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Abstract: We consider inference procedures, conditional on an observed ancillary

statistic, for regression coefficients under a linear regression setup where the un-

known error distribution is specified nonparametrically. We establish conditional

asymptotic normality of the regression coefficient estimators under regularity con-

ditions, and formally justify the approach of plugging in kernel-type density estima-

tors in conditional inference procedures. Simulation results show that the approach

yields accurate conditional coverage probabilities when used for constructing confi-

dence intervals. The plug-in approach can be applied in conjunction with configural

polysampling to derive robust conditional estimators adaptive to a confrontation of

contrasting scenarios. We demonstrate this by investigating the conditional mean

squared error of location estimators under various confrontations in a simulation

study, which successfully extends configural polysampling to a nonparametric con-

text.
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1. Introduction

The classical conditionality principle (Fisher (1934, 1935) and Cox and Hink-

ley (1974)) demands that statistical inference be made relevant to the data

at hand by conditioning on ancillary statistics. Arguments for this are best

seen from examples in Cox and Hinkley (1974, Chap. 2). Further discussion

can be found in Barndorff-Nielsen (1978) and in Lehmann (1981). Under re-

gression models, the ancillary statistic takes the form of studentized residuals.

Conditional inference about regression coefficients has been discussed by Fraser

(1979), Hinkley (1978), DiCiccio (1988), DiCiccio, Field and Fraser (1990) and

Severini (1996), among others. When the error density is completely specified,

approximate conditional inference can be made by Monte Carlo simulation or

by using numerical integration techniques. The procedure nevertheless becomes

computationally intensive if the parameter has a high dimension, in which case

large-sample approximations such as those proposed by DiCiccio (1988) and
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DiCiccio, Field and Fraser (1990) may be necessary. In a nonparametric con-

text where the error density is unspecified, conditional inference has not received

much attention despite its clear practical relevance. Fraser (1976) and Severini

(1994) tackle the special case of location models. Both suggest plugging in ker-

nel density estimates but provide no theoretical justification for the approach

nor any formal suggestion on the choice of bandwidth. The need for sophisti-

cated Monte Carlo or numerical integration techniques endures, and the com-

putational cost is even more expensive than that required by the parametric

case. Details of the computational procedures can be found in Severini (1994)

and Seifu, Severini and Tanner (1999). In the present paper we prove asymp-

totic consistency, conditional on the ancillary statistic, of plugging in the kernel

density estimator, and derive the orders of bandwidths sufficient for ensuring

such consistency. Our proof also suggests a normal approximation to the plug-

in approach which is computationally much more efficient for high-dimensional

regression estimators.

Consideration of conditionality has motivated different notions of robustness

for regression models: see Fraser (1979), Barnard (1981, 1983), Hinkley (1983)

and Severini (1992, 1996). Morgenthaler and Tukey (1991) propose a configural

polysampling technique for robust conditional inference, which compromises re-

sults obtained separately from a confrontation of contrasting error distributions

and provides a global perspective for robustness. Our plug-in approach extends

configural polysampling to a nonparametric context, substantially broadens the

scope of confrontation, and enhances the global nature of the robustness at-

tributed to the resulting inference procedure.

Section 2.1 describes the problem setting. Section 2.2 reviews a bootstrap

approach to unconditional inference for regression coefficients. The case of con-

ditional inference is treated in Section 2.3. Section 3 investigates the asymptotics

underlying the plug-in approach. Section 4 reviews configural polysampling and

extends it to nonparametric confrontations by the plug-in approach. Empirical

results are given in Section 5. Section 6 concludes our findings. All proofs are

given in the Appendix.

2. Inference for Regression Coefficients

2.1. Problem setting

Consider a linear regression model Yi = xT
i β + ǫ̃i, for i = 1, . . . , n, where

xi = (xi1, . . . , xip)
T is the vector of covariates, β = (β1, . . . , βp)

T is the vector

of unknown regression coefficients, and the random errors ǫ̃1, . . . , ǫ̃n are inde-

pendent and identically distributed with density f symmetric about 0. Write

Y = (Y1, . . . , Yn)T, X = [x1, . . . , xn]T and ǫ̃ = (ǫ̃1, . . . , ǫ̃n)T. Introduction of a

scale parameter leads to a regression-scale model under which f(u) = f0(u/σ)/σ
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for an unknown scale σ > 0, and a density f0 with unit scale. In this case we

have ǫ̃ = σǫ = σ(ǫ1, . . . , ǫn)T, for independent ǫ1, . . . , ǫn distributed with density

f0, so that Y = Xβ + σǫ. Throughout the paper we treat β as the parameter

of interest and f , or equivalently, (σ, f0), as the nuisance parameter of possibly

infinite dimension.

Let β̂ = β̂(Y ) be a location and scale equivariant estimator of β and, under

the regression-scale model, σ̂ = σ̂(Y ) be a location invariant and scale equivari-

ant estimator of σ, so that β̂(Xc+ dy) = c+ dβ̂(y) and σ̂(Xc+ dy) = |d|σ̂(y) for

any (d, c, y) ∈ R × R
p × R

n. For example, β̂ may be the least squares estimator

and σ̂2 the mean squared residuals. Define, for i = 1, . . . , n, Ãi = Yi − xT
i β̂ and

Ai = Ãi/σ̂. We can easily show that Ã = (Ã1, . . . , Ãn)T and A = (A1, . . . , An)T

provide ancillary statistics under the regression model with known f and the

regression-scale model with known f0, respectively. When f0, and hence f , is

unspecified, exact conditional inference is not possible as the conditional like-

lihood of β depends in general on f0. Adopting Jørgensen’s (1993) notion of

I-sufficiency, we see that A is I-sufficient for f0, so that any relevant information

about f0 is contained in A. The same applies to Ã and f . Such ancillary-informed

knowledge about f and f0 forms the basis for nonparametric estimation of the

conditional likelihood and facilitates nonparametric conditional inference in an

approximate sense.

2.2. Unconditional inference: a bootstrap approach

Under the regression-scale model, the distribution GT of T = (β̂ − β)/σ̂

does not depend on (β, σ) and provides a basis for unconditional inference when

f0 is known. The same applies to the distribution GU of U = β̂ − β under

the regression model. Suppose now f0, and hence f , is unspecified except for

symmetry about 0. Under the regression-scale model, we may estimate GT by the

residual bootstrap method as follows. Let Fn be the empirical distribution of the

2n residuals ±A1, . . . ,±An. For a random sample ǫ∗ = (ǫ∗1, . . . , ǫ
∗
n)T drawn from

Fn, construct a bootstrap resample Y ∗ = Xβ̂+σ̂ǫ∗ and calculate β̂∗ = β̂(Y ∗) and

σ̂∗ = σ̂(Y ∗). The distributionGT is then estimated by the bootstrap distribution,

ĜT say, of (β̂∗− β̂)/σ̂∗. Under the regression model, we replace A by Ã, calculate

β̂∗ from the bootstrap resample Y ∗ = Xβ̂+ǫ∗ and estimate GU by the bootstrap

distribution ĜU of β̂∗ − β̂.

2.3. Conditional inference: a plug-in approach

Conditional inference about β replaces GT and GU used in the unconditional

approach by, respectively, the conditional distributions GT |A(·|a) of T given A =

a = (a1, . . . , an)T and GU |Ã(·|ã) of U given Ã = ã = (ã1, . . . , ãn)T.
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Consider first the regression-scale model. Define S = σ̂/σ. The conditional

joint density of (S, T ) given A = a has the expression

κ(s, t|a) = c1(a)s
n−1

n
∏

i=1

f0(s(ai + xT
i t)), s > 0 and t ∈ R

p, (1)

where c1(a) is a normalizing constant depending on a. Denote by gT |A(·|a) the

conditional density of T given A = a. Then, for t ∈ R
p and T ⊂ R

p, the

integrals gT |A(t|a) =
∫ ∞
0 κ(s, t|a) ds and GT |A(T |a) =

∫

t∈T gT |A(t|a) dt can be

approximated by either Monte Carlo or numerical integration if f0 is known,

with increasing computational cost as p increases. When f0 is unspecified, we

note I-sufficiency of A for f0 and propose estimating f0 by a kernel density

estimate based on a: f̂h(z|a) = (nh)−1
∑n

i=1 k ((z − ai)/h), where k is a kernel

function and h > 0 is the bandwidth. This leads to nonparametric estimates

ĜT |A and ĝT |A of GT |A and gT |A respectively, which can again be approximated

by either Monte Carlo or numerical integration methods. We term this the

“plug-in” (PI) approach to distinguish it from the “residual bootstrap” (RB)

approach introduced earlier to unconditional inference. The use of studentized

residuals a in its derivation guarantees that f̂h(z|a) has unit scale asymptotically.

Under symmetry of f0, it might be beneficial in practice to use in place of f̂h its

symmetrized version, f̃h(z|a) = (f̂h(z|a) + f̂h(−z|a))/2.

Under the regression model, the distribution and density of U conditional on

Ã = ã are given, for U ⊂ R
p and u ∈ R

p, by GU |Ã(U|ã) =
∫

u∈U gU |Ã(u|ã) du and

gU |Ã(u|ã) = c3(ã)
∏n

i=1 f(ãi + xT
i u) respectively, for some constant c3(ã). If f is

unspecified, the PI approach substitutes f by f̂h(·|ã) or f̃h(·|ã) to yield plug-in

estimates ĜU |Ã and ĝU |Ã, on which conditional inference can be based.

3. Theory

We consider first the asymptotic behaviour ofGT |A andGU |Ã, and then assess

the PI approach by substituting kernel estimates for f and f0. Take ℓ0 ≡ log f0

and ℓ ≡ log f and assume the following regularity conditions.

(D1) f0 is symmetric about 0 and positive on [−C,C] for some C > 0.

(D2) f0 has uniformly bounded continuous derivatives up to order 3, with f ′′′0

being Lipschitz continuous.

(D3) E ε2, E ε2ℓ′0(ε)
2, E ε2ℓ′′0(ε)

2 and E |ε3ℓ′′′0 (ε)| are finite for ε ∼ f0.

We assume that X = Xn = [xn,1, . . . , xn,n]T depends on n and satisfies the

following.
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(C1) XT
nXn is positive definite for all n, and Σ ≡ limn→∞ n−1XT

nXn exists and

is positive definite.

(C2) (Generalized Noether condition) lim
n→∞

max
1≤i≤n

{

xn,i
T(XT

nXn)−1xn,i

}

= 0.

(C3) supn

{

n−1
∑n

i=1(xn,i
Txn,i)

1+η
}

<∞ for some η > 0.

Note that (C1) and (C2) imply asymptotic normality of least squares estimators

of β: see Sen and Singer (1993, Sec. 7.2) The location model provides a trivial

example that satisfies (C1)−(C3). The following theorem derives the asymptotic

conditional distributions of n1/2T and n1/2U .

Theorem 1. Assume (C1)−(C3), (D1)−(D3) and that β̂ = β + Op(n
−1/2) and

σ̂ = σ +Op(n
−1/2). Then

(i) under the regression-scale model, I1/2(n1/2T−I−1θ) is standard normal con-

ditional on A, up to order Op(n
−1/2), where I = n−2XT

nXn
∑n

i=1 ℓ
′
0(Ai)

2 and

θ = n−1/2
∑n

i=1 xn,iℓ
′
0(Ai);

(ii) under the regression model, Ĩ1/2(n1/2U − Ĩ−1θ̃) is standard normal condi-

tional on Ã, up to order Op(n
−1/2), where Ĩ = n−2XT

nXn
∑n

i=1 ℓ
′(Ãi)

2 and

θ̃ = n−1/2
∑n

i=1 xn,iℓ
′(Ãi).

We see from Theorem 1 that the conditional distributions of n1/2T and

n1/2U admit normal approximations with conditional means and covariance ma-

trices depending on the score functions ℓ′0 and ℓ′. The proof of Theorem 1

suggests that the conditional covariance matrices I−1 and Ĩ−1 equal, up to order

Op(n
−1/2), the deterministic matrices I−1 and Ĩ−1, where I = n−1XT

nXn

∫

(ℓ′0)
2f0

and Ĩ = n−1XT
nXn

∫

(ℓ′)2f , whereas the conditional means I−1θ and Ĩ−1θ̃ have

asymptotic unconditional distributions N(0, I−1) and N(0, Ĩ−1), respectively. It

follows that exact unconditional inference about β may not be correct, not even

to first order asymptotically, conditional on the ancillary residuals. For example,

an unconditionally exact level 1 − α confidence set derived from GT has condi-

tional coverage converging in probability to the random limit ΦI−1(Θ1−α − Z)

for Z ∼ N(0, I−1), where ΦΛ denotes the p-variate N(0,Λ) distribution and

ΦK(Θ1−α) = 1− α for some covariance matrix K. The only exception is when β̂

is the exact maximum likelihood estimator of β.

To validate the PI approach asymptotically, we assume that the kernel func-

tion k satisfies the following.

(K1) k has support [−c, c], for some c > 0, and is symmetric about 0.

(K2) k is twice differentiable with k′′ being Lipschitz continuous.

(K3) there exists some q ≥ 2 such that
∫

k = 1,
∫

ujk(u) du = 0 for j = 1, . . . , q−

1, and
∫

uqk(u) du 6= 0.
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First-order approximation of the PI approach amounts to substitution of

f̂h(·|A) or f̃h(·|A) for f0 in the score ℓ′0 that defines the conditional normal mean

I−1θ and covariance matrix I−1 of n1/2T . We consider a slightly different score

estimator in the theoretical development below. This simplifies the proof and

is asymptotically equivalent to the original PI proposal. Denote by A−i the

ancillary statistic A with Ai excluded, for i = 1, . . . , n. Define, for i = 1, . . . , n

and m = 0, 1, . . . , the “leave-one-out” kernel estimator of f
(m)
0 by f̂

(m)
h (z|A−i) =

((n − 1)hm+1)−1
∑

j 6=i k
(m)((z − Aj)/h). Symmetry of f0 motivates an anti-

symmetrized leave-one-out estimate of ℓ′0(Ai) given by

ℓ̂′h0,h1
(Ai|A−i) = 2−1

{

f̂ ′h1
(Ai|A−i)/f̂h0

(Ai|A−i) − f̂ ′h1
(−Ai|A−i)/f̂h0

(−Ai|A−i)
}

,

for bandwidths h0, h1 > 0. This leads to estimators of θ and I, given by

θ† = n−1/2
∑n

i=1 xn,iℓ̂
′
h0,h1

(Ai|A−i) and I† = n−2XT
nXn

∑n
i=1 ℓ̂

′
h0,h1

(Ai|A−i)
2,

respectively. Similar steps lead to estimates θ̃† and Ĩ† of θ̃ and Ĩ, respectively,

under the regression model. The following theorem concerns consistency of the

above estimators.

Theorem 2. Assume (K1)−(K3), the conditions in Theorem 1 and that hm → 0

and nh2m+3
m → ∞, m = 0, 1. Then

(i) under the regression-scale model, I† = I + Op(δ1) = I + op(1) and θ† =

θ +Op(δ2) = θ + op(1);

(ii) under the regression model, Ĩ† = Ĩ+Op(δ1) = Ĩ+op(1) and θ̃† = θ̃+Op(δ2) =

θ̃ + op(1),

where δ1 = hq
0+hq

1+n−1/2(h
−1/2
0 +h

−3/2
1 ) and δ2 = hq

0+hq
1+n−1/2(h

−3/2
0 +h

−5/2
1 ).

Theorems 1 and 2 together justify the PI approach asymptotically and derive

the valid orders of the bandwidths involved. Note that the conditional distribu-

tions of n1/2T and n1/2U can be estimated consistently by N(I†−1θ†,I†−1) and

N(Ĩ†−1θ̃†, Ĩ†−1), respectively, provided that h0, h1 → 0 and nh3
0, nh

5
1 → ∞. We

term this the “normal approximate plug-in” (NPI) approach to distinguish it

from the PI approach which directly simulates from, or numerically evaluates,

ĜT |A and ĜU |Ã. The normal approximation error can be kept to a minimum

of order Op(n
−q/(5+2q)) by setting h1 ∝ n−1/(5+2q), h0 = O(n−1/(5+2q)) and

h−1
0 = O(n5/(15+6q)). Park (1993) introduced trimming constants to the esti-

mated score ℓ̂′h0,h1
to correct for its occasional erratic behaviour.

Remark. Adaptive estimation constructs asymptotically efficient estimators by

substituting nonparametric score estimates in a one-step maximum likelihood

approximation. Stone (1975) considered adaptive estimation under the symmet-

ric location model. Bickel (1982) extended the construction to linear models.
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Under our regression setup, the adaptive estimator built upon an equivariant re-

gression estimator has conditional and unconditional distributions equivalent to

first order, and can be viewed as an equivariant regression estimator with condi-

tional mean recentered at the true regression parameter. This connection implies

asymptotic equivalence of adaptive estimation and the NPI approach, suggesting

that the latter can be approximated by unconditional inference based on adap-

tive estimators. Many nonparametric methods, such as the bootstrap, that are

intended mainly for unconditional inference are readily available for estimation

of such unconditional distributions.

4. Robustness and Configural Polysampling

Morgenthaler and Tukey (1991) suggest a global, finite-sample, notion of ro-

bustness that pays due attention to ancillarity. Their method, known as configu-

ral polysampling, makes robust inference by conditioning on an ancillary configu-

ration of the observed data under a confrontation of rival parametric models. Its

dissociation from asymptotic reasoning makes the method attractive for finite

samples and distinct from such conventional devices as the influence function

and the breakdown point. Morgenthaler (1993) specializes it to linear models

and develops computationally simple procedures for robust estimation.

A key ingredient to configural polysampling is the choice of a confrontation

pair (F ,G), where F and G denote extremes, in a spectrum of error distributions

of practical interest, under which inference is done separately and the resulting

analyses combined in an optimal way. The approach can be generalized to deal

with more than two distributions in the confrontation. Morgenthaler and Tukey

(1991) suggest taking F and G to be the normal and slash distributions to

encompass a spectrum ranging from light- to heavy-tailed distributions. To

fix ideas, consider estimation of β by an equivariant estimator V , such that

V (Y ) = β̂ + σ̂V (A). When f0 = F , the conditional mean squared error (cMSE)

of V given A is minimized at V (A) = VF (A) ≡ −EF [S2T |A]/EF [S2|A], leading

to Pitman’s (1939) famous estimator, an early example of optimal estimation

driven by the conditionality principle. Thus we may write, for an arbitrary

equivariant estimator V , cMSEF (V |A) = cMSEF (VF |A) + σ2
EF [S2|A](V (A) −

VF (A))2. Morgenthaler and Tukey (1991) select a “bioptimal” V by minimizing

PF × cMSEF (V |A) + PG × cMSEG(V |A), for a pair of shadow prices PF and

PG . Alternatively, a minimax estimator V of β can be obtained by minimizing

the maximum of cMSEF (V |A) and cMSEG(V |A), which often amounts to solving

the equation cMSEF (V |A) = cMSEG(V |A). The regression model can be treated

similarly. In confidence interval problems one may, for example, minimize the

conditional mean interval length subject to correct unconditional coverages under

F and G. In general, configural polysampling fine-tunes statistical procedures to
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achieve simultaneous efficiency over a spectrum of distributions determined by

(F ,G). It can be generalized with data-driven choices of (F ,G), thereby robusti-

fying the inference procedure in a global sense. We envisage confrontations (F ,G)

which reflect practical concerns in robust statistical inference. For example, we

may confront parametric with nonparametric approaches, unconditional with

conditional approaches, asymptotic approximation with finite-sample methods,

small with large bandwidths in any kernel-based approach, or any two competing

nonparametric approaches. In these possible confrontations, our PI or NPI ap-

proaches can play a prominent role in robustifying the inference outcome specific

to the observed ancillary configuration. Further empirical evidence is presented

in Section 5.2.

5. Empirical Studies

5.1. Confidence intervals

Our first study compared the conditional coverage probabilities of the PI

and NPI intervals with those of the exact unconditional and RB intervals. We

considered the location model with p = 1 and β = 1, and took f to be the

Student’s t5 density, which satisfies (D1)−(D3). The “conditional” samples, all

subject to a common observed value of Ã, were obtained by rejection sampling.

Three sample sizes, n = 15, 30 and 100, were considered. The nominal level 1−α

was chosen to be 0.90, 0.91, . . . , 0.99. Each conditional coverage was estimated

from 5,000 “conditional” samples. Construction of the PI and NPI intervals

was based on 5,000 samples drawn from ĜU |Ã and its normal approximation,

respectively. The RB interval was based on 1,000 bootstrap samples and the

exact unconditional interval on 5,000 samples drawn from f itself. The kernel

function k was taken to be the standard normal density.

The objective of this study is to demonstrate the importance of condition-

ing and the effectiveness of PI and NPI in constructing conditional confidence

intervals. Despite its importance in practice, the issue of bandwidth selection is

not our main interest and we set h = 1 throughout the study, the best choice

in a pilot study done on four different sets of ancillary residuals. Conventional

methods for practical bandwidth selection include the normal referencing rule,

cross-validation and the (conditional) bootstrap. Alternatively, an innovative

approach can be based on configural polysampling under a confrontation of two

extreme choices of bandwidth. This will be illustrated in Section 5.2. For the

NPI approach we used the true f , rather than its kernel estimate, for comput-

ing ℓ′ in order to examine the effects on conditional coverages due exclusively to

normal approximation.
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Figure 1 plots the conditional coverage errors against 1 − α for n = 15 for

four different sets of Ã, chosen specifically such that the exact unconditional in-

tervals undercover in two cases and overcover in the other two. We see that the

exact unconditional interval has very large conditional coverage error compared

to the two plug-in approaches, except for the fourth case where it outperforms the

NPI approach. Surprisingly, the RB interval yields more accurate coverage than

does the exact unconditional interval, although the former is designed primarily

for estimating the latter. It is evident that U has very different unconditional

and conditional distributions given our choices of Ã. The PI approach works

effectively for all four choices of Ã. Inferior in general to the PI intervals, NPI

nevertheless corrects the exact unconditional interval to some extent, although

the correction is less remarkable when the unconditional interval overcovers. Sim-

ilar conclusions are observed for n = 30 and 100. We also investigated choices

of Ã given which the exact unconditional interval is conditionally accurate. The

results, not shown in this report, suggest that both the PI and NPI intervals

remain, as expected, accurate in those cases.
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Figure 1. Conditional coverage errors of exact unconditional, PI, NPI and

RB intervals, for n = 15.
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5.2. Robust conditional estimation

The second study illustrates applications of the PI approach in configural

polysampling procedures for robust conditional inference. We considered three

types of confrontation pairs, all reflecting genuine practical concerns: (i) the

normal versus the slash distributions; (ii) the least squares method versus the PI

approach based on bandwidth h = Cn−1/9, a multiple of the optimal order; and

(iii) the PI approach based on contrasting bandwidths ha and hb. Note that (i)

was conceived by Morgenthaler and Tukey (1991) for achieving robustness across

symmetric, unimodal, distributions of different tail behaviour. Case (ii) contrasts

conditional with unconditional inferences. Case (iii) suggests a practical robust

solution, which respects the conditionality principle, to the problem of bandwidth

selection in the PI method. In the study we set C = 0.1, 0.5, 1.0, 1.5, 2.0, 2.5 and

ha = 0.1, hb = 2.0. The kernel k was taken to be the standard normal density.

We considered again a location model and compared the mean squared error

of minimax location estimates obtained under different confrontations. The least

squares estimate, the sample mean, was also included for comparison. Given

a fixed set of residuals, we generated 100,000 “conditional” random samples of

sizes n = 15 and 30 from each of six different distributions: the Student’s t1, the

normal mixture (1/2)N(−3, 1)+(1/2)N(3, 1) and the centered beta distributions

with support [−5, 5] and shape parameters (1/2, 1/2), (2, 2), (1/2, 2) and (2, 1/2),

among which the t1 and β(2, 2) densities have bell-like shapes and can be deemed

to lie within the normal-slash spectrum. We are here not so much concerned

with asymptotic validity as interested in robustness against model departures in

a broad context. Indeed, all six distributions except the normal mixture fail to

satisfy (D3).

Table 1 reports the cMSE’s of the various estimates, obtained by averag-

ing over the conditional samples generated from each distribution. We see that

confrontation types (ii) and (iii) give remarkably small cMSE compared to (i),

which is even less accurate than the unconditional least squares estimate under

distributions outside the normal-slash spectrum. Confrontation type (ii) outper-

forms (i) under all choices of C and most of the underlying distributions except

t1, under which use of large C in (ii) gives results comparable to (i). Particularly

encouraging are the results obtained using confrontation (iii), which returns an

accurate, robustified PI estimate for which the bandwidth is implicitly selected

from candidate values lying between ha and hb.

5.3. A real data example

DiCiccio (1988) and Sprott (1980, 1982) made conditional inference about

a real location parameter β by fitting a location-scale model with tλ error to

Darwin’s data (Fisher (1960, p.37)) on 15 height differences between cross- and
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Table 1. Conditional mean squared errors of least squares estimates (LS)

and minimax estimates obtained under confrontations (i) normal vs slash,

(ii) LS vs PI, (iii) ha = 0.1 vs hb = 2.0 in PI.

Error distribution

centred centred centred centred 1
2
N(−3, 1)

Confrontation β(1/2, 1/2) β(2, 2) β(1/2, 2) β(2, 1/2) t1 + 1
2
N(3, 1)

n = 15

(i) normal vs slash 4.3403 0.6814 1.5399 1.5743 0.5745 2.7075
(ii) LS vs PI (C = 0.1) 1.3105 0.4174 0.7947 0.7979 2.0863 1.0709

(ii) LS vs PI (C = 0.5) 1.2326 0.4174 0.9643 0.9674 2.0863 0.4513

(ii) LS vs PI (C = 1.0) 0.4206 0.3869 1.3331 1.3352 0.9975 0.4351

(ii) LS vs PI (C = 1.5) 0.2234 0.3790 1.4512 1.4540 0.7163 0.3631
(ii) LS vs PI (C = 2.0) 0.1995 0.3889 1.5092 1.5118 0.6033 0.3921

(ii) LS vs PI (C = 2.5) 0.2952 0.4017 1.1576 1.1633 0.5335 0.5787

(iii) ha = 0.1 vs hb = 2.0 0.3508 0.4057 1.0683 1.0670 0.4664 0.6532

LS 1.3126 0.4178 0.7963 0.7963 2.0837 1.0691

n = 30

(i) normal vs slash 1.6922 0.3884 0.3200 0.3216 0.5380 4.4011
(ii) LS vs PI (C = 0.1) 0.2277 0.1946 0.0386 0.0391 1.9589 1.9654

(ii) LS vs PI (C = 0.5) 0.1068 0.1796 0.0386 0.0391 1.9589 1.9654

(ii) LS vs PI (C = 1.0) 0.0116 0.1828 0.0171 0.0169 1.2311 1.2539

(ii) LS vs PI (C = 1.5) 0.0049 0.1801 0.0125 0.0120 0.8892 1.0360

(ii) LS vs PI (C = 2.0) 0.0010 0.1801 0.0187 0.0189 0.7061 0.9042
(ii) LS vs PI (C = 2.5) 0.0071 0.1834 0.0276 0.0279 0.6188 0.9591

(iii) ha = 0.1 vs hb = 2.0 0.0186 0.1867 0.0321 0.0328 0.5566 1.1533

LS 0.2283 0.1947 0.0389 0.0389 1.9571 1.9636

self-fertilized plants. We removed the tλ assumption, set β̂ to be (I) the sample

mean and (II) the sample median, both being location equivariant, and con-

structed 95% two-sided RB, PI and NPI intervals for β in both cases. The RB

interval was based on 50,000 bootstrap samples. The NPI interval was built on

the anti-symmetrized leave-one-out score estimate, for which the bandwidths h0

and h1 were fixed to be 18.87 using the normal referencing rule.

For (I), we calculated the RB and NPI intervals to be (2.46, 39.43) and

(8.78, 40.80), respectively, and the PI intervals to be (17.51, 24.45), (11.33, 35.84),

(10.42, 39.12), (8.38, 42.15), (4.86, 44.44) and (2.24, 45.51) based on bandwidths

h = mh0, for m = 0.2, 0.5, 0.7, 1.0, 1.3, 1.5, respectively. The results are in agree-

ment with DiCiccio’s (1988) and Sprott’s (1980, 1982) findings, suggesting plau-

sibility of their Student’s t error assumption. The case (II) gives similar results
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except that the endpoints are shifted slightly to the right, in general.

6. Conclusion

We establish consistency of the PI approach to conditional inference and

derive sufficient bandwidth orders. The NPI approach provides a computation-

ally convenient normal approximation to it. Effectiveness of the approaches is

confirmed by empirical findings. The computational cost of PI depends on the

dimension p and the efficiency with which we can simulate from ĝT |A or ĝU |Ã. The

computing times for both plug-in approaches were found to be within seconds

under the location model considered in Section 5.1.

Incorporation of the plug-in approaches into confrontations extends configu-

ral polysampling to the nonparametric realm, rendering the resulting conditional

inference an extra dimension of robustness. When applied to a confrontation of

two extreme bandwidths, the technique suggests an innovative solution, which

observes the conditionality principle, to bandwidth selection in practical appli-

cations of the PI approaches. We remark that confrontations of more than two

specifications of error density can be considered in configural polysampling to

further robustify the inference outcome, although then the minimax algorithm is

necessarily more computationally involved.
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Appendix

A.1. Proof of Theorem 1

Under the regression-scale model, we deduce, by a Taylor expansion of (1)

in powers of n−1/2, that the density of n1/2(log S, T ) conditional on A is propor-

tional, up to Op(n
−1/2), to the product of the N(J −1ψ,J −1) and N(I−1θ,I−1)

density functions, where J = −n−1
∑n

i=1

{

Aiℓ
′
0(Ai) +A2

i ℓ
′′
0(Ai)

}

and ψ = n−1/2

∑n
i=1 (Aiℓ

′
0(Ai) + 1). This proves part (i). Part (ii) follows by similar, but sim-

pler arguments.

A.2. Proof of Theorem 2

Note that Linton and Xiao’s (2001) Lemma 2 can be adapted to deduce that

f̂
(m)
h (±Ai|A−i) = f

(m)
0 (±Ai) +Op(h

q + n−1/2h−m−1/2), m = 0, 1, (2)
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uniformly in i ∈ {1, . . . , n}. It follows that ℓ̂′h0,h1
(Ai|A−i) = ℓ′0(Ai)+Op(δ1), and

hence the result for I†.
Define δ±im = ±{f̂

(m)
hm

(±ǫi|A−i) − f̂
(m)
hm

(±Ai|A−i)}. That β̂ and σ̂ are n1/2-

consistent implies that µ ≡ log(σ̂/σ) and τ ≡ β̂/σ̂ − β/σ are both Op(n
−1/2).

Write x̄ =
∑n

i=1 xn,i/n. Conditioning on ǫi, standard asymptotic theory yields

(n− 1)−1h−m−2
m

∑

j 6=i

k(m+1)
(±ǫi − ǫj

hm

)

(±xn,i − xn,j)

= f
(m+1)
0 (±ǫi)(±xn,i − x̄) +Op(h

q
m + n−

1

2h
−m− 3

2

m ),

(n− 1)−1h−m−2
m

∑

j 6=i

k(m+1)
(±ǫi − ǫj

hm

)

(±ǫi − ǫj)

= −(m+ 1)f
(m)
0 (±ǫi) +Op(h

q
m + n−

1

2h
−m− 1

2

m ),

so that

δ±im = ±f
(m+1)
0 (±ǫi)(±xn,i − x̄)T(τ +

µβ

σ
) ∓ (m+ 1)µf

(m)
0 (±ǫi)

+Op(n
− 1

2hq
m + n−1h

−m− 3

2

m ). (3)

Noting (3), and that (2) also holds if ±Ai is replaced by ±ǫi, we have

ℓ̂′h0,h1
(Ai|A−i) =

f̂ ′h1
(ǫi|A−i)

f̂h0
(ǫi|A−i)

−

[

f ′′0 (ǫi)x
T
n,i(τ + µβ

σ ) − 2µf ′0(ǫi)
]

f0(ǫi)

+

[

f ′0(ǫi)x
T
n,i(τ +

µβ

σ
) − µf0(ǫi)

]

f ′0(ǫi)

f0(ǫi)2
+Op

(

n−
1

2 δ2

)

. (4)

Expanding Ai about ǫi, we have

ℓ′0(Ai) =
f ′0(ǫi)

f0(ǫi)
−

[

xT
n,i(τ +

µβ

σ
) + µǫi

]

f ′′0 (ǫi)

f0(ǫi)

+

[

xT
n,i(τ +

µβ

σ
) + µǫi

]

f ′0(ǫi)
2

f0(ǫi)2
+Op(n

−1). (5)

Symmetry of f0 and (D3) together imply that n−1/2
∑n

i=1 xn,if
′
0(ǫi)/f0(ǫi), n

−1/2
∑n

i=1 xn,iǫif
′′
0 (ǫi)/f0(ǫi), and n−1/2

∑n
i=1 xn,iǫif

′
0(ǫi)

2/f0(ǫi)
2 are all of order

Op(1). It then follows from (4) and (5) that

θ† − θ = n−
1

2

n
∑

i=1

xn,i

{

f̂ ′h1
(ǫi|A−i)

f̂h0
(ǫi|A−i)

−
f ′0(ǫi)

f0(ǫi)

}

+Op(δ2). (6)

The proof of Linton and Xiao’s (2001) Theorem 1 can be adapted to show that
the first term in (6) has order Op(δ1), which can be absorbed into Op(δ2). This
completes the proof of (i). Part (ii) follows by similar arguments.



168 YVONNE H. S. HO AND STEPHEN M. S. LEE

References

Barnard, G. A. (1981). The conditional approach to robustness. Statistics and Related Topics,

235-241. North-Holland, New York.

Barnard, G. A. (1983). Pivotal inference and the conditional view of robustness. Scientific In-

ference, Data Analysis, and Robustness, 1-8. Academic Press, New York.

Barndorff-Nielsen, O. (1978). Information and Exponential Families in Statistical Theory. John

Wiley, New York.

Bickel, P. J. (1982). On adaptive estimation. Ann. Statist. 10, 647-671.

Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics. Chapman and Hall, London.

DiCiccio, T. J. (1988). Likelihood inference for linear regression models. Biometrika 75, 29-34.

DiCiccio, T. J., Field, C. A. and Fraser, D. A. S. (1990). Approximations of marginal tail

probabilities and inference for scalar parameters. Biometrika 77, 77-95.

Fisher, R. A. (1934). Two new properties of mathematical likelihood. Proc. Roy. Soc. A 144,

285-307.

Fisher, R. A. (1935). The logic of inductive inference. J. Roy. Statist. Soc. 98, 39-54.

Fisher, R. A. (1960). The Design of Experiments. Oliver and Boyd, Edinburgh.

Fraser, D. A. S. (1976). Necessary analysis and adaptive inference. J. Amer. Statist. Assoc. 71,

99-110.

Fraser, D. A. S. (1979). Inference and Linear Models. McGraw-Hill, New York.

Hinkley, D. V. (1978). Likelihood inference about location and scale parameters. Biometrika

65, 253-261.

Hinkley, D.V. (1983). Can frequentist inferences be very wrong? A conditional “Yes”. Scientific

Inference, Data Analysis, and Robustness, 1-8. Academic Press, New York.

Jørgensen, B. (1993). A review of conditional inference: is there a universal definition of non-

formation? Bull. Int. Statist. Inst. 55, 323-340.

Lehmann, E. L. (1981). An interpretation of completeness and Basu’s Theorem. J. Amer. Statist.

Assoc. 76, 335-339.

Linton, O. and Xiao, Z. (2001). Second-order approximation for adaptive regression estimators.

Econometric Theory 17, 984-1024.

Morgenthaler, S. (1993). Robust tests for linear models. Statistical Sciences and Data Analysis

(Tokyo, 1991), 97-107. Utrecht, VSP.

Morgenthaler, S. and Tukey, J.W. (1991). Configural Polysampling: A Route to Practical Ro-

bustness. John Wiley, New York.

Park, B. U. (1993). A cross-validatory choice of smoothing parameter in adaptive location

estimation. J. Amer. Statist. Assoc. 88, 848-854.

Pitman, E. J. G. (1939). The estimation of location and scale parameters of a continuous

population of any given form. Biometrika 30, 391-421.

Seifu, Y., Severini, T. A. and Tanner, M. A. (1999). Semiparametric Bayesian inference for

regression models. Canad. J. Statist. 27, 719-734.

Sen, P. K. and Singer, J. M. (1993). Large Sample Methods in Statistics: an Introduction with

Applications. Chapman and Hall, New York.

Severini, T. A. (1992). Conditional robustness in location estimation. Biometrika 79, 69-79.

Severini, T. A. (1994). Nonparametric conditional inference for a location parameter. J. Roy.

Statist. Soc. Ser. B 56, 353-362.



NONPARAMETRIC CONDITIONAL INFERENCE 169

Severini, T. A. (1996). Measures of the sensitivity of regression estimates to the choice of

estimator. J. Amer. Statist. Assoc. 91, 1651-1658.

Sprott, D. A. (1980). Maximum likelihood in small samples: Estimation in the presence of

nuisance parameters. Biometrika 67, 515-523.

Sprott, D. A. (1982). Robustness and maximum likelihood estimation. Comm. Statist. A 11,

2513-2529.

Stone, C. (1975). Adaptive maximum likelihood estimation of a location parameter. Ann. Statist.

3, 267-284.

Department of Mathematics, Imperial College London, 547, Huxley Building, South Kensington

Campus, London, SW7 2AZ, U.K.

E-mail: yvonneho@imperial.ac.uk

Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road,

Hong Kong.

E-mail: smslee@hkusua.hku.hk

(Received December 2005; accepted June 2006)


	1. Introduction
	2. Inference for Regression Coefficients
	2.2. Unconditional inference: a bootstrap approach
	2.3. Conditional inference: a plug-in approach

	3. Theory
	4. Robustness and Configural Polysampling
	5. Empirical Studies
	5.2. Robust conditional estimation
	5.3. A real data example

	6. Conclusion
	Appendix
	A.2. Proof of Theorem 2


