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Abstract: We propose a generalized double Pareto prior for Bayesian shrinkage es-

timation and inferences in linear models. The prior can be obtained via a scale

mixture of Laplace or normal distributions, forming a bridge between the Laplace

and Normal-Jeffreys’ priors. While it has a spike at zero like the Laplace density, it

also has a Student’s t-like tail behavior. Bayesian computation is straightforward

via a simple Gibbs sampling algorithm. We investigate the properties of the maxi-

mum a posteriori estimator, as sparse estimation plays an important role in many

problems, reveal connections with some well-established regularization procedures,

and show some asymptotic results. The performance of the prior is tested through

simulations and an application.

Key words and phrases: Heavy tails, high-dimensional data, LASSO, maximum a
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1. Introduction

There has been a great deal of work in shrinkage estimation and simultaneous

variable selection in the frequentist framework. The LASSO of Tibshirani (1996)

has drawn much attention to the area, particularly after the introduction of LARS

(Efron et al. (2004)) due to its superb computational performance. There is a

rich literature analyzing the LASSO and related approaches (Fu (1998), Knight

and Fu (2000), Fan and Li (2001), Yuan and Lin (2005), Zhao and Yu (2006),

Zou (2006), Zou and Li (2008)), with a number of articles considering asymptotic

properties.

Bayesian approaches to the same problem became popular with the works of

Tipping (2001) and Figueiredo (2003). By expressing Student’s t priors for basis

coefficients as scale mixtures of normals (West (1987)), and relying on type II

maximum likelihood estimation (Berger (1985)), Tipping (2001) developed the

relevance vector machine for sparse estimation in kernel regression. In this set-

ting, however, exact sparsity comes with the price of forfeiting propriety of the

posterior by driving the scale parameter of the Student’s t distribution toward

zero. In fact, driving both the scale parameter and the degrees of freedom to

zero yields the so-called Normal-Jeffreys’ prior, π(θ) ∝ 1/|θ|. The name emerges

due to the fact that the hierarchy follows as θ ∼ N(0, τ), π(τ) ∝ 1/τ , where the
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latter is the Jeffreys’ prior on the prior variance of θ. Figueiredo (2003) pro-

posed an expectation-maximization algorithm for maximum a posteriori estima-

tion under Laplace and Normal-Jeffreys’ priors, with estimates under the Laplace

corresponding to the LASSO. The Normal-Jeffreys’ prior leads to substantially

improved performance with finite samples due to the property of strongly shrink-

ing small coefficients to zero while minimally shrinking large coefficients due to

the heavy tails; however, it has no meaning from an inferential aspect as it leads

to an improper posterior.

A Bayesian LASSO was proposed by Park and Casella (2008) and Hans

(2009). However, these procedures inherit the problem of over-shrinking large

coefficients due to the relatively light tails of the Laplace prior. Strawderman-

Berger priors (Strawderman (1971), Berger (1980)) have some desirable proper-

ties yet lack a simple analytic form. Recently proposed priors have been designed

to have high density near zero and heavy tails without the impropriety problem of

Normal-Jeffreys. The horseshoe prior of Carvalho, Polson,and Scott (2009, 2010)

is induced through a carefully-specified mixture of normals, leading to such de-

sirable properties as an infinite spike at zero and very heavy tails. They studied

sparse shrinkage estimation properties of the horseshoe in a normal means prob-

lem. Griffin and Brown (2007, 2010) proposed an alternative class of hierarchical

priors for shrinkage with some similarities to the prior we propose, but it lacks a

simple analytic form that facilitates the study of some properties.

There is a need for alternative shrinkage priors that lead to sparse point

estimates if desired, do not over-shrink coefficients that are not close to zero,

facilitate straightforward computation even in large p cases, and result in a joint

posterior distribution that does a good job of quantifying uncertainty. We pro-

pose the generalized double Pareto prior which independently finds mention in

Cevher (2009). It has a simple analytic form, yields a proper posterior, and

possesses such appealing properties as a spike at zero, Student’s t-like tails, and

a simple characterization as a scale mixture of normals that leads to a straight-

forward Gibbs sampler for posterior inferences. We consider both fully Bayesian

and frequentist penalized likelihood approaches based on this prior. We show

that the induced penalty in the regularization framework yields a consistent

thresholding rule having the continuity property in the orthogonal case, with

a simple expectation-maximization algorithm described for sparse estimation in

non-orthogonal cases. In another independent work motivated by applications

to genome wide associations studies, Lee et al. (2012) consider a generalized t

prior (McDonald and Newey (1988)) that includes the generalized double Pareto

as a special case. Similarities to previous work are limited and our contributions

beyond them are (i) the formal introduction of a generalized Pareto density,

thresholded and folded at zero, as a shrinkage prior in Bayesian analysis, (ii)
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the scale mixture representation of the generalized double Pareto in Proposition

1 which is central to our work, (iii) its connection to the Laplace and Normal-

Jeffreys’ priors as limiting cases in Proposition 2, (iv) the resulting fully condi-

tional posteriors in a linear regression setting along with a simple Gibbs sampling

procedure, (v) a detailed discussion on the hyper-parameters α and η and their

treatment, along with the incorporation of a griddy sampling scheme into the

Gibbs sampler, (vi) a detailed analysis of the induced penalty by the generalized

double Pareto prior and the properties of the resulting thresholding rule, (vii)

an explicit analytic form for the maximum a posteriori estimator in orthogonal

cases, (viii) an expectation-maximization procedure to obtain the maximum a

posteriori estimate in non-orthogonal cases using the normal mixture representa-

tion, (ix) the one-step estimator (Zou and Li (2008)) resulting from the Laplace

mixture representation, revealing the connection of the resulting procedure to

the adaptive LASSO of Zou (2006), and (x) the oracle properties of the resulting

estimators.

2. Generalized Double Pareto Prior

The generalized double Pareto density is

f(θ|ξ, α) = 1

2ξ

(
1 +

|θ|
αξ

)−(α+1)

, (2.1)

where ξ > 0 is a scale parameter and α > 0 is a shape parameter. In contrast to

(2.1), the generalized Pareto density of Pickands (1975) is parametrized in terms

of a location parameter µ ∈ R, a scale parameter ξ > 0, and a shape parameter

α ∈ R as

f(θ | ξ, α, µ) = 1

ξ

(
1 +

θ − µ

αξ

)−(α+1)

, (2.2)

with θ ≥ µ for α > 0 and µ ≤ θ ≤ µ− ξα for α < 0. The mean and variance for

the generalized Pareto distribution are E(θ) = µ+ ξ/(1− 1/α) for α /∈ [0, 1] and

V(θ) = ξ2(1 − 1/α)−2(1 − 2/α)−1 for α /∈ [0, 2]. If we let µ = 0, (2.2) becomes

an exponential density as α → ∞ with mean ξ and variance ξ2.

To modify the generalized Pareto density to be a shrinkage prior, we let µ = 0

and reflect the positive part about the origin, assuming α > 0, for a density that

is symmetric about zero. The mean and variance for the generalized double

Pareto distribution are E(θ) = 0 for α > 1 and V(θ) = 2ξ2α2(α− 1)−1(α− 2)−1

for α > 2. The dispersion is controlled by ξ and α, with α controlling the tail

heaviness and α = 1 corresponding to Cauchy-like tails and no finite moments.

Figure 1 compares the density in (2.1) to Cauchy and Laplace densities for

the special case ξ = α = 1, so that f(θ) = 1/{2(1 + |θ|)2}. We refer to this
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form as the standard double Pareto. Near zero, the standard double Pareto

resembles the Laplace density, suggesting similar sparse shrinkage properties of

small coefficients in maximum a posteriori estimation. It also has Cauchy-like

tails, which is appealing in avoiding over-shrinkage away from the origin. This is

illustrated in Figure 1(a). Figure 1(b) illustrates how the density in (2.1) changes

for different values of ξ and α.

Prior (2.1) can be represented as a scale mixture of normal distributions lead-

ing to computational simplifications. As shorthand notation, let θ ∼ GDP(ξ, α)

denote that θ has density (2.1).

Proposition 1. Let θ ∼ N(0, τ), τ ∼ Exp(λ2/2), and λ ∼ Ga(α, η), where α > 0

and η > 0. The resulting marginal density for θ is GDP(ξ = η/α, α).

Proposition 1 reveals a relationship between the prior in (2.1) and the prior

of Griffin and Brown (2007), with the difference being that Griffin and Brown

(2007) place a mixing distribution on λ2 leading to a marginal density on θ with

no simple analytic form.

In Proposition 2 we show that the prior in (2.1) forms a bridge between two

limiting cases – Laplace and Normal-Jeffreys’ priors.

Proposition 2. Given the representation in Proposition 1, θ ∼ GDP(ξ = η/α, α)

implies

1. f(θ) ∝ 1/|θ| for α = 0 and η = 0,

2. f(θ|λ′) = (λ′/2) exp (−λ′|θ|) for α → ∞, α/η = λ′ and 0 < λ′ < ∞.

Proof. For the first item, setting α = η = 0 implies placing a Jeffreys’ prior

on λ, π(λ) ∝ 1/λ. Integration over λ yields π(τ) ∝ 1/τ , which implies the

Normal-Jeffreys’ prior on θ. For the second item, notice that π(λ) = δ(λ−λ′),

where δ(·) denotes the Dirac delta function, since limα→∞ limα/η→λ′ E(λ) = λ′

and limα→∞ limα/η→λ′ V(λ) = 0. Thus,
∫∞
0 (λ/2) exp (−λ|θ|)δ(dλ) = (λ′/2)

exp (−λ′|θ|).

As noted in Polson and Scott (2010), if π(τ) has exponential or lighter tails,

observations are shrunk towards zero by some non-diminishing amount, regard-

less of size. This phenomenon is well-understood and commonly observed in

estimation under the Laplace prior, where an exponential density mixes a nor-

mal density. The higher-level mixing (over λ) in Proposition 1 allows π(τ) to

have heavier tails, remedying the unwanted bias.

As α grows, the density becomes lighter tailed, more peaked and the variance

becomes smaller, while as η grows, the density becomes flatter and the variance

increases. Hence if we increase α, we may cause unwanted bias for large signals,

though causing stronger shrinkage for noise-like signals; if we increase η we may
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(a) (b)

Figure 1. (a) Probability density functions for standard double Pareto (solid
line), standard Cauchy (dashed line) and Laplace (dot-dash line) (λ = 1)
distributions. (b) Probability density functions for the generalized double
Pareto with (ξ, α) values of (1, 1) (solid line), (0.5, 1) (dashed line), (1, 3)
(long-dashed line), and (3, 1) (dot-dash line).

lose the ability to shrink noise-like signals, as the density is not as pronounced

around zero; and finally, if we increase α and η at the same rate, the variance

remains constant but the tails become lighter, converging to a Laplace density

in the limit. This leads to over-shrinking of coefficients that are away from

zero. As a typical default specification for the hyper-parameters, one can take

α = η = 1. This choice leads to Cauchy-like tail behavior, which is well-known

to have desirable Bayesian robustness properties.

To motivate this default choice, we assess the behavior of the prior shrinkage

factor κ = 1/(1 + τ) ∈ (0, 1), where θ ∼ N(0, τ) is the parameter of interest

(Carvalho, Polson,and Scott (2010)). As κ → 0, the prior imposes no shrinkage,

while as κ → 1 it has a strong pull towards zero. The generalized double Pareto

distribution implies a prior π(κ) on κ upon integration over λ in Proposition 1.

For the standard double Pareto, this is

π(κ) =
1

2(1− κ)2

√π exp {κ/2(1− κ)}Erfc
{√

κ/2(1− κ)
}

√
2κ(1− κ)

− 1

 ,
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Figure 2. Prior density of κ implied by the standard double Pareto prior
(solid line), Strawderman–Berger prior (dashed line), horseshoe prior (dot-
dash line) and standard Cauchy prior (dotted line).

(a) (b)

Figure 3. Prior density of κ (a) when α = 1 and η = 0.5 (dashed), η = 1
(solid), η = 2 (dot-dash) (b) when η = 1 and α = 1 (solid), α = 2 (dashed),
α = 3 (dot-dash).

where Erfc(·) denotes the complementary error function. In Figure 2, we com-

pare π(κ) under the standard double Pareto, Strawderman-Berger, horseshoe,

and Cauchy priors, which may all be considered default choices. The priors be-

have similarly for κ ≈ 0, implying similar tail behavior. The behavior of π(κ) for

κ ≈ 1 governs the strength of shrinkage of small signals. As κ → 1, π(κ) tends

towards zero for the Cauchy, implying weak shrinkage, while π(κ) is unbounded

for the horseshoe, suggesting a strong pull towards zero for small signals. The

Strawderman-Berger and standard double Pareto priors are a compromise be-

tween these extremes, with π(κ) bounded for κ → 1 in both cases. The standard

double Pareto assigns higher density close to one than the Strawderman-Berger

prior, and has the advantage of a simple analytic form over the Strawderman-

Berger and horseshoe priors.

Of course it is best to adjust α and η according to any available prior infor-

mation pertaining to the sparsity structure of the estimated vector. For general
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α > 0 and η > 0 values, the prior on κ is

π(κ|α, η) = 2α/2−1ηακ(α−1)/2(1− κ)−(α+3)/2

Γ(α)

×

{(
1

κ
− 1

)1/2

Γ
(α
2
+ 1
)

1F1

(
α

2
+ 1,

1

2
,

η2κ

2(1− κ)

)
−
√
2ηΓ

(
α+ 3

2

)
1F1

(
α+ 3

2
,
3

2
,

η2κ

2(1− κ)

)}
, (2.3)

where 1F1 denotes the confluent hypergeometric function. Note that π(κ|α, η)
takes a “horseshoe” shape when α = η = 0. Carvalho, Polson,and Scott (2010)

show that π(κ) ∝ κ−1(1− κ)−1 implies a Normal-Jeffreys’ prior on θ, which can

also be observed by setting α = η = 0 in (2.3) in conjunction with Proposition

1. Hence π(κ|α, η) is unbounded at κ = 1 forcing π(θ|α, η) to be unbounded at

0 only if η = 0. The effects of α and η are now observed with better clarity from

Figure 3. As η increases, less and less density is assigned to the neighborhood of

κ ≈ 1, repressing shrinkage. On the other hand, increasing α values place more

and more density in the neighborhood of κ ≈ 1 promoting further shrinkage.

This notion is later reinforced by Proposition 3, such that the prior induces a

thresholding rule under maximum a posteriori estimation if η < 2
√
α+ 1. Hence,

we need to carefully pick these hyper-parameters, in particular α, as there is a

trade-off between the magnitude of shrinkage and tail robustness.

3. Bayesian Inference in Linear Models

Consider the linear regression model y = Xβ+ϵ, where y is an n-dimensional

vector of responses, X is the n × p design matrix and ϵ ∼ N
(
0, σ2In

)
. Letting

βj |σ ∼ GDP(ξ = ση/α, α) independently for j = 1, . . . , p,

π(β|σ) =
p∏

j=1

1

2ση/α

(
1 +

1

α

|βj |
ση/α

)−(α+1)

. (3.1)

From Proposition 1, this prior is equivalent to βj |σ ∼ N(0, σ2τj), with τj ∼
Exp(λ2

j/2) and λj ∼ Ga(α, η). We place the Jeffreys’ prior on the error variance,

π(σ) ∝ 1/σ.

Using the scale mixture of normals representation, we obtain a simple data

augmentation Gibbs sampler having the conditional posteriors (β|σ2,T,y) ∼
N{(X′X + T−1)−1X′y, σ2

(
X′X+T−1

)−1}, (σ2|β,T,y) ∼ IG{(n + p)/2, (y −
Xβ)′(y−Xβ)/2+β′T−1β/2}, (λj |βj , σ2) ∼ Ga(α+1, |βj |/σ+η), (τ−1

j |βj , λj , σ
2)

∼ Inv-Gauss{µ = (λ2
jσ

2/β2
j )

1/2, ρ = λ2}, where T = diag(τ1, . . . , τp) and
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Inv-Gauss denotes the inverse Gaussian distribution with location and scale pa-

rameters µ and ρ. In our experience, this Gibbs sampler is efficient with fast

rates of convergence and mixing.

In the absence of any prior information on α and η, one may either set them

to their default values or, as an alternative, choose hyper-priors to allow the

data to inform about the values of α and η. We use π(α) = 1/(1 + α)2 and

π(η) = 1/(1+ η)2 to correspond to generalized Pareto hyper-priors with location

parameter 0, scale parameter 1 and shape parameter 1. The median value of the

resulting distribution for α and η is 1, centered at the default choices suggested

earlier, while the mean and variance do not exist.

For sampling purposes, let a = 1/(1+α) and e = 1/(1+ η). These transfor-

mations suggest a uniform prior on a and e in (0, 1) given the generalized Pareto

priors on α and η. Consequently, the conditional posteriors for a and e are

π(a|β, η) ∝
(
1− a

a

)p p∏
j=1

(
1 +

|βj |
ση

)−1/a

,

π(e|β, α) ∝
(

e

1− e

)p p∏
j=1

{
1 + e

|βj |
σ(1− e)

}−(α+1)

.

We propose the embedded griddy Gibbs (Ritter and Tanner (1992)) sampling

scheme:

(i) Form a grid of m points a(1), . . . , a(m) in the interval (0, 1).

(ii) Calculate w(k) = π(a(k)|β, η).
(iii)Normalize the weights, w

(k)
N = w(k)/

∑m
k=1w

(k).

(iv)Draw a sample from the set {a(1), . . . , a(m)} with probabilities {w(1)
N , . . .,

w
(m)
N }, and set α = 1/a− 1 to be used at the current iteration of the Gibbs

sampler.

Repeat the same procedure for e and obtain a random draw for η. We also

experiment with fixing η as 1 while treating α as unknown. In this case, the

prior variance of β|σ2 is determined by α.

In what follows we establish the ties between the Bayesian approach we

have taken and some frequentist regularization approaches. The simple analytic

structure of the generalized double Pareto prior facilitates analyses while its

hierarchical formulation leads to straight-forward computation.

4. Sparse Maximum a Posteriori Estimation

The generalized double Pareto distribution can be used not only as a prior in

a Bayesian analysis, but also to induce a sparsity-favoring penalty in regularized
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least squares:

β̃ = argmin
β

 1

2σ2
∥y −Xβ∥2 +

p∑
j=1

p(|βj |)

 , (4.1)

where X is initially assumed to have orthonormal columns and p(·) denotes the
penalty function implied by the prior on the regression coefficients. Following
Fan and Li (2001), let β̂ = X′y, and denote the minimization problem in (4.1)
for a component of β as

β̃j = argmin
βj

{
1

2

(
β̂j − βj

)2
+ σ2p(|βj |)

}
, (4.2)

with the penalty function p(|βj |) = (α+1) log (ση + |βj |) that simply retains the
term in − log π(βj |α, η) that depends on βj .

From Fan and Li (2001), a good penalty function should result in an estima-
tor that is (i) nearly unbiased when the true unknown parameter is large, (ii) a
thresholding rule that automatically sets small estimated coefficients to zero to
reduce model complexity, and (iii) continuous in data (β̂j) to avoid instability in
model prediction. In the following, we show that the penalty function induced
by prior (3.1) may achieve these properties.

4.1. Near-unbiasedness

The first order derivative of (4.2) with respect to βj is sgn(βj){|βj |
+σ2p′(|βj |)} − β̂j = sgn(βj){|βj |+ σ2(α+ 1)/(ση + |βj |)} − β̂j , where p′(|βj |) =
∂p(|βj |)/∂|βj | is the term causing bias in estimation. Although it is appealing to
introduce bias in small coefficients to reduce the mean squared error and model
complexity, it is also desirable to limit the shrinkage of large coefficients with
p′(|βj |) → 0 as |βj | → ∞. In addition, it is desirable for p′(|βj |) to approach zero
rapidly, implying shrinkage, and the associated introduction of bias rapidly de-
creases as coefficients get further away from zero. In fact, the rate of convergence
of p′(|βj |) to zero is of the same order under the generalized double Pareto and
Normal-Jeffreys’ priors, with lim|βj |→∞{(α+1)/(ση+ |βj |)}/{1/|βj |} = α+1. As
α controls the tail heaviness in the generalized double Pareto prior, with lighter
tails for larger values of α, convergence of the ratio to (α+1) is intuitive. In the
case of LASSO, the bias, p′(|βj |), remains constant regardless of |βj |, which can
also be observed in Figure 4(b).

4.2. Sparsity

As noted in Fan and Li (2001), a sufficient condition for the resulting estima-
tor to be a thresholding rule is that the minimum of the function |βj |+σ2p′(|βj |)
is positive.
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Proposition 3. Under the formulation in Proposition 1, prior (3.1) implies a

penalty yielding an estimator that is a thresholding rule if η < 2
√
α+ 1.

This result is obtained by finding the minimum of |βj |+σ2p′(|βj |) and taking

it greater than zero. The thresholding is a direct consequence of the fact that

when |β̂j | < minβj
{|βj |+σ2(α+1)/(ση+ |βj |)}, which requires that minβj

{|βj |+
σ2p′(|βj |)} > 0, the derivative of (4.2) is positive for all positive βj and negative

for all negative βj . In this case, the penalized least squares estimator is zero.

When |β̂j | > minβj
{|βj | + σ2(α + 1)/(ση + |βj |)}, two roots may exist. The

larger one (in absolute value) or zero is the penalized least squares estimator. To

elaborate more on this, the root(s) may exist for sgn(βj){|βj |+σ2p′(|βj |)}−β̂j = 0

only when |β̂j | > minβj
{|βj | + σ2p′(|βj |)}. A helpful illustration is Figure 3 of

Fan and Li (2001).

4.3. Continuity

Continuity in data is important if an estimator is to avoid instabilities in

prediction. As in Breiman (1996), “a regularization procedure is unstable if

a small change in data can make large changes in the regularized estimator”.

Discontinuities in the thresholding rule may result in inclusion or dismissal of a

signal with minor changes in the data used (see Figure 4(b)). Hard-thresholding,

the “usual” variable selection, is an unstable procedure, while ridge and LASSO

estimates are considered stable.

A necessary and sufficient condition for continuity is that the minimum of

the function |βj | + σ2p′(|βj |) is at zero (Fan and Li (2001)). For our prior,

the minimum of this function is obtained at |βj | = σ(
√
α+ 1 − η). Therefore

η =
√
α+ 1 yields an estimator with this property.

Proposition 4. Under the formulation in Proposition 1, a subfamily of prior

(2.1) with η =
√
α+ 1 yields an estimator with the continuity property.

In this particular case, the penalized likelihood estimator is set to zero if

|β̂j | ≤ σ
√
α+ 1. When |β̂j | > σ

√
α+ 1,

β̃j =


β̂j−σ

√
α+1+{β̂2

j+2β̂jσ
√
α+1−3σ2(α+1)}1/2

2 β̂j > 0,

β̂j+σ
√
α+1−{β̂2

j−2β̂jσ
√
α+1−3σ2(α+1)}1/2

2 β̂j < 0.

(4.3)

As can be observed in Figure 4(a), ensuring continuity by letting η =
√
α+ 1

creates a trade-off between sparsity and tail-robustness. As the thresholding

region becomes wider, the larger values are penalized further, yet not nearly at

the level of LASSO.
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(a) (b)

Figure 4. Thresholding functions for (a) generalized double Pareto prior
with η =

√
α+ 1, α = {1, 3, 7}, (b) Hard thresholding, generalized double

Pareto prior with η = 2, α = 3 and LASSO with σ = 1.

4.4. Maximum a posteriori estimation via expectation-maximization

We assume a normal likelihood to formulate the procedure for non-orthogonal
linear regression. Estimation is carried out via the expectation-maximization
(EM) algorithm.

4.4.1. Exploiting the normal mixture representation

We take the expectation of the log-posterior with respect to the conditional
posterior distributions of (τ−1

j |β(k)
j , λj , σ

2(k)) and (λj |β(k)
j , σ2(k)) at the kth step,

then maximize with respect to βj and σ2 to get the values for the (k+1)th step.

• E-step:

−
(
n+ p

2
+ 1

)
log σ2 − (y −Xβ)′ (y −Xβ)

2σ2

− 1

2σ2

p∑
j=1

β2
j

{
(α+ 1)σ2(k)

|β(k)
j |(|β(k)

j |+ σ(k)η)

}
︸ ︷︷ ︸

d
(k)
j

.

• M-step: Letting D(k) = diag(d
(k)
1 , . . . , d

(k)
p ), we have

β(k+1) = (X′X+D(k))−1X′y,

σ2(k+1) =
(y −Xβ(k+1))′(y −Xβ(k+1)) + β(k+1)′D(k)β(k+1)

n+ p+ 2
.
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We refer to this estimator as GDP(MAP).

4.4.2. Exploiting the Laplace mixture representation and the one-

step estimator

In the proof of Proposition 1, the integration over τ leads to a Laplace

mixture representation of the prior. Since the mixing distribution of the Laplace

is a known distribution the required expectation is obtained with ease, resulting

in the maximization step,

β(k+1) =

argmax
β

− 1

2σ2(k)
(y −Xβ)′ (y −Xβ)− 1

σ(k)

p∑
j=1

|βj |

(
α+ 1

|β(k)
j |/σ(k) + η

) ,

(4.4)

σ2(k+1) =
b2 − 2ac−

√
b4 − 4acb2

2a2
,

where a = −(n+ p+ 2), b = (α + 1)
∑

j |β
(k+1)
j |/(|β(k)

j |/σ(k) + η), and c = (y −
Xβ(k+1))′(y − Xβ(k+1)). The component-specific multiplier on |βj | is obtained

from the expectation of λj with respect to its conditional posterior distribution,

π(λj |βj , σ2). Similar results to (4.4) are in Candes, Wakin, and Boyd (2008),

Cevher (2009), and Garrigues (2009).

An intuitive relationship to the adaptive LASSO of Zou (2006) and the one-

step sparse estimator of Zou and Li (2008) can be seen via the Laplace mixture

representation. As a computationally fast alternative to estimating the exact

mode via the above EM algorithm, we can obtain a “one-step estimator” and

exploit the LARS algorithm as in Zou and Li (2008). The one-step estimator is

β(1) = argmin
β

(y −Xβ)′ (y −Xβ) + α†
p∑

j=1

|βj |
|β(0)

j |+ η†

 , (4.5)

with α† = 2σ2(0)(α + 1) and η† = σ(0)η. This estimator resembles the adaptive

LASSO. The LARS algorithm can be used to obtain β(1) very quickly. We refer

to this estimator as GDP(OS).

Remark 1. For η† = 0, the GDP(OS) solution path for varying α† is identical

to the adaptive LASSO solution path with γ = 1 (see (4) in Zou (2006)) using

identical β(0).

Remark 2. GDP(OS) forms a bridge between the LASSO and the adaptive

LASSO: as η† → ∞ and α†/η† → λ† < ∞, GDP(OS) gives the LASSO solution

with penalty parameter λ†.
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Figure 5. Number of iterations until convergence of the EM algorithms under
normal and Laplace representations.

We derive the GDP(OS) estimator only to reveal a close connection with the

adaptive LASSO of Zou (2006) and do not use it in our experiments.

4.4.3. Normal vs. Laplace representations in computation

As pointed out by an anonymous referee, it is appropriate to compare the

convergence behavior of the EM algorithms that exploit different mixture rep-

resentations. We generated n = {200, 400, 600, 800, 1, 000} observations from

yi = x′
iβ

∗ + ϵi, where the xij were independent standard normals for p =

{20, 40, 60, 80, 100}, ϵi ∼ N(0, σ2), and σ = 3. We set the first p/4 components

of β∗ to be 1 and the rest to 0. For each (n, p) combination we simulated 100

data sets and ran the EM algorithms obtained from normal and Laplace scale

mixture representations. Figure 5 illustrates the number of iterations taken by

the two algorithms until ∥β(k+1) − β(k)∥2 < 10−6. As expected, the convergence

under the Laplace mixture representation was much faster with the intermediary

mixing parameter τj integrated out rather than using the expectation step in the

EM algorithm.

4.5. Oracle properties

Following Zou (2006) and Zou and Li (2008), we show that the GDP(MAP)

and GDP(OS) estimators possess oracle properties. Relaxing the normality as-

sumption on the error term leads to two conditions for Theorem 2 and Theorem

3.

(A1) yi = xiβ
∗ + ϵi where ϵ1, . . . , ϵn are independent and identically distributed

with mean 0 and variance σ2.

(A2) (1/n)X′X → C, where C is a positive definite matrix.
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In what follows, A = {j : β∗
j ̸= 0, j = 1, . . . , p}, βA retains the entries of β

indexed by A, and CA retains the rows and columns of C indexed by A.

Theorem 1. Let

β(∞)
n = argmin

β

{
(y −Xβ)′ (y −Xβ) + α′

n

p∑
j=1

log
(
|βj |+ η′n

)}
denote the GDP(MAP) estimator, where α′

n = 2σ2(αn + 1) and η′n = σηn. Let

An = {j : β
(∞)
nj ̸= 0, j = 1, . . . , p}. Suppose that α′

n → ∞, α′
n/

√
n → 0 and,

η′n
√
n → c < ∞. Then β

(∞)
n is

1. consistent in variable selection in that limn→∞ P(An = A) = 1;

2. asymptotically normal with
√
n(β

(∞)
nA − β∗

A)
d→N(0, σ2C−1

A ).

Remark 3. More generally, the above results hold if α′
n/(

√
nη′n) → ∞ and

α′
n/

√
n → 0.

Theorem 2. Let β
(1)
n denote the GDP(OS) estimator in (4.5) and An = {j :

β
(1)
nj ̸= 0, j = 1, . . . , p}. Suppose that α†

n → ∞, α†
n/

√
n → 0, and η†n

√
n → c < ∞.

Then β
(1)
n is

1. consistent in variable selection in that limn→∞ P(An = A) = 1;

2. asymptotically normal with
√
n(β

(1)
nA − β∗

A)
d→N(0, σ2C−1

A ).

The proofs are deferred to Section 8.

5. Experiments

5.1. Simulation

In this section, we compare the proposed estimators to the posterior means

obtained under the normal, Laplace, and horseshoe priors, to the Bayesian model

averaged (BMA) estimator, as well as to the sparse estimates resulting from

LASSO (Tibshirani (1996)) and SCAD (Fan and Li (2001)). GDP(PM) and

GDP(MAP) denote the posterior mean and the MAP estimates, respectively,

under the generalized double Pareto prior. Hyper-parameter values are provided

in footnotes of Tables 1 and 2 when fixed in advance and are otherwise treated

as random with the priors specified in Section 3. When not fixed, we first obtain

the posterior means of the hyper-parameters from an initial Bayesian analysis,

then use them in the calculation of the MAP estimates.

We generated n = {50, 400} observations from yi = x′
iβ

∗ + ϵi, where the xij
were standard normals with Cov(xj , xj′) = 0.5|j−j′|, ϵi ∼ N(0, σ2), and σ = 3.

We used the following β∗ configurations:
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Model 1: 5 randomly chosen components of β∗ set to 1 and the rest to 0.

Model 2: 5 randomly chosen components of β∗ set to 3 and the rest to 0.

Model 3: 10 randomly chosen components of β∗ set to 1 and the rest to 0.

Model 4: 10 randomly chosen components of β∗ set to 3 and the rest to 0.

Model 5: β∗ = (0.85, . . . , 0.85)′.

In our experiments y and the columns of X were centered and the columns

of X scaled to have unit length. For the calculation of competing estimators we

used lars (Hastie and Efron (2011)), SIS (Fan et al. (2010)), monomvn (Gramacy

(2010)) and BAS (Clyde and Littman (2005), Clyde, Ghosh, and Littman (2010))

packages in R. We mainly followed the default settings provided by the packages.

Under the normal prior, the so-called “ridge” parameter was given an inverse

gamma prior with shape and scale parameters 10−3. Under the Laplace prior,

as a default choice, a gamma prior was placed on the “LASSO parameter” λ2,

as given in (6) of Park and Casella (2008), with shape and rate parameters 2

and 0.1, respectively. Under the horseshoe prior, the monomvn package uses the

hierarchy given in Section 1.1 of Carvalho, Polson,and Scott (2010). For BMA,

we used the default settings of the BAS package that employs the Zellner-Siow

prior given in Section 3.1 of Liang et al. (2008). The tuning for LASSO and

SCAD were carried out by the criteria given in Yuan and Lin (2005) and Wang,

Li, and Tsai (2007), respectively, avoiding cross-validation.

100 data sets were generated for each case. In Table 1, we report the median

model error. Model error was calculated as (β∗ − β̂)′C(β∗ − β̂), where C is the

variance-covariance matrix that generated X and β̂ denotes the estimator in use.

The values in the subscripts give the bootstrap standard error of the median

model error values obtained. The bootstrap standard error was calculated by

generating 500 bootstrap samples from 100 model error values, finding the median

model error for each case, and then calculating the standard error for it. Under

each model, the best three performances are boldfaced in the tables.

GDP(PM) estimates showed a similar performance to that of horseshoe under

sparse setups. GDP(PM) (with α and η unknown) also showed great flexibility in

adapting to dense models with small signals. GDP(MAP) estimates performed

similarly to SCAD and much better than LASSO, particularly so with increasing

sparsity, signal and/or sample size. The GDP(PM) and GDP(MAP) calculations

are straightforward and computationally inexpensive due to the normal (and

Laplace) scale mixture representation used. Being able to use a simple Gibbs

sampler (especially when α = η = 1) makes the procedure attractive for the

average user.

Letting α = η = 1 may be somewhat restrictive if the underlying model is

very dense or very sparse, but in the cases we considered, it performed compa-

rably to others and we believe that it constitutes a good default prior similar to
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Table 1. Model error comparisons.

n = 50
Method Model 1 Model 2 Model 3 Model 4 Model 5
Normal 2.2990.085 4.8790.263 2.5850.134 4.9720.385 2.8860.150

Laplace 2.6340.137 3.6620.233 2.8370.126 4.3260.211 3.4580.120

Horseshoe 2.2640.086 2.3160.167 3.2050.140 3.9290.218 4.4090.130
BMA 2.4510.123 1.6470.126 4.0430.233 3.0620.194 6.0150.301
GDP(PM)

1
2.3060.114 2.4050.192 3.1930.215 4.1230.304 4.2830.142

GDP(PM)
2

2.3030.095 2.3090.195 3.1240.153 3.9100.237 4.4510.109
GDP(PM) 2.2710.085 2.6060.167 3.0470.147 4.3480.171 3.6400.134

GDP(MAP)
1

3.4140.148 1.6190.150 5.6050.298 2.9700.168 8.7690.403
GDP(MAP)

2
4.2500.354 1.6180.153 6.3310.300 3.0400.163 9.3080.377

GDP(MAP) 4.8760.355 2.0910.182 4.2990.222 3.7400.284 5.7240.177
LASSO 2.1830.124 2.6180.152 3.2580.194 3.5310.172 5.6460.229
SCAD 3.7320.214 2.1320.229 5.2490.239 3.1790.193 8.5050.387

n = 400
Normal 0.3950.014 0.4550.019 0.4260.016 0.4550.024 0.4120.013

Laplace 0.3150.016 0.3740.014 0.3880.016 0.4220.015 0.4570.014

Horseshoe 0.2190.016 0.2050.010 0.3410.014 0.3460.009 0.5140.023
BMA 0.1510.011 0.1250.005 0.2400.016 0.2110.009 0.6460.037
GDP(PM)

1
0.2330.016 0.2060.009 0.3260.015 0.2840.014 0.6250.031

GDP(PM)
2

0.2280.017 0.2150.009 0.3320.013 0.3030.010 0.5790.027
GDP(PM) 0.2480.017 0.1820.007 0.3770.016 0.3620.012 0.4660.016

GDP(MAP)
1

0.1540.014 0.1110.011 0.2860.016 0.2100.011 0.7390.043
GDP(MAP)

2
0.1610.013 0.1110.010 0.2840.016 0.2100.009 0.6520.035

GDP(MAP) 0.1850.017 0.1190.010 0.3260.016 0.3360.010 0.4780.020
LASSO 0.2510.014 0.2760.014 0.3390.020 0.3480.011 0.4850.021
SCAD 0.1210.010 0.1180.008 0.2330.011 0.2060.017 0.4690.019
1α = 1, η = 1; 2η = 1

standard Cauchy with the added advantage of thresholding ability. Although we
do not take up p ≫ n cases in this paper, in such situations much larger values
of α would need to be chosen to adjust for multiplicity.

5.2. Inferences on hyper-parameters

Here we take a closer look at the inferences on the hyper-parameters obtained
from an individual data set for Models 2 and 5 from Section 5.1. This gives us
some insight into how α and η are inferred with changing sample size and sparsity
structure. Note that GDP(PM)2 is more restrictive than GDP(PM) as η is fixed,
treating only α as unknown. Figure 6 gives the marginal posteriors of α and η
in cases of GDP(PM)2 and GDP(PM) as described in Section 5.1, while Table 2
reports the posterior means for α and η, as well as model error (ME) performance
(as calculated in Section 5.1) on the particular data set used. We clearly observe
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Table 2. Posterior means of the hyper-parameters and the resulting model error.

n = 50 n = 400

GDP(PM) GDP(PM)
2

GDP(PM) GDP(PM)
2

Model 2 α 2.464 1.165 0.688 0.870
η 4.181 – 0.614
ME 2.443 2.219 0.149 0.181

Model 5 α 5.262 1.200 9.400 0.560
η 9.476 – 51.735 –
ME 6.290 7.019 0.518 0.614

2η = 1

the adaptive nature and higher flexibility of GDP(PM) moving from a sparse to

a dense model with a big increase, particularly in η, flattening the prior on β.

There is not quite as much wiggle room in the case of GDP(PM)2. All it can do

is to drive α smaller to allow heavier tails to accommodate a dense structure. As

observed in Table 1, however, GDP(PM)2 performs comparably in sparse cases.

6. Data Example

We consider the ozone data analyzed by Breiman and Friedman (1985) and

by Casella and Moreno (2006). The original data set contains 13 variables and

366 observations. The modeled response is the daily maximum one-hour averaged

ozone reading in Los Angeles over 330 days in 1976. There are p = 12 predictors

considered and deleting incomplete observations leaves n = 203 observations.

For validation, the data were split into a training set containing 180 observations

and a test set containing 23 observations. We considered models including main

effects, quadratic, and two-way interaction terms resulting in 290 possible subsets.

The complex correlation structure of the data is illustrated in Figure 7.

Figure 8 summarizes the performance of the proposed estimators and their

competitors. Median values for R2
test and the ±2 standard error intervals were

obtained by running the methods on 100 different random training-test splits.

Standard errors were computed via bootstrapping the medians 500 times.

The median number of predictors retained in the model by all three GDP

(MAP) estimates was only 4 while it was 14 and 9 for LASSO and SCAD. Hence

GDP(MAP) promoted much sparser models. In terms of prediction, GDP(PM)1

yielded the second best results after BMA, with GDP(PM)2, GDP(PM), and the

horseshoe estimator all having somewhat worse performance. These shrinkage

priors are designed to mimic model averaging behavior, so we expected to obtain

results that were competitive with, but not better than, BMA. The improved per-

formance for GDP(PM)1 may be attributed to the use of default hyper-parameter

values that were fixed in advance at values thought to produce good performance
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Figure 6. Inferences for (a) GDP(PM) for n = 50 under Model 2, (b)

GDP(PM)
2
for n = 50 under Model 2, (c) GDP(PM) for n = 400 under

Model 2, (b) GDP(PM)
2
for n = 400 under Model 2, (e) GDP(PM) for

n = 50 under Model 5, (f) GDP(PM)
2
for n = 50 under Model 5, (g)

GDP(PM) for n = 400 under Model 5, (h) GDP(PM)
2
for n = 400 under

Model 2 .
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Figure 7. The correlation structure of the Ozone data.

Figure 8. Out-of-sample performance comparisons for Ozone data. (×)
denotes the median value for R2

test while the lines represent the ±2 standard
error regions. 1α = 1, η = 1; 2η = 1.

in sparse settings. Treating the hyper-parameters as unknown is appealing from

the standpoint of flexibility, but in practice the data may not inform sufficiently

about their values to outperform a good default choice. GDP(MAP)1 and SCAD

both performed within the standard error range of LASSO, while retaining a
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smaller number of variables in the model. As it is important to account for

model uncertainty in prediction, the posterior mean estimator under the GDP

prior is appealing in mimicking BMA. In addition, obtaining a simple model

containing a relatively small number of predictors is often important, since such

models are more likely to be used in fields in which predictive black boxes are

not acceptable and practitioners desire interpretable predictive models.

7. Discussion

We have proposed a hierarchical prior obtained through a particular scale

mixture of normals where the resulting marginal prior has a folded generalized

Pareto density thresholded at zero. This prior combines the best of both worlds

in that fully Bayes inferences are feasible through its hierarchical representation,

providing a measure of uncertainty in estimation, while the resulting marginal

prior on the regression coefficients induces a penalty function that allows for the

analysis of frequentist properties under maximum a posteriori estimation. The

resulting posterior mean estimator can be argued to be mimicking a Bayesian

model averaging behavior through mixing over higher level hyper-parameters.

Although Bayesian model averaging is appealing, it can be argued that allowing

parameters to be arbitrarily close to zero instead of exactly equal to zero may

be more natural in some problems. Hence we have a procedure that not only

bridges two paradigms – Bayesian shrinkage estimation and regularization – but

also yields three useful tools: a sparse estimator with good frequentist properties

through maximum a posteriori estimation, a posterior mean estimator that mim-

ics a model averaging behavior, and a useful measure of uncertainty around the

observed estimates. In addition, the proposed methods have substantial com-

putational advantages in relying on simple block-updated Gibbs sampling, while

BMA requires sampling from a model space with 2p models. Given the simple

and fast computation and the excellent performance in small sample simulation

studies, the generalized double Pareto should be useful as a shrinkage prior in a

broad variety of Bayesian hierarchical models, while also suggesting close rela-

tionships with frequentist penalized likelihood approaches. The proposed prior

can be used in generalized linear models, shrinkage of basis coefficients in non-

parametric regression, and in such settings as factor analysis and nonparametric

Bayes modeling.

8. Technical Details

Proof of Theorem 1. The proof follows along similar lines as does the proof

of Theorem 2 in Zou (2006). We first prove asymptotic normality. Let β =
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β∗ + u/
√
n and

Vn(u) =
{
y −

p∑
j=1

xj

(
β∗
j +

uj√
n

)}2
+ α′

n

p∑
j=1

log
{∣∣∣β∗

j +
uj√
n

∣∣∣+ η′n

}
.

Let ûn = argminVn(u), suggesting ûn =
√
n(β

(∞)
n − β∗). Now

Vn(u)− Vn(0) = u′
(
1

n
X′X

)
u− 2

ϵ′X√
n
u+ α′

n

p∑
j=1

log

∣∣∣β∗
j + uj/

√
n
∣∣∣+ η′n∣∣∣β∗

j

∣∣∣+ η′n

,

and we know that X′X/n → C and ϵ′X/
√
n

d→W
d
=N(0, σ2C). Consider the

limiting behavior of the third term, noting that lima→∞(1 + b/a)a = eb. If β∗
j ̸=

0, then α′
n log[|β∗

j + uj/
√
n|+ η′n]/[|β∗

j |+ η′n] ≤ α′
n log[|β∗

j |+ |uj/
√
n|+ η′n]/[|β∗

j |
+η′n] = α′

n log(1+ |uj/
√
n|/[|β∗

j |+ η′n]) → 0. If β∗
j = 0, then α′

n log[|uj/
√
n|+ η′n]

/η′n = α′
n log (1 + |uj/

√
n|/η′n) which is 0 if uj = 0, and diverges otherwise. By

Slutsky’s Theorem

Vn(u)− Vn(0)
d→
{
u′
ACAuA − 2u′

AWA if uj = 0 ∀j /∈ A,

∞ otherwise.

Vn(u) − Vn(0) is convex and the unique minimum of the right hand side is

(C−1
A WA,0)

′. By epiconvergence (Geyer (1994), Knight and Fu (2000)),

ûnA
d→C−1

A WA, ûnAc
d→0. (8.1)

Since WA
d
=N(0, σ2CA), this proves asymptotic normality.

Now ∀j ∈ A, β
(∞)
nj

p→β∗
j ; thus P(j ∈ An) → 1. Hence for consistency, it is

sufficient to show that ∀j′ /∈ A, P(j′ ∈ An) → 0. Consider the event j′ ∈ An.

By the KKT optimality conditions, 2x′
j′(y−Xβ

(∞)
n ) = α′

n/(η
′
n + |β(∞)

nj′ |). Noting

that
√
nβ

(∞)
nj′

p→ 0 by (8.1), α′
n/(

√
nη′n +

√
n|β(∞)

nj′ |) → ∞, while

2x′
j′(y −Xβ

(∞)
n )

√
n

= 2

x′
j′X

√
n(β∗ − β

(∞)
n )

n
+

x′
j′ϵ√
n

 .

By (8.1) and Slutsky’s Theorem, we know that both terms in the brackets con-

verge in distribution to some normal, so

P
(
j′ ∈ An

)
≤ P

2x′
j′

(
y −Xβ(∞)

n

)
=

α′
n

|β(∞)
nj′ |+ η′n

→ 0.
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This concludes the proof.

Proof of Theorem 2. We modify the proof of Theorem 2 in Zou (2006). Here

β
(0)
n denotes the least squares estimator. We first prove asymptotic normality.

Let β = β∗
n + u/

√
n and

Vn(u) =

y −
p∑

j=1

xj

(
β∗
nj +

uj√
n

)
2

+ α†
n

p∑
j=1

|β∗
nj +

uj√
n
|
(
|β(0)

nj |+ η†n

)−1
.

Let ûn = argminVn(u), suggesting ûn =
√
n(β

(1)
n − β∗

n). Now

Vn(u)− Vn(0) = u′
(
1

n
X′X

)
u− 2

ϵ′X√
n
u

+
α†
n√
n

p∑
j=1

(
|β(0)

nj |+ η†n

)−1√
n

(∣∣∣∣β∗
nj +

uj√
n

∣∣∣∣− |β∗
nj |
)
,

and we know that X′X/n → C and ϵ′X/
√
n

d→W
d
=N(0, σ2C). Consider the

limiting behavior of the third term. If β∗
nj ̸= 0 then, by the Continuous Mapping

Theorem, {|β(0)
nj | + η†n}−1 p→{|β∗

nj | + η†n}−1 and
√
n(|β∗

nj + uj/
√
n| − |β∗

nj |) →
ujsgn(β

∗
nj). By Slutsky’s Theorem, (α†

n/
√
n){|β(0)

nj |+ η†n}−1√n(|β∗
nj + uj/

√
n| −

|β∗
nj |)

p→ 0. If β∗
nj = 0, then

√
n(|β∗

nj + uj/
√
n| − |β∗

nj |) = |uj | and α†
n{|β(0)

nj | +
η†n}−1/

√
n = α†

n/(
√
n|β(0)

nj |+
√
nη†n), where

√
nβ

(0)
nj = Op(1). Again by Slutsky’s

Theorem,

Vn(u)− Vn(0)
d→
{
u′
ACAuA − 2u′

AWA if uj = 0 for all j /∈ A,

∞ otherwise.

Vn(u) − Vn(0) is convex and the unique minimum of the right hand side is

(C−1
A WA,0)

′. By epiconvergence (Geyer (1994), Knight and Fu (2000)),

ûnA
d→C−1

A WA, ûnAc
d→0. (8.2)

Since WA
d
=N(0, σ2CA), this proves the asymptotic normality.

Now ∀j ∈ A, β
(1)
nj

p→β∗
nj ; thus P(j ∈ An) → 1. We show that for all j′ /∈ A,

P(j′ ∈ An) → 0. Consider the event j′ ∈ An. By the KKT optimality conditions,

2x′
j′(y −Xβ

(1)
n ) = α†

n(|β(0)
nj′ |+ η†n)−1. We know that α†

n(|β(0)
nj′ |+ η†n)−1/

√
n

p→∞,

while

2x′
j′(y −Xβ

(1)
n )

√
n

= 2

x′
j′X

√
n(β∗

n − β
(1)
n )

n
+

x′
j′ϵ√
n

 .
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By (8.2) and Slutsky’s Theorem, we know that both terms in the brackets con-

verge in distribution to some normal, so

P
(
j′ ∈ An

)
≤ P

2x′
j′

(
y −Xβ(1)

n

)
=

α†
n

|β(0)
nj′ |+ η†n

→ 0,

which proves consistency.
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