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IN HIERARCHICAL LINEAR MIXED MODELS
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Abstract: This paper examines necessary and sufficient conditions for the propriety

of the posterior distribution in hierarchical linear mixed effects models for a col-
lection of improper prior distributions. In addition to the flat prior for the fixed

effects, the collection includes various limiting forms of the invariant gamma distri-
bution for the variance components, including cases considered previously by Datta
and Ghosh (1991), and Hobert and Casella (1996). Previous work is extended by

considering a family of correlated random effects which include as special cases the
intrinsic autoregressive models of Besag, York and Mollié (1991), the Autoregressive

(AR) Model of Ord (1975), and the Conditional Autoregressive (CAR) Models of
Clayton and Kaldor (1987), which have been found useful in the analysis of spatial
effects. Conditions are then presented for the propriety of the posterior distribution

for a generalized linear mixed model, where the first stage distribution belongs to
an exponential family.
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1. Introduction

Bayesian analysis, especially of hierarchical linear mixed models, has received
much attention recently. There is often not enough information on hyperparam-
eters for subjective Bayesian analysis and one often resorts to noninformative
or default priors. For a recent review of noninformative priors, see Kass and
Wasserman (1996).

There are several important reasons to consider noninformative priors for the
generalized linear model. First, in the generalized linear model, it is difficult to
derive the “standard” noninformative priors such as Jeffreys’ prior, Berger and
Bernardo’s (1992) reference priors, or matching priors. Next, even when we can
derive these “standard” noninformative priors, posterior distributions are usually
computationally intractable because these priors often depend on sample sizes.
Finally, simple noninformative priors are easy to implement. However without
proper precaution, simple noninformative priors can be misused, sometimes un-
knowingly, and lead to other difficulties, such as the nonconvergence of the Gibbs
sampler (cf. Hobert and Casella (1996)).
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One commonly used noninformative prior is the constant prior density for
some of the parameters, but this might lead to nonintegrable posteriors (cf.
Ibrahim and Laud (1991)). Alternatively, scale-invariant priors are used in the
literature. Consider the one-way random effects model (cf. Morris (1983)), where
(yj|θj , δ0) are i.i.d. N(θj , δ0), and (θj |µ, δ1) are i.i.d. N(µ, δ1). Here for given
(θj, δ0), yj and (µ, δ1) are independent. Under the scale-invariant prior p(µ, δ0, δ1)
∝ 1/(δ0δ1), the posterior of θj is improper. One solution is to use a dependent
prior, p(µ, δ0, δ1) ∝ (δ0 + δ1)−1 (cf. Kahn (1990)). However, such an approach to
hierarchical models often involves the sample size and the design matrix. Con-
sider also the balanced one-way ANOVA model:

Yij = µ+ ui + eij , i = 1, . . . , I, j = 1, . . . , n,

where the ui are i.i.d. N(0, δ1) and, independently, eij are i.i.d. N(0, δ0). The
Jeffreys prior for (µ, δ0, δ1) is of the form p(µ, δ0, δ1) ∝ [δ0(δ0 +nδ1)3/2]−1. Berger
and Bernardo (1992) suggest the reference prior p(µ, δ0, δ1) ∝ [δ0(δ0 + nδ1)]−1.

Ghosh and Mukerjee (1993) and Datta (1996) showed that this reference prior
is a matching prior when each or all three parameters are of interest. Such a
prior depends on the sample size and use of this prior can be computationally
impractical in practice, especially for an unbalanced design. When n gets large
this prior is close to 1/(δ0δ1), the scale-invariant prior. A natural question is
whether it will yield a proper posterior.

Datta and Ghosh (1991) considered a noninformative prior for a linear mixed
model by assuming a constant prior for fixed effects and a prior density of the
variance component δi of the form

1
δai+1
i

exp(−bi/δi), (1)

where ai ∈ IR and bi > 0 (If ai > 0, this is inverse gamma IG (ai, bi) ). Ghosh,
Natarajan, Stroud and Carlin (1998) studied a generalized linear mixed model
with a constant prior for fixed effects and priors for random effects precision
components that are IG (ai, bi) with a small but positive bi. This is reasonable if
one has information on δi (cf. Sun and Berger (1998)), but it is clearly suboptimal
otherwise. Note that for the inverse gamma when both ai and bi tend to 0, the
proper priors tend to the scale-invariant prior. It is of interest to know whether
we can use the scale-invariant prior rather than the inverse gamma distribution
with very small positive parameters. The problem is whether the posterior is
proper in using flat prior for the fixed effects, and independent scale-invariant
priors for the variance components of the random effects.

The scale-invariant prior for the one-way ANOVA model is a special case
of (1) when ai = bi = 0. Recently, Hobert and Casella (1996) found some
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conditions on ai for the propriety of posterior distribution when bi = 0. They
assumed the random effects are a priori independent. This would not be true
in many situations, for example in image processes or in disease mapping over
neighboring regions. See, for example, Bernardinelli, Clayton and Montomoli
(1995) and Sun, Tsutakawa, Kim and He (2000).

It is important to explore simple noninformative priors for general hierarchi-
cal models systematically. In this paper, we study noninformative priors for hier-
archical models. Our results include Datta and Ghosh (1991), Hobert and Casella
(1996), and Ghosh, Natarajan, Stroud and Carlin (1998) as special cases. Some
related work under different sampling plans was considered in Ghosh, Natarajan,
Waller and Kim (1999).

The paper is arranged as follows. In Section 2, we consider a general lin-
ear mixed model whose random effects may be independent or correlated. The
correlations are introduced through a family of distributions which includes as
special cases the intrinsic AR model of Besag, York and Mollié (1991), the AR
model of Ord (1975), and CAR models of Clayton and Kaldor (1987). We first
prove the propriety of the posterior distribution when the fixed effects have a flat
prior and the random effects have a proper prior. We then consider the propriety
of the posterior distribution when (a1) bi > 0 or (a2) bi = 0 and ai < 0. We give
examples to show that the posterior distribution may or may not be proper in
the case when ai = 0 and bi ≥ 0. We also discuss special cases which may be
applicable in practice. In Section 3, we present results which are useful in the
implementation of the Gibbs sampler to our model. In Section 4, we first extend
the results to the generalized hierarchical model where, conditionally on the pa-
rameters vvv = (v1, . . . , vN )′, the distribution of the observed random variable yi

depends only on vi and vvv satisfies the general linear mixed model. This exten-
sion includes cases where the data are Poisson or binomial. We then extend our
result to the generalized linear mixed model, where the first stage distribution
belongs to an exponential family which may include shape and scale parameters
in addition to vvv.

2. Main Results

2.1. Preliminary

Consider a general linear mixed model

vi = xxx′1iθθθ + xxx′2iuuu + ei, (2)

where vvv = (v1, . . . , vn)′ is an n × 1 vector of data, XXX1 = (xxx11, . . . , xxx1n)′ and
XXX2 = (xxx21, . . . , xxx2n)′ are known design matrices, with dimensions n×p and n×q,
θθθ is a p × 1 vector of fixed effects, uuu is a q × 1 vector of random effects, and
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eee = (e1, . . . , en)′ is an n × 1 vector of random errors. A Bayesian hierarchical
linear mixed model begins with the assumptions{

uuu|(δ1, δ2, . . . , δr) ∼ Nq(0,AAA),
eee|δ0 ∼ Nn(0, δ0ΣΣΣ),

(3)

where uuu = (uuu′
1, . . . ,uuu

′
r)′, uuui is qi × 1,

∑r
i=1 qi = q, and AAA = ⊕r

i=1δiBBB
−1
i , where

⊕r
i=1δiBBB

−1
i = diag(δ1BBB−1

1 , δ2BBB−1
2 , . . . , δrBBB−1

r ). Here r subvectors of uuu correspond
to the r different random vectors in the experiment, 0 is a vector of zeros, ΣΣΣ is a
known positive definite (pd) n×n matrix, and BBBi is a pd qi×qi matrix. Without
loss of generality, we assume that ΣΣΣ equals IIIn, the n-dimensional identity matrix.

It is often the case that BBBi is known, for example, BBBi = IIIqi . In other cases,
BBBi contains some unknown parameters. In our case, we assume that BBBi has the
form,

BBBi = (IIIqi − ρiCCCi)ξi , (4)

where CCCi is a known qi × qi symmetric matrix, ξi is a known nonnegative integer
and ρi is an unknown parameter such that BBBi is pd. Let λi1 ≤ λi2 ≤ . . . ≤ λiqi be
the ordered eigenvalues of CCCi satisfying λi1 < 0 < λiqi . When 1/λi1 < ρi < 1/λiqi ,

BBBi is positive definite. Note that BBBi = IIIqi if ρi = 0 so the model considered here
is a generalization of independent random effects. We also note that if ρi is
known, BBBi would also be known and, by a suitable linear transformation on δi,
our problem reduces to the case of independence. A common choice for CCCi is
the adjacency matrix used in spatial analysis, with element cjl = 1 if regions j
and l are adjacent and cjl = 0 otherwise, including the case j = l. The common
choices for ξi are 1 or 2. The former occurs in a CAR(1) model of Clayton and
Kaldor (1987), and the latter in the AR model of Ord (1975).

Alternatively, the matrix BBBi can be of the form

BBBi = (DDDi − ρiCCCi)ξi , (5)

where DDDi is a known positive definite matrix. A limiting case with ξi = 1,
ρ = 1, and DDDi = diag(d1, . . . , dqi), used by Besag et al. (1991), produces an
improper prior. Here dj is the sum of the jth column of the matrix CCCi. For this
case, we could redefine DDD−1/2

i = diag(d−1/2
1 , . . . , d

−1/2
qi ), CCC∗

i = DDD−1/2
i CCCiDDD

−1/2
i ,

BBB∗
i = (IIIqi − ρiCCC∗

i )ξi . Also, write XXX2 = (XXX21, . . . ,XXX2r), where XXX2i is an n × qi

matrix and define XXX∗
2i = XXX2iDDD

1/2
i , XXX∗

2 = (XXX∗
21, . . . ,XXX

∗
2r). The linear mixed model

with BBBi defined by (5) is then equivalent to model (4) when XXX2 and BBBi are
replaced by XXX∗

2 and BBB∗
i , respectively.

The following conditional independence assumptions are also used:
(i) given (θθθ,uuu), vvv is conditionally independent of ∆∆∆ ≡ (δ1, . . . , δr) and ρρρ =

(ρ1, . . . , ρr).
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(ii) given (∆∆∆, ρρρ), uuu is independent of θθθ and δ0;
(iii) θθθ, δ1, δ2, . . . , δr, ρ1, ρ2, . . . , ρr and δ0 are mutually independent.
To fully specify the hierarchical model, we must specify the prior distributions
of θθθ, ∆∆∆, ρρρ and δ0. The most commonly used priors are multivariate normal for
θθθ and inverse gammas for the variance components δi. Finally, ρi is assumed
to have an arbitrary distribution function Fi(·) on the interval (λ−1

i1 , λ
−1
iqi

). A
degenerate prior at 0 for ρi has the components of uuui independent. A uniform
distribution on (λ−1

i1 , λ
−1
iqi

) might be used if there is vague information on ρi.
Assume that XXX1 is of full rank so that XXX′

1XXX1 is invertible. Let XXX = (XXX1,XXX2)
and βββ = (θθθ′,uuu′)′. The usual least square estimator of βββ is given by β̂ββ =
(XXX′XXX)−XXX′vvv, where (XXX′XXX)− is a generalized inverse of XXX′XXX. If rank(XXX) = p+ q,
then (XXX′XXX)−1 exists and equals (XXX′XXX)−. The usual sum of square errors and the
regression sum of squares are

SSE = (vvv − XXXβ̂ββ)′(vvv − XXXβ̂ββ) = vvv′{IIIn − XXX(XXX′XXX)−XXX′}vvv, (6)
SSR = (βββ − β̂ββ)′XXX′XXX(βββ − β̂ββ), (7)

respectively. It is well known that both SSE and SSR are invariant for any
choice of (XXX′XXX)−. In fact, XXX(XXX′XXX)−XXX′ is invariant for any choice of (XXX′XXX)−.
Since rank(XXX1) = p, we know that (XXX′

1XXX1)−1 exists and we may define

RRR1 = IIIn − XXX1(XXX′
1XXX1)−1XXX′

1, (8)

RRR2 ≡ RRR2(δ0, . . . , δr) =
1
δ0

XXX′
2RRR1XXX2 + AAA−1, (9)

RRR3 ≡ RRR3(δ0, . . . , δr) = XXX′
2RRR1XXX2 − 1

δ0
XXX′

2RRR1XXX2RRR−1
2 XXX′

2RRR1XXX2. (10)

LLL1 ≡ LLL1(uuu) = (XXX′
1XXX1)−1XXX′

1XXX2(ûuu − uuu), (11)

LLL2 ≡ LLL2(δ0, . . . , δr) =
1
δ0

RRR−1
2 XXX′

2RRR1XXX2ûuu. (12)

Since XXX′
2RRR1XXX2 is nonnegative definite and AAA is pd, RRR2 is pd and RRR−1

2 exists.
Also let t = rank(RRR1XXX2) = rank(XXX′

2RRR1XXX2). Then we have t ≤ q.

2.2. Vague priors for fixed effects

Our first result is on the propriety of the joint posterior when the noninfor-
mative prior is only on the fixed effects θθθ. The proof is similar to that in Searle,
Casella and McCulloch (1992, Section 9.2), which did not include ρρρ and ∆∆∆. We
give the proof in the appendix for completeness.

Theorem 1. Assume that the density of the fixed effect θθθ is proportional to a
constant and that the priors of ∆∆∆, ρρρ and δ0 are proper. Let

G ≡ G(θθθ, uuu,∆∆∆, ρρρ; vvv) =
1

δ
n
2
0 |AAA| 12

exp
{
−(vvv−XXXβββ)′(vvv−XXXβββ)

2δ0
− uuu′AAA−1uuu

2

} r∏
i=0

gi(δi).

(13)
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Then, we have∫
IRq+p

Gdθθθduuu =
(2π)

1
2
(p+q)|XXX′

1XXX1|− 1
2

δ
1
2
(n−p)

0 |RRR2| 12 |AAA| 12
exp

{
−SSE

2δ0
− ûuu′RRR3ûuu

2δ0

} r∏
i=0

gi(δi), (14)

which implies that the joint posterior distribution of (θθθ, uuu,∆∆∆, ρρρ, δ0) is proper.

2.3. Improper priors for both fixed effects and variance components

In addition to a flat prior on θθθ, we want to have noninformative priors on
(δ0,∆∆∆). We unify the results of Datta and Ghosh (1991) and Hobert and Casella
(1996), while extending their results to the case ρi �= 0. We consider the following
conditions.
(a) For i = 1, . . . , r, either of the two conditions holds:

(a1) ai < bi = 0; (a2) bi > 0;
(b1) qi + 2ai > 0.
(b2) qi + 2ai > q − t, for all i = 1, . . . , r;
(c1) n− p+ 2a0 + 2a+ > 0, where a+ =

∑r
i=1 ai;

(c2) n− p+ 2a0 + 2
∑r

i=1 a
−
i > 0, where a−i = min(0, ai).

Theorem 2. Suppose that the prior density of θθθ is constant, that the prior
density of δi is given at (1), and that ρi has an arbitrary distribution Fi. Assume
that 2b0 + SSE > 0.
Case 1. If t = q or if r = 1 the conditions (a), (b2), and (c1) are necessary,
and conditions (a), (b2) and (c2) are sufficient for the propriety of the posterior
distribution of (θθθ, uuu,∆∆∆, ρρρ, δ0).
Case 2. If t < q and r > 1, conditions (a), (b1) and (c1) are necessary, and
conditions (a), (b2) and (c2) are sufficient for the propriety of the joint posterior.

The proof of this theorem is in the Appendix. There are two simple cases for
the values of b0. Since SSE ≥ 0, when b0 > 0, 2b0+ SSE > 0. Note that SSE > 0
with probability one. When b0 = 0, we have 2b0 + SSE > 0 with probability one
so that the results will be true for almost all observations. Furthermore, if all
ai ≤ 0, i = 1, . . . , r, then conditions (c1) and (c2) are identical.

In Theorems 1 and 2, we assume a constant prior for the fixed effects θθθ. In
practice, one could have a proper or partially informative prior (cf. Sun, Tsu-
takawa and Speckman (1999)), proper in some subspaces and constant in others.
In these cases, prior densities are all bounded. Our results assuming a constant
prior for θθθ will remain true under such generalization.

2.4. Special cases

Case 1. Datta and Ghosh (1991) considered the case bi > 0 for all i = 1, . . . , r.
From Theorem 2 we know that when all bi > 0, (b1) and (c1) are necessary, while
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(b2) and (c2) are sufficient for a proper posterior. Clearly, (b2) is stronger than
(b1) and (c2) is stronger than (c1). Our conditions for proper posterior for the
special case where BBBi = IIIqi are slightly different from those of Datta and Ghosh
(1991). Here are examples showing that the constraint bi > 0 and ai = 0 may or
may not result in a proper posterior distribution.

Example 1. Consider the linear mixed model (2), with n = 6, p = 2, r = 3, q1 =
q2 = q3 = 1, q = q1+q2+q3 = 3, θθθ = (θ1, θ2)′, and uuu = (u1, u2, u3)′. The matrices
XXX1, XXX2, and RRR1 are given by

XXX1 =



1 0
0 1
1 0
0 1
1 0
0 1


, XXX2 =



1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1


, and RRR1 =

1
3



2 0 −1 0 −1 0
0 2 0 −1 0 −1
−1 0 2 0 −1 0
0 −1 0 2 0 −1
−1 0 −1 0 2 0
0 −1 0 −1 0 2


.

Then XXX′
2RRR1XXX2 is 3 × 3 matrix, whose three rows are given by 1

3(4,−2,−2),
1
3(−2, 4,−2) and 1

3(−2,−2, 4). Thus t = rank(XXX′
2RRR1XXX2) = 2. We assume that

the prior for (θ1, θ2) is constant, b0, b1, b2, b3 > 0, and a0 = a1 = a2 = a3 = 0.
Condition (a) in Case 2 of Theorem 2. holds, and so does condition (c2) since
n − p − 2a0 = 6 − 2 > 2 > 0. However, condition (b2) fails. In this case,
AAA = diag(δ1, δ2, δ3) and |RRR2||AAA| = |δ−1

0 AAAXXX′
2RRR1XXX2 + III3|, which equals

1 +
4
3

(
δ1
δ0

+
δ2
δ0

+
δ3
δ0

+
δ1δ2
δ20

+
δ1δ3
δ20

+
δ2δ3
δ20

)
≥ 4

3
(δ1 + δ2)δ3

δ20
≥ 8

3δ20

√
δ1δ2 δ3.

Then for G defined by (13), we have∫ ∞

0
. . .

∫ ∞

0

∫
IRp+q

Gdθθθduuu
3∏

i=0

dδi

≤
∫ ∞

0
. . .

∫ ∞

0

|XXX′
1XXX1|− 1

2 exp
{
−SSE

2δ0
−∑3

i=0
bi
δi

}
(2π)−

1
2
(p+q)δ

1
2
(n−p−2)

0 δ
1
4
+1

1 δ
1
4
+1

2 δ
1
2
+1

3

3∏
i=0

dδi,

which is finite. In this case, necessary conditions (a), (b1) and (c2) in Case 2
of Theorem 2 hold, but a sufficient condition (b2) fails. However, the posterior
distribution of (θθθ,uuu, δ0, δ1, δ2, δ3) is proper.

Example 2. Suppose that we have the same XXX1, but XXX2 = (xxx21, xxx22, xxx23), where
xxx21 = (−1, 2,−1, 2,−1, 2), xxx22 = (−1, 0,−1, 0, 2, 0), xxx23 = (0, 2, 0,−1, 0,−1).
The matrix RRR1 remains the same, but XXX′

2RRR1XXX2 = diag(0, 6, 6). So |RRR2||AAA| =
(1 + δ2/δ0)(1 + δ3/δ0) and

G1 =
{
δ0δ1δ2δ3

√(
δ2
δ0

+ 1
)(

δ3
δ0

+ 1
)}−1

exp
(
−

3∑
i−0

bi
δi

)
.
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Since
∫∞
0 δ−1

1 exp{−b1/δ1}dδ1 = ∞,
∫∞
0

∫∞
0

∫∞
0 G1dδ1dδ2dδ3 = ∞. So necessary

conditions (a), (b1) and (c2) in Case 2 of Theorem 2 hold, but a sufficient con-
dition (b2) fails. However, the posterior distribution of (θθθ,uuu, δ0, δ1, δ2, δ3) is im-
proper.

Case 2. Hobert and Casella (1996) consider the case where bi ≡ 0 and ρi ≡ 0 for
all i, a special case of Theorem 2. Examine again the balanced one-way ANOVA
discussed in Section 1. The prior p(µ, δ0, δ1) ∝ (δ0δ1)−1 yields an improper
posterior. The limiting case of the Jeffreys prior, as n → ∞, p(µ, δ0, δ1) ∝
δ−1
0 δ

−3/2
1 , will also end up with an improper posterior.

Case 3. The constant prior has been used in the literature. For example, Yang
and Chen (1995) used constant priors for a random effects model. In general we
could have

p(θθθ,uuu,∆∆∆, ρρρ, δ0) ∝ 1. (15)

This is a special case here with ai = −1 and bi = 0 in (1). Note that under this
constant prior, the restricted MLE of (∆∆∆, ρρρ, δ0) is the marginal posterior mode.
In this case, conditions (c1) and (c2) are identical. The following corollary is
immediate.

Corollary 1. Assume the prior defined by (15) is used. In addition, if qi − 2 >
q − t and n − p − 2(r + 1) > 0, the joint posterior distribution of (θθθ, uuu,∆∆∆, ρρρ, δ0)
exists.

Case 4. Another interesting improper prior for δi is of the form, gi(δi) ∝ δ
−1/2
i .

This is a special case of (1) with ai = −1/2 and bi = 0.

Corollary 2. Assume that gi(δi) ∝ δ
−1/2
i . Under the assumptions of Theorem

2, if qi − 1 > q − t and n − p − (r + 1) > 0, the joint posterior distribution of
(θθθ, uuu,∆∆∆, ρρρ, δ0) exists.

The propriety of the posterior distribution in terms of the hyperparameters
(ai, bi) (i = 1, . . . , r), may now be summarized according to the following table.

Table 1. Propriety of the posterior distribution.

ai < 0 ai = 0 ai > 0
bi = 0 proper improper improper
bi > 0 proper proper or improper proper

3. Computation of Posterior Distributions

We may use the Gibbs sampling procedure (cf. Gelfand and Smith (1990))
to get the posterior distribution. Here are the full conditional distributions for
this purpose.
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Proposition 1. Suppose that the prior distributions of ρi is uniform on the
interval (λi1, λiqi). The full conditional distributions are given as follows:
1. θθθ|(uuu, δ0,∆∆∆, ρρρ, vvv) ∼ MVNp(θ̂θθ + LLL1, δ0(XXX′

1XXX1)−1), where LLL1 is given by (11).
2. uuu|(θθθ, δ0,∆∆∆, ρρρ, vvv) ∼MVNq(δ−1

0 MMM1XXX′
2(vvv−XXX1θθθ),MMM1), where MMM1 = (δ−1

0 XXX′
2XXX2 +

AAA−1)−1.

3. δ0|(θθθ, uuu,∆∆∆, ρρρ, vvv) ∼ IG (a0 + n
2 , b0 + 1

2(vvv − XXX1θθθ − XXX2uuu)′(vvv − XXX1θθθ − XXX2uuu)).
4. δi|(θθθ, uuu,∆∆∆(−i), ρρρ, vvv) ∼ IG (ai + qi

2 , bi + 1
2uuu

′
iBBBiuuui), for i = 1, . . . , r. Here

∆∆∆(−i) = (δ1, . . . , δi−1, δi+1, . . . , δr).
5. let ρρρ(−i) = (ρ1, . . . , ρi−1, ρi+1, . . . , ρr). The conditional density of ρi given

(θθθ, uuu,∆∆∆, ρρρ(−i), vvv) is of the form

hi(ρi) = |BBBi|qi/2 exp
{
− 1

2δi
uuu′iBBBiuuui

}
.

Sampling from the first three conditional distributions is straightforward.
Note that if ξi = 0, the parameter ρi does not effect other parameters. We
will consider only the case where qi > 1 and ξi ≥ 1. Here is a property of
logconcavity for the conditional density of ρi. From this, the adaptive rejection
sampling method by Gilks and Wild (1992) can be used.

Lemma 1. If ξi ≥ 1, the conditional density of ρi is log-concave.

Proof. Define ΛΛΛi = diag(λi1, . . . , λiqi). Let ΓΓΓi be an qi × qi orthogonal matrix
such that CCCi = ΓΓΓiΛΛΛiΓΓΓ′

i. Then BBBi = ΓΓΓi(IIIqi − ρjΛΛΛi)ξiΓΓΓ′
i and

hi(ρi) =
qi∏

j=1

(1 − ρiλij)ξi/2 exp
{
− 1

2δi
uuu′

iΓΓΓi(IIIqi − ρiΛΛΛi)ξiΓΓΓ′
iuuui

}
.

Let www = (w1, . . . , wqi)
′ = ΓΓΓ′

iuuui. Then

∂2

∂ρ2
i

log[h(ρi)] = −ξi
2

qi∑
j=1

λ2
ij

{
(1 − ρiλij)−2 +

ξi − 1
δi

(1 − ρiλij)ξi−2w2
j

}
,

which is negative in the range (λ−1
i1 , λ

−1
iqi

). The result follows.

4. Extension to Generalized Hierarchical Models

4.1. One-parameter families

Consider the hierarchical model where y1, . . . , yN are conditionally indepen-
dent given parameters vvv = (v1, . . . , vN ), and vi follows the hierarchical prior
defined by (2)–(4). Let fi(yi|vi) be the density of yi given vi.

Theorem 3. Suppose the following conditions hold.
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(A) vi follows the linear mixed model (2), where the fixed effect θθθ has a constant
prior, the random effects uuu and eee follow the distribution (3), the variance
components δi have the prior (1), and the prior for ρi is arbitrary.

(B) There exists a subset of {1, . . . , N}, say Jn = (i1, . . . , in), so that p + q ≤
n ≤ N and the following conditions hold.
(B1) If XXXj = (xxxj1, . . . , xxxj,N )′ and XXX∗

j = (xxxji1 , . . . , xxxj,in)′. rank(XXX1) = rank

(XXX∗
1) = p and rank(XXX2) = rank(XXX∗

2),
(B2) There is a constant M > 0 such that

∫
fj(yj|vj)dvj <∞, j ∈ Jn;

fj(yj|vj) ≤M, j /∈ Jn.
(16)

If b0 > 0 and the conditions (a), (b2) and (c2) in Theorem 2 hold, the
posterior distribution of (vvv, θθθ, uuu,∆∆∆, ρρρ, δ0) given yyy = (y1, . . . , yN ) is proper.

The proof can be found in the appendix.

Remark 1. We now discuss the relationship between Theorem 3 and the suf-
ficient part of Theorem 2. The relationship between Theorem 3 and Theorem
1 can be stated similarly. Note that the product of the likelihood of vvv for the
linear mixed model (2) and the prior of (θθθ,uuu,∆∆∆, ρρρ, δ0), defined by (3)-(4), is the
joint prior of (vvv, θθθ,uuu,∆∆∆, ρρρ, δ0). From Theorem 2, if b0 + 0.5SSE > 0, the suffi-
cient conditions for the propriety of the posterior of (θθθ,uuu,∆∆∆, ρρρ, δ0) given vvv are
(a), (b2) and (c2). Here since SSE is defined by (6), depending on vvv, is often
positive, we can choose b0 = 0. Since n is often large enough, we might be able
to choose a0 = 0 so that (c2) holds. In such a case, we could use the improper
prior 1/δ0 for δ0. Now for any one-parameter family, fi(yi|vi), in addition to the
rank assumption (B1) on the design matrices and integrability assumptions on
fi, we need b0 > 0, and conditions (a), (b2) and (c2) to insure the propriety of
(vvv, θθθ,uuu,∆∆∆, ρρρ, δ0). It is still an interesting open question whether we can relax the
constraint b0 > 0.

4.2. Generalized linear mixed models

We now consider generalized linear mixed models where y1, . . . , yN are inde-
pendent random observations with the probability density

fi(yi|ηi, φ) = exp[si(φ)−1{yiηi − ψi(ηi)} + γi(yi;φ)]. (17)

The function si(φ) is commonly of the form si(φ) = φw−1
i , where the wi are

prespecified weights. We wish to model the variability in ηi to account for various
fixed covariates and random effects via (2), where vi = hi(ηi). Note that for ψi(·)
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defined in (17), the first derivative dψi(ηi)/dηi is a strictly increasing function.
Let Ki be the inverse function of dψi(ηi)/dηi. Note that for any fixed scale
parameter φ, the likelihood function fi(yi|ηi, φ) is bounded by

Mi(φ) ≡ sup
ηi

fi(yi|ηi, φ) = exp[si(φ)−1{yiKi(yi) − ψi(Ki(yi))} + γi(yi;φ)].

(18)
Using arguments similar to those for Theorem 3, we have the following result.

Theorem 4. Assume that the conditions (A) and (B1) of Theorem 3 hold, and
that for any prior density p0 (proper or improper) of φ,∫ ∏

j /∈Jn

Mj(φ)

{ ∏
j∈Jn

∫
fj(yj |ηj , φ)

d

dηj
hj(ηj)dηj

}
p0(φ)dφ <∞. (19)

If b0 > 0 and the conditions (a), (b2) and (c2) in Theorem 2 hold, the posterior
distribution of (φ, vvv, θθθ, uuu,∆∆∆, ρρρ, δ0) given yyy = (y1, . . . , yN ) is proper.

Remark 2. As in Remark 1, we discuss the relationship between Theorem 4
and the sufficiency part of Theorem 2. For a generalized linear mixed model
(17), we need rank assumption (B1) on the design matrices, the integrability
assumptions (19) on the likelihood function and the marginal prior of the scale
parameter φ, the assumption b0 > 0, and the sufficient conditions (a), (b2) and
(c2) in Theorem 2 to insure the propriety of (φ, vvv, θθθ,uuu,∆∆∆, ρρρ, δ0).

One important example has yi ∼ N(µi, σ
2). In this case, ηi = µi, φ = σ2

and Ai(φ) = φ. It is easy to see that Mi(φ) = 1/
√

2πφ and
∫
fi(yi|ηi, φ)dηi = 1.

Condition (19) becomes
∫∞
0 φ−

1
2
(N−n)p0(φ)dφ < ∞, which always holds when

N = n and F is a proper prior for φ.
Another example has yi ∼ gamma(α,α/µi). In this case, α is the shape

parameter and µi is the mean of yi for given (µi, α). So φ = α, ηi = 1/µi,
Ai(φ) = −1/φ, and B(ηi) = log(ηi). Choose hi(ηi) = log(ηi) = − log(µi). Then
Mi(φ) = y−1

i ααe−α/Γ(α) and
∫∞
0 f(yi|ηi, φ)ηi

−1dηi = y−1
i . If N = n and φ has a

proper prior, condition (19) holds.
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Appendix. Proofs and Lemmas

Proof of Theorem 1. We use the familiar decomposition (vvv−XXXβββ)′(vvv−XXXβββ) =
SSE+SSR, where SSE and SSR are defined by (6) and (7), respectively. In
addition, SSR has the decomposition SSR = (θθθ − θ̂θθ − LLL1)′XXX′

1XXX1(θθθ − θ̂θθ − LLL1) +
(uuu − ûuu)′XXX′

2RRR1XXX2(uuu − ûuu). Then,∫
IRp

Gdθθθ =
(2π)

p
2 |XXX′

1XXX1|− 1
2

δ
1
2
(n−p)

0 |AAA| 12

· exp
{
−SSE

2δ0
− (uuu − ûuu)′XXX′

2RRR1XXX2(uuu − ûuu)
2δ0

− uuu′AAA−1uuu
2

} r∏
i=0

gi(δi).

Since XXX′
2RRR1XXX2 is nonnegative definite and AAA is pd, RRR2 is pd and RRR−1

2 exists.
Since

δ−1
0 (uuu − ûuu)XXX′

2RRR1XXX2(uuu − ûuu) + uuu′AAA−1uuu = (uuu − LLL2)′RRR2(uuu − LLL2) + δ−1
0 ûuu′RRR3ûuu,

(14) follows immediately. Since RRR3 is nonnegative definite, the lower bound
of ûuu′RRR3ûuu is 0, or exp{−ûuu′RRR3ûuu/(2δ0)} ≤ 1. Note that XXX′

2RRR1XXX2 is nonnegative
definite, and |RRR2| |AAA| ≥ 1. Therefore∫

IRq

∫
IRp

Gdθθθduuu ≤ (2π)
1
2
(p+q)|XXX′

1XXX1|− 1
2

δ
1
2
(n−p)

0

exp
{
−SSE

2δ0

} r∏
i=0

gi(δi). (A.1)

This proves the theorem.

Lemma 2. (Marshall and Olkin (1979)). Assume that two ν× ν symmetric ma-
trices SSS1 and SSS2 are both nonnegative definite. Let λ1(SSSi) ≤ λ2(SSSi) ≤ . . . λν(SSSi)
be the eigenvalues of SSSi. Then

ν∏
j=1

[λj(SSS1) + λj(SSS2)] ≤ |SSS1 + SSS2| ≤
ν∏

j=1

[λj(SSS1) + λν−j+1(SSS2)].

Lemma 3. Let λ1 ≤ λ2 ≤ · · · ≤ λν be real valued constants satisfying λ1 <

0 < λν . Let ρ be a random variable on (λ−1
1 , λ−1

ν ) with cumulative distribution
function F (·).
(a) If integers t1 and t2 satisfy 1 ≤ t1 ≤ t2 ≤ ν, let β = 1

2(t2 − t1 + 1). Then for
any real b,

J ≡
∫
(λ−1

1 ,λ−1
ν )

∫ ∞

0

1
sα+1


t2∏

j=t1

(1 − ρλj)ξ

s+ (1 − ρλj)ξ


1
2

e−b/sdsF (dρ) <∞ (A.2)
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for any nonnegative integer ξ if and only if one of the following two sets of
conditions holds:

α < b = 0 and α+ β > 0; (A.3)

b > 0 and α+ β > 0. (A.4)

(b) Under condition (A.3) we have the following boundaries for J .

κ1(λ1, λν , −αξ) ≤ J

Beta(−α, α+ β)
≤ κu(λ1, λν , −αξ), (A.5)

where for τ > 0,

κ1(λ1, λν , τ) =
∫
(λ−1

1 ,0]
(1 − ρλ1)τF (dρ) +

∫
(0,λ−1

ν )
(1 − ρλν)τF (dρ);(A.6)

κu(λ1, λν , τ) =
(
1 − λν

λ1

)τ
+
(
1 − λ1

λν

)τ
. (A.7)

Here Beta(·, ·) is the beta function.
(c) Under condition (A.4)we have the following boundaries for J .

κ2(λ1, λν , ξ, β)
eb(α+ β)

≤ J ≤

κu(λ1, λν ,−αξ)Beta(−α, α+β), if b > 0 and α ∈ (−β, 0);
Γ(α)b−α, if b > 0 and α > 0;
κu(λ1, λν , ηξ)Γ(η)b−η , if b > 0 and α = 0,

(A.8)

where η is an arbitrary constant such that 0 < η < β, and

κ2(λ1, λν , ξ, β) =
∫
(λ−1

1 ,0]

[
(1 − ρλ1)ξ

1 + (1 − ρλ1)ξ

]β

F (dρ)

+
∫
(0,λ−1

ν )

[
(1 − ρλν)ξ

1 + (1 − ρλν)ξ

]β

F (dρ). (A.9)

Proof of Lemma 3. We have

0 < 1 − ρλ1 ≤ 1 − ρλ2 ≤ . . . ≤ 1 − ρλν , for any ρ ∈ (λ−1
1 , 0];

1 − ρλ1 ≥ 1 − ρλ2 ≥ . . . ≥ 1 − ρλν > 0, for any ρ ∈ (0, λ−1
ν ).

Note that for any s > 0, f(x) = x/(s + x) is increasing in x > 0. For c > 0,
define

Kb(α, β, c) ≡
∫ ∞

0

e−b/s

sα+1

( c

s+ c

)β
ds. (A.10)
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We then have

J≥
∫
(λ−1

1 ,0]
Kb(α, β, (1−ρλ1)ξ)F (dρ)+

∫
(0,λ−1

ν )
Kb(α, β, (1−ρλν)ξ)F (dρ); (A.11)

J≤
∫
(λ−1

1 ,0]
Kb(α, β, (1−ρλν )ξ)F (dρ)+

∫
(0,λ−1

ν )
Kb(α, β, (1−ρλ1)ξ)F (dρ). (A.12)

Clearly Kb is finite if and only if (A.3) or (A.4) holds. Under (A.3) we use the
transformation u = s/(s + c) and get K0 = c−αBeta(−α, α + β). So the lower
bound of (A.5) holds. Also

J

Beta(−α, α+ β)
≤

(
1 − λν

λ1

)−αξ
∫
(λ−1

1 ,0]
F (dρ) +

(
1 − λ1

λν

)−αξ
∫

(0,λ−1
ν )

F (dρ)

≤ κu(λ1, λν ,−αξ).

Part (b) thus holds. For Part (c), under (A.4), by making the transformation
u = 1/s,

Kb ≥
∫ 1

0
uα+β−1

( c

c+ 1

)β
e−bdu =

( c

c+ 1

)β e−b

α+ β
. (A.13)

Applying (A.13) to the two terms of the right hand side of (A.11) with c being
(1 − ρλν)ξ and (1 − ρλ1)ξ, respectively, we get the lower bound in (27). For the
upper bound,

Kb ≤


K0 = c−αBeta(−α, α+ β), if b > 0 and α ∈ (−β, 0);
Γ(α)
bα

, if b > 0 and α > 0.
(A.14)

The first case of the upper bound for J given in (A.8) holds since Γ(α)/bα does
not depend on ρ. The second case holds from the same argument used for the
lower bound in Part (b). For the third case, i.e., when b > 0 and α = 0, we have
Kb ≤ cη

∫∞
0 uη−1e−b udu = cηΓ(η)/bη . Here η is any small positive number

satisfying η < β. Applying this formula of Kb to the two terms in (A.12) with c
being (1 − ρλ1)ξ and (1 − ρλν)ξ, respectively, we get

J ≤
[∫

(λ−1
1 ,0]

(1 − ρλv)ηξF (dρ) +
∫
(0,λ−1

v )
(1 − ρλ1)ηξF (dρ)

]
Γ(η)
bη

≤ κu(λ1, λν , ηξ)
Γ(η)
bη

.

Part (c) follows immediately.
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Proof of Theorem 2. From the proof of Theorem 1 we know that, under the
constant prior for θθθ, we have the inequality (A.1) where G is defined by (13).
Let

G1 ≡ G1(∆∆∆, ρρρ; vvv) =
1

|RRR2| 12 |AAA| 12
r∏

i=1

δ
−(ai+1)
i e−bi/δi , (A.15)

G2 =
∫ λ−1

rqr

λ−1
r1

∫ ∞

0
. . .

∫ λ−1
1q1

λ−1
11

∫ ∞

0
G1 dδ1 F1(dρ1) . . . dδr Fr(dρr). (A.16)

It follows from (14) that

G3 ≡
∫ λ−1

rqr

λ−1
r1

∫ ∞

0
. . .

∫ λ−1
1q1

λ−1
11

∫ ∞

0

∫
IRq

∫
IRp

Gdθθθduuudδ1 F1(dρ1) . . . dδr Fr(dρr)

=
(2π)

1
2
(p+q)|XXX′

1XXX1|− 1
2

δ
1
2
(n−p)+a0+1

0

exp
{
−SSE + 2b0

2δ0
− ûuu′RRR3ûuu

2δ0

}
G2. (A.17)

Thus the joint posterior is proper if and only if
∫∞
0 G3dδ0 is finite. There are two

situations to consider under Case 1.

Case 1.1. t = q. Since |AAA|−1 =
∏r

i=1 δ
−qi
i |BBBi| and AAA−1 = ⊕r

i=1δ
−1
i BBBi, we get

1

|RRR2| 12 |AAA| 12
=

 r∏
i=1

|BBBi| 12
δ

1
2
qi

i

 1

|δ−1
0 XXX′

2RRR1XXX2 + ⊕r
j=1δ

−1
j BBBj | 12

. (A.18)

Let λmin (λmax) be the smallest (largest) eigenvalue of XXX′
2RRR1XXX2. Since t = q,

XXX′
2RRR1XXX2 is positive definite and λmin > 0. Using the upper bound of Lemma 2,

|RRR2| = |δ−1
0 XXX′

2RRR1XXX2 + ⊕r
i=1δ

−1
i BBBi| ≤

r∏
i=1

δ−qi
i

qi∏
j=1

[
δi
λmax

δ0
+ λj(BBBi)

]
. (A.19)

Substituting (A.19) into (A.18), using the fact that |BBBi| =
∏qi

j=1 λj(BBBi), and
integrating G1 with respect to the (δi, ρi)′s, we get

G2≥
r∏

i=1

∫ λ−1
iqi

λ−1
i1

∫ ∞

0

e−bi/δi

δai+1
i

qi∏
j=1

(
λj(BBBi)

δiλmax/δ0 + λj(BBBi)

) 1
2

dδi Fi(dρi)

=
{λmax

δ0

}a+
r∏

i=1

∫ λ−1
iqi

λ−1
i1

∫ ∞

0

e−b∗i /s

sai+1

qi∏
j=1

(
[1 − ρiλj(CCCi)]ξi

s+ [1 − ρiλj(CCCi)]ξi

) 1
2

dsFi(dρi).(A.20)

The last equality holds by making the transformation s = δiλmax/δ0. Here
b∗i = biλmax/δ0, a+ =

∑r
i=1 ai, defined in condition (c1). Apply Lemma 3 with

t1 = 1 and t2 = qi so that t2 − t1 + 1 = qi.
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Thus the right hand side of (A.20) is finite if and only if conditions (a) and
(b2) hold. Using the lower bound in Lemma 2 and defining b̃i = biλmin/δ0,

G2 ≤
{λmin

δ0

}a+
r∏

i=1

∫ λ−1
iqi

λ−1
i1

∫ ∞

0

e−b̃i/s

sai+1

qi∏
j=1

(
[1 − ρiλj(CCCi)]ξi

s+ [1 − ρiλj(CCCi)]ξi

) 1
2

dsFi(dρi),

(A.21)
which is finite only if conditions (a) and (b2) hold. Using the lower bounds of
Lemma 3 (b) and (c) for the integrals on the right hand side of (A.20),

G2 ≥ δ
−a+

0 exp
{
−λmax

∑r
i=1 bi

δ0

}
λa+

max

r∏
i=1

H1i, (A.22)

where

H1i =

{
κ1(λi1, λiqi , ξi,

qi
2 )/(ai + qi

2 ), if conditions (a1) and (b2) hold,
κ2(λi1, λiqi , ξi,

qi
2 ) Beta(−ai, ai + qi

2 ), if conditions (a2) and (b2) hold,
(A.23)

and κ1 and κ2 are defined by (A.6) and (A.9), respectively.
Using the upper bounds of Lemma 3 (b) and (c) for the integrals on the right

hand side of (40), G2 ≤ δ−ã
0 λã

min

∏r
i=1H2i, where ã =

∑r
i=1 a

−
i +η

∑r
i=1 1(ai = 0)

for some small η > 0, and

H2i =


κu(λi1, λiqi ,−aiqi

2 )Beta(−ai, ai + qi
2 ), if bi ≥ 0 and ai ∈ (− qi

2 , 0);
Γ(ai), if bi > 0 and ai > 0;
κu(λi1, λiqi , ηξ)Γ(η), if bi > 0 and ai = 0.

(A.24)
Combining (A.17), (A.16) and (A.22), we have

(2π)
1
2
(p+q)

|XXX′
1XXX1| 12

λa+
max

[
r∏

i=1

H1i

]
exp

{
− 1

2δ0
(SSE+2b0+λmax

∑r
i=1 bi+ûuu′XXX′

2RRR1XXX2ûuu)
}

δ
1
2
(n−p)+a++a0+1

0

≤ G3 ≤ (2π)
1
2
(p+q)

|XXX′
1XXX1| 12

λã
min

[
r∏

i=1

H2i

]
1

δ
1
2
(n−p)+ã+a0+1

0

exp
{
−SSE + 2b0

2δ0

}
. (A.25)

Clearly, the integral on the left hand side with respect to δ0 is finite only if
condition (c1) holds. From condition (c2), there is a small positive number η such
that η < min{q1/2, . . . , qr} and n− p + 2a0 + 2

∑r
i=1 a

−
i + η

∑r
i=1 1(ai = 0) > 0,

where 1(ai = 0) is the indicator. Thus 1
2(n − p) + ã + a0 > 0, for some small

η > 0. Consequently, the integral
∫
G3dδ0 is finite if conditions (a), (b2) and (c2)

hold. This proves Case 1.1.
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Case 1.2. t < q and r = 1. In this case, we have q1 = q and

1

|RRR2| 12 |AAA| 12
=

|BBB1| 12
δ

q
2
1

∣∣∣∣∣XXX′
2RRR1XXX2

δ0
+

BBB1

δ1

∣∣∣∣∣
− 1

2

=
q∏

j=1

[
λj(BBB1)

] 1
2

∣∣∣∣δ1δ0 XXX′
2RRR1XXX2 + BBB1

∣∣∣∣− 1
2

.

Since rank(XXX′
2RRR1XXX2) = t < q, XXX′

2RRR1XXX2 has t positive eigenvalues. Let λsp and
λmax be the smallest positive eigenvalue and the largest eigenvalue of (XXX′

2RRR1XXX2),
respectively. From Lemma 2,

e−b1/δ1

δa1+1
1

t∏
j=1

[
λj(BBB1)

δ1
δ0
λmax + λj(BBB1)

] 1
2

≤G1 ≤ e−b1/δ1

δa1+1
1

t∏
j=1

[
λq+1−j(BBB1)

δ1
δ0
λsp + λq+1−j(BBB1)

] 1
2

.

Using Lemma 3 with (t1, t2) = (1, t) so that t2 − t1 + 1 = t, the lower bound and
upper bound of G2 with r = 1 and q1 = t hold iff conditions (a) and (b2) are
satisfied.

Case 2. t < q and r > 1. Since the inequality (A.19) still holds, the proof of
necessity for Case 1 can be applied here. For the sufficiency note that, as in Case
2, the matrix XXX′

2RRR1XXX2 has q − t zero eigenvalues. From Lemma 2 we know that∣∣∣ 1
δ0

XXX′
2RRR1XXX2 + ⊕r

i=1

1
δi

BBBi

∣∣∣
≥

{q−t∏
j=1

λj

(
⊕r

i=1

1
δi

BBBi

)}{ q∏
j=q−t+1

∣∣∣ 1
δ0
λsp + λj

(
⊕r

i=1

1
δi

BBBi

)∣∣∣},
where λsp is defined in Case 1.1 above. Under conditions (a) and (b2), qi >
q − t > 0. Thus

∣∣∣ 1
δ0

XXX′
2RRR1XXX2 + ⊕r

i=1

1
δi

BBBi

∣∣∣≥ r∏
i=1

1
δqi
i

q−t∏
j=1

λj(BBBi)

 qi∏
j=q−t+1

[
δi
λsp

δ0
+ λj(BBBi)

]
.

Substituting this inequality into G1, defined by (A.15), we have

G2 ≤
(
λsp

δ0

)a+ r∏
i=1

∫ λ−1
iqi

λ−1
i1

∫ ∞

0

e−b∗i /δi

sai+1

qi∏
j=q−t+1

(
[1 − ρiλj(CCCi)]ξi

s+ [1 − ρiλj(CCCi)]ξi

) 1
2

dsFi(dρi),

(A.26)
where b∗i = biλsp/δ0. It follows from Lemma 3, with (t1, t2) being (q − t+ 1, qi),
that the right side of (A.26) is finite if conditions (a) and (b2) hold. In this case,
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G2 ≤ (δ0)−ã(λsp)ã
∏r

i=1H2i, where ã is defined in the proof of Case 1 and H2i is
given by (A.24) with qi replaced by qi − q+ t. It follows From (A.17) and (A.16)
that

G3 ≤ (2π)
1
2
(p+q)(λsp)ã

|XXX′
1XXX1| 12

[
r∏

i=1

H2i

]
1

δ
1
2
(n−p)+ã+a0+1

0

exp
{
−SSE + 2b0

2δ0

}
. (A.27)

The integral of the right hand side with respect to δ0 is finite if condition (c2)
holds. This proves the case when t < q and r > 1.

Proof of Theorem 3. Without loss of generality, assume that ij = j, j =
1, . . . , n , so that vvv∗ ≡ (v1, . . . , vn)′. Write yyy = (yyy∗′ , ỹyy′)′, vvv = (vvv∗′ , ṽvv′)′, and
ṽvv ≡ (vn+1, . . . , vN )′ = X̃XX1θθθ + X̃XX2uuu + ẽee. The posterior density of (vvv, θθθ,uuu,∆∆∆, ρρρ, δ0)
given yyy is

p(vvv, θθθ,uuu,∆∆∆, ρρρ, δ0|yyy)

∝
∏N

i=1 fi(yi|vi)

δ
1
2
(N−n)

0

N∏
i=n+1

exp
[
− 1

2δ0
(ṽvv − X̃XX1θθθ − X̃XX2uuu)′(ṽvv − X̃XX1θθθ − X̃XX2uuu)

]
G∗.

Here G∗ is defined by (13) with XXX1 and XXX2 replaced by XXX∗
1 and XXX∗

2, respec-
tively. Using the second inequality in (16) and integrating with respect to
(vn+1, . . . , vN ), p(vvv∗, θθθ,uuu,∆∆∆, ρρρ, δ0|yyy) is proportional to

∏n
i=1 fi(yi|vi)G∗. From

the inequality (A.25) for Case 1. and (A.27) for Case 3. in the proof of Theorem

2, p(vvv∗, δ0|yyy) ≤ M̃δ
− 1

2
(n−p)−ã−a0−1

0 exp{−b0/(2δ0)}, where ã is the same as in
the proof of Case 1 and M̃ is a generic constant depending only on (XXX∗

1,XXX
∗
2) and

the eigenvalues of CCC. From the assumption (c2) in Theorem 2, we know that
p(vvv∗|yyy) ≤ ∏n

i=1 fi(yi|vi), which is proper by the first inequality in (16). This
completes the proof.
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