1m2
⟨EXi,EXj⟩

=
1

(m1m2)
2 .

These terms are cancelled by the corresponding terms in
∑
i<j
i′<j′

E(⟨Xi, Xj⟩)E(⟨Xi′ ,

Xj′⟩) as

E (⟨Xi, Xk⟩)E (⟨Xk, Xj⟩) =
1

(m1m2)2
.

Finally we get that

E
((∑

i<j

⟨Xi, Xj⟩
)2

)
−
(
E
(∑

i<j

⟨Xi, Xj⟩
))2

≤ n(n− 1)

2m1m2
.

The Bienaymé-Tchebychev inequality implies that

P
(∑

i<j

⟨Xi, Xj⟩ ≥ n
)
≤ n(n− 1)

2m1m2 (n− n(n− 1)/2m1m2)
2 ≤ 2

m1m2

when m1m2 ≥ n. This completes the proof of Lemma A.3.

A.7. Proof of Theorem 3.

The following lemma is the counterpart of Lemma A.1 in the present setting.

It is proven in Appendix A.8.

HIGH DIMENSIONAL MATRIX ESTIMATION 27

Lemma A.4. rank(V Â) ≤ 1/λ2.

We need an auxiliary result that corresponds to Lemma A.2; it is proven in

Appendix A.9.

Lemma A.5. Suppose that ρ/
√
rank(V A0) ≥ λ ≥ 3∆′ for some ρ < 1, then

���V Â− U
���
2
≥

(
3−

√
1 + ρ2

3 +
√
1 + ρ2

)
∥E∥2.

The proof of Theorem 3 is similar to the proof of the Theorem 1. We only

sketch it. If V Â ̸= U , a necessary condition of the extremum in (3.1) implies

that there exists a Ŵ ∈ ∂∥V Â∥1 such that, for any A ∈ Rm1×m2 ,

2
⟨
V Â− U, V

(
Â−A

)⟩

2
���V Â− U

���
2

+ λ
⟨
Ŵ , V

(
Â−A

)⟩
≤ 0 (A.20)

and we get���V
(
Â−A0

)���
2

2
+
���V

(
Â−A

)���
2

2
+2λ

���V Â−U
���
2

⟨
PS⊥

1 (V A)WPS⊥
2 (V A), V

(
Â−A

)⟩

≤
��V (A−A0)

��2
2
+ 2

⟨
E, V

(
Â−A

)⟩

−2λ
���V Â− U

���
2

⟨
rank(V A)∑

j=1

uj(V A)vj(V A)T , V
(
Â−A

)⟩
. (A.21)

Let PrV A(B) = B − PS⊥
1 (V A)BPS⊥

2 (V A). Then, the trace duality and the

triangle inequality imply that
⟨
E, V

(
Â−A

)⟩
=

⟨
PV E, V

(
Â−A

)⟩

≤ ∥PV E∥∞
���V

(
Â−A

)���
1

≤ ∥PV E∥∞
���PrV A

[
V
(
Â−A

)]���
1

+ ∥PV E∥∞
���PS⊥

1 (V A)V
(
Â−A

)
PS⊥

2 (V A)

���
1
. (A.22)

Using 6× [(3−
√
1 + ρ2)/(3 +

√
1 + ρ2)] ≥ 2 for any ρ < 1 (A.21) implies that

���V
(
Â−A0

)���
2

2
+
���V

(
Â−A

)���
2

2

≤
��V (A−A0)

��2
2
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It remains to consider the five cases: (1) i = i′ and j = j′; (2) i = i′ and

j ̸= j′; (3) i ̸= i′ and j = j′; (4) i = j′ and j ̸= i′; (5) i′ = j and j′ ̸= i.

Case (1): As ⟨Xi, Xj⟩ takes only two values 0 or 1,

E
(
⟨Xi, Xj⟩2

)
= E (⟨Xi, Xj⟩) =

1

m1m2
.

Cases (2)-(5): in these cases, we need to calculate E (⟨Xi, Xk⟩ ⟨Xk, Xj⟩) for

i ̸= j and k /∈ {i, j}. Note that PXk
= ⟨ · , Xk⟩Xk is the orthogonal projector on

the vector space spanned by Xk. We compute

EPXk
=

1

m1m2
Id,

where Id is the identity application on Rm1×m2 . Then, we get

E (⟨⟨Xi, Xk⟩Xk, Xj⟩) = E (⟨PXk
(Xi) , Xj⟩)

= ⟨E (PXk
) (EXi) ,EXj⟩

=
1

m1m2
⟨EXi,EXj⟩

=
1

(m1m2)
2 .

These terms are cancelled by the corresponding terms in
∑
i<j
i′<j′

E(⟨Xi, Xj⟩)E(⟨Xi′ ,

Xj′⟩) as

E (⟨Xi, Xk⟩)E (⟨Xk, Xj⟩) =
1

(m1m2)2
.

Finally we get that

E
((∑

i<j

⟨Xi, Xj⟩
)2

)
−
(
E
(∑

i<j

⟨Xi, Xj⟩
))2

≤ n(n− 1)

2m1m2
.

The Bienaymé-Tchebychev inequality implies that

P
(∑

i<j

⟨Xi, Xj⟩ ≥ n
)
≤ n(n− 1)

2m1m2 (n− n(n− 1)/2m1m2)
2 ≤ 2

m1m2

when m1m2 ≥ n. This completes the proof of Lemma A.3.

A.7. Proof of Theorem 3.

The following lemma is the counterpart of Lemma A.1 in the present setting.

It is proven in Appendix A.8.
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Lemma A.4. rank(V Â) ≤ 1/λ2.

We need an auxiliary result that corresponds to Lemma A.2; it is proven in

Appendix A.9.

Lemma A.5. Suppose that ρ/
√
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The proof of Theorem 3 is similar to the proof of the Theorem 1. We only

sketch it. If V Â ̸= U , a necessary condition of the extremum in (3.1) implies

that there exists a Ŵ ∈ ∂∥V Â∥1 such that, for any A ∈ Rm1×m2 ,
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Â−A

)⟩
≤ 0 (A.20)
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Let PrV A(B) = B − PS⊥
1 (V A)BPS⊥

2 (V A). Then, the trace duality and the

triangle inequality imply that
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Using 6× [(3−
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Now we use
���PrV A

[
V
(
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)]���
1
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√
2rank(V A)

���V
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Â−A

)���
2
, ∥PV E∥∞ ≤

λ∥E∥2/3 and λ
√

2 rank(V A) ≤ ρ to conclude that
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(
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)���
2

2
≤

��V (A−A0)
��2
2
+
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1− ρ
∥E∥22 rank(V A),

which implies the statement of Theorem 3.

A.8. Proof of Lemma A.4

That Â is the minimum of (3.1) implies that 0 ∈ ∂G(Â) where G = ∥U −
V A∥2+λ∥V A∥1. Note that the subdifferential of the convex function A → ∥V A∥1
is the following set of matrices

∂∥V A∥1 = V T

{rank(V A)∑
j=1

uj(V A)vTj (V A) + PS⊥
1 (V A)WPS⊥

2 (V A) : ∥W∥∞ ≤ 1

}
,

where S1(V A) is the linear span of {uj(V A)} and S2(V A) is the linear span of

{vj(V A)}.
If Â is such that V Â ̸= U , we obtain that there exists a matrix W such that

∥W∥∞ ≤ 1 and

V T V Â− U

∥V Â− U∥2
= −λV T

{rank(V A)∑
j=1

uj(V A)vTj (V A) + PS⊥
1 (V A)WPS⊥

2 (V A)

}
.

This implies

V TPV
V Â−U

∥V Â−U∥2
=−λV TPV

{rank(V A)∑
j=1

uj(V A)vTj (V A)+PS⊥
1 (V A)WPS⊥

2 (V A)

}
.

(A.24)

Using PV V A (vj(V A)) = V A (vj(V A)) = σj(V A)uj(V A) and σj ̸= 0 we get

PV uj(V A) = uj(V A). (A.25)

For any w such that ⟨w, uj(V A)⟩ = 0 (A.25) implies that

⟨PV w, uj(V A)⟩ = ⟨w, uj(V A)⟩ = 0. (A.26)

By definition, PS⊥
1 (V A) projects on the orthogonal complement of the linear span

of {uj(V A)}. Thus, (A.26) implies that PV PS⊥
1 (V A) also projects on the subspace

orthogonal to the linear span of {uj(V A)}.
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Note that V TPV B = 0 implies PV B = 0 and we get from (A.24)

PV
V Â− U

∥V Â− U∥2
= −λ

{rank(V A)∑
j=1

uj(V A)vTj (V A) + PV

[
PS⊥

1 (V A)WPS⊥
2 (V A)

]}
.

(A.27)

Calculating the ∥ ∥22 norm of both sides on (A.27) we get that 1≥λ2rank(V Â).

When V Â = U , instead of the differential of ∥U −V A∥2 we use its subdiffential.

A.9. Proof of Lemma A.4

If V A0 = U , then we have, trivially, ∥V Â − U∥2 ≥ 0. If V A0 ̸= U , by the

convexity of function A → ∥V A− U∥2, we have
���V Â− U

���
2
− ∥V A0 − U∥2

≥

⟨
V A0 − U, V

(
Â−A0

)⟩
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⟨
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∥E∥2

√
rank(V A0) + rank(V Â)

���V
(
Â−A0

)���
2
. (A.28)

Using the bound ρ/
√
rank(V A) ≥ λ, Lemma A.4, and the triangle inequality

from (A.28) we get
���V Â− U

���
2
− ∥V A0 − U∥2

≥ −
√
1 + ρ2

λ

∥PV (E)∥∞
∥E∥2

(
∥V Â− U∥2 + ∥V A0 − U∥2

)
.

By the definition of λ we have ∥PV (E)∥∞/λ ∥E∥2 ≤ 1/3. This leads to

(
1 +

√
1 + ρ2

3

)
∥V Â− U∥2 ≥

(
1−

√
1 + ρ2

3

)
∥V A0 − U∥2,

and completes the proof of Lemma A.4.

Acknowledgements

It is a pleasure to thank A. Tsybakov for introducing us to this problem and

for illuminating discussions.

142
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Â−A0

)⟩

∥V A0 − U∥2

=

⟨
PV (E) , V

(
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