QUANTILE REGRESSION ESTIMATES FOR A CLASS OF LINEAR AND PARTIALLY LINEAR ERRORS-IN-VARIABLES MODELS

Xuming He and Hua Liang

University of Illinois and Humboldt-Universität zu Berlin

Abstract: We consider the problem of estimating quantile regression coefficients in errors-in-variables models. When the error variables for both the response and the manifest variables have a joint distribution that is spherically symmetric but is otherwise unknown, the regression quantile estimates based on orthogonal residuals are shown to be consistent and asymptotically normal. We also extend the work to partially linear models when the response is related to some additional covariate.

Key words and phrases: Errors-in-variables, kernel, linear regression, regression quantile, semiparametric model.

1. Introduction

Regression analysis is routinely carried out in all areas of statistical applications to explain how a dependent variable Y relates to independent variables X. Most authors consider the estimation or inference problems based on data observed on both X and Y variables. However, the covariates are not always observable without error. If X is observed subject to random error, the regression model is usually called the errors-in-variables (EV) model. A careful study of such models is often needed, as the standard results on regression models do not carry over. The best-known is the effect of attenuation for the likelihoodbased estimators without correction for the measurement error in X. A detailed coverage of linear errors-in-variables models can be found in Fuller (1987). More recent work on nonlinear models with measurement errors can be found in Carroll, Ruppert and Stefanski (1995). The literature on EV models are mainly confined to estimating the conditional mean function of Y given X, assuming Gaussian errors. In the present paper we attempt to consider conditional median and other quantile functions, as pioneered by Koenker and Bassett (1978), for a class of unspecified error distributions. For the usefulness of conditional quantiles, see examples and discussions found in Efron (1991) and He (1997), among many others.

Let us start with the EV model $Y_i = X_i^T \beta + \epsilon_i$ and $W_i = X_i + U_i$ (i = 1, ..., n), where the $X_i \in \mathbb{R}^p$ are unobservable explanatory variables, $W_i \in \mathbb{R}^p$ are manifest variables, $Y_i \in \mathbb{R}$ are responses, and $(\epsilon_i, U_i^T) \in \mathbb{R}^{p+1}$ are independent with a common error distribution that is spherically symmetric. Spherical symmetry implies that ϵ_i and each component of U_i have the same distribution, which ensures model identifiability. A special case of such EV models with Gaussian errors and known variance ratio is frequently considered in the literature. Multivariate t-distributions are additional examples for this error structure.

We restrict ourselves to structural models where X_i are independently and identically distributed random variables. If X_i stem from non-stochastic designs, the model is said to have a functional relationship, see Fuller (1987) for details.

The least squares estimator of β based on $\sum_i (Y_i - W_i^T \beta)^2$ is known to be biased towards zero. It is instructive to consider the quantile regression in the same spirit, but we work with the population version with p = 1, for clarity. We ask which $b \in R$ minimizes $E\rho_{\tau}(Y - bW)$, where ρ_{τ} is the τ th quantile objective function, defined by

$$\rho_{\tau}(r) = \tau \max\{r, 0\} + (1 - \tau) \max\{-r, 0\}.$$
(1.1)

Note that the solution to minimizing $E\rho_{\tau}(Y-c)$ over $c \in R$ is the τ th quantile of Y. If the conditional quantile of Y given W is linear in W, then it is the solution to minimizing $E\rho_{\tau}(Y-a+bW)$ over $a, b \in R$. Consider the special case where X, U, ϵ are independent and normally distributed with mean zero and variances σ_x^2, σ^2 and σ^2 respectively. Then (Y, W) is bivariate normal, and the conditional distribution of Y given W is normal with mean $\beta \sigma_x^2 W/(\sigma^2 + \sigma_x^2)$ and variance $v_0^2 = \{(\beta_x^2 + \sigma^2)(\beta^2 \sigma_x^2 + \sigma^2) - \beta^2 \sigma_x^2\}/(\sigma_x^2 + \sigma^2)$. Thus, for the τ th quantile problem, we obtain $a = \Psi^{-1}(\tau)v_0$, and $b = \beta \sigma_x^2/(\sigma^2 + \sigma_x^2)$, where $\Psi(\cdot)$ is the standard normal distribution function. This produces the well-known attenuation for the slope parameter. However we note in general that the conditional quantile of Y given W is not linear in W, so the slope parameter from regressing Y directly on W would result in bias in a more complicated manner.

In the case of least squares estimation for the conditional mean, a number of authors have proposed methods for correction of the measurement error effects. Likelihood arguments of Lindley (1947) and Madansky (1959) lead to a minimization of

$$\sum_{i} \left(\frac{Y_i - W_i^T b}{\sqrt{1 + |b|^2}} \right)^2 \tag{1.2}$$

for Gaussian errors. A common interpretation of this weighted least squares method is that $(Y_i - W_i^T b)/\sqrt{1 + |b|^2}$ is the orthogonal residual rather than the vertical distance in regression space. In Section 2, we consider regression quantile estimation for the linear EV model by applying the loss function (1.1) to orthogonal residuals. Under some mild conditions, the resulting quantile estimate is consistent and asymptotically normal. We also note that without knowing a parametric form for the error distribution of (ϵ, U^T) , spherical symmetry is essential for the consistency. Median regression estimates are also compared with L_2 estimates from (1.2) through a small scale simulation study. These ideas are extended to partly linear models in Section 3, where we adjust for the nonparametric part of the model using an idea of orthogonal projection. It is shown that the quantile estimate for the parametric component attains the same asymptotic efficiency as if the nonparametric component of the model were known. Proofs of the main results in the paper are provided in Section 4.

In the present paper, the identifiability of the EV model is resolved through classical means by imposing some assumption on the joint error structure. Depending on the nature of the problem in practice, other means of identification might be more appropriate. In some cases, the distribution of the measurement error U may be estimated. In yet others, instrumental variables may be available. Further research is clearly needed to identify and analyze appropriate methods of estimating regression quantiles.

2. Linear EV Models

Median regression is better known in the statistical literature as least absolute deviation regression. In this case, Brown (1982) discussed the approach of estimating covariates X_i to obtain

$$\beta = argmin_{b,x_1,...,x_n} \sum_{i} \{ |Y_i - x_i^T b| + |W_i - x_i| \},$$
(2.1)

and concluded that the procedure will under- or overestimate the slope parameter. In this section, we assume that an intercept term α is in the model in addition to the *p*-dimensional latent variable $X: Y_i = \alpha + X_i^T \beta + \epsilon_i$. We propose to compute the τ th quantile estimate by minimizing $Q(a,b) = n^{-1} \sum_i \rho_{\tau} (Y_i - a - W_i^T b) / \sqrt{1 + |b|^2}$ over $a \in R, b \in R^p$, where |b| denotes the L_2 norm of the vector *b*.

Note that the loss function ρ_{τ} is differentiable everywhere except at zero. The directional derivatives of Q(a, b) at the solution $(\hat{\alpha}, \hat{\beta})$ are all non-negative, which implies that

$$\sum_{i} \psi_{\tau} \left(\frac{Y_i - a - W_i^T b}{\sqrt{1 + |b|^2}} \right) = O(\#\{i \in h\}),$$

and

$$\sum_{i} \left(W_{i} + \frac{Y_{i} - a - W_{i}^{T} b}{1 + |b|^{2}} b \right) \psi_{\tau} \left(\frac{Y_{i} - a - W_{i}^{T} b}{\sqrt{1 + |b|^{2}}} \right) = O(\sum_{i \in h} W_{i})$$
(2.2)

at $(a,b) = (\hat{\alpha}, \hat{\beta})$, where ψ_{τ} is the derivative of ρ_{τ} , #A denotes the size of the set A and $\{i \in h\}$ is the index set for zero residuals. The O notation is used

in the almost sure sense. Even though the solution $(\hat{\alpha}, \hat{\beta})$ does not satisfy a usual estimating equation exactly, it does so approximately as the number of zero residuals for any linear fit is less than or equal to p+1 with probability one, provided the distribution of (W, Y) is continuous.

Quantile regression can be viewed as a special class of M-estimators and several authors have studied their properties from a robustness point of view. Zamar (1989) considered orthogonal regression M-estimators based on the idea of minimizing a robust scale. Cheng and Van Ness (1992) derived bounded influence M- and GM-estimators for Gaussian EV models. Such estimators provide some degree of protection against deviation from the Gaussian assumptions. The quantile estimation problem we consider in the present paper differs from the robust M-estimation literature in several ways. For instance, we do not have a central error model (such as Gaussian). The quantiles are of special interest for non-Gaussian models. They are not just alternative methods for the least squares estimation of the conditional mean, but are designed to estimate quantiles directly for their own sake. M-estimators with more general loss functions, such as those considered in Cheng and Van Ness (1992), are not scale equivariant unless a preliminary scale estimate is available.

To illustrate the method of quantiles, consider a simple example. We have measurements of the brain weight (in grams) and the body weight (in kilograms) of 28 animals. The data are given in Rousseeuw and Leroy (1987, p.57) and this sample was taken from larger data sets in Jerison (1973). We assume that the conditional quantiles of the log brain weight are linear in the log body weight. We also take the view that the body weights are measured with some error. By assuming that regression error and measurement error have a symmetric joint distribution, we computed the 25th, 50th and 75th quantiles, see Figure 1(a). The slopes for the three quartile lines are 0.68, 0.74 and 0.71 respectively. By contrast, if we assume Gaussian homoscedastic errors, the quartiles can be obtained as in Figure 1(b) using parallel lines of slope 0.496. It is clear that a few outliers do not follow the Gaussian distribution in the regression equation, and have inflated the spread between quartiles. The regression quantile approach allows for heaviertailed errors without having to specify it more exactly. Rousseeuw and Leroy (1987) computed a robust estimator of the regression with a slope parameter of 0.75, and an approximate 95% confidence interval of (0.6848, 0.8171). The robust estimate corrected the bias due to the outliers but an exact error distribution (say Gaussian) for the "good" data must be specified to compute quantiles. Besides, the quantiles obtained this way would not be consistent for the population with outliers included.

The rest of the section is devoted to the asymptotic properties of quantile estimates. From the technical point of view, the quantile estimate involves a nondifferentiable score function, and some of the Taylor-type expansions typically used for studying smoothing M-estimators are not *directly* applicable. However, the asymptotic expansions derived by He and Shao (1996) can be used. But first, we state the consistency result for quantile estimates.

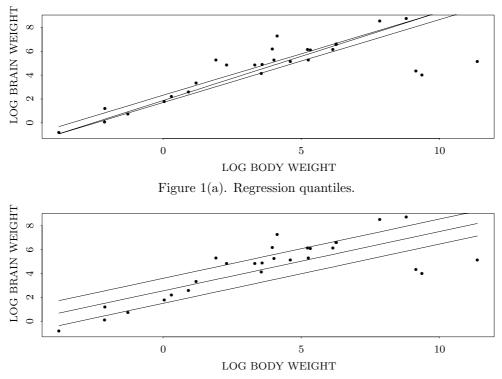


Figure 1(b). LS-based quantile estimates.

Theorem 2.1. Consider a random sample (W_i, Y_i) from the linear EV model

$$Y_i = \alpha + X_i^T \beta + \epsilon_i, \quad W_i = X_i + U_i, \tag{2.3}$$

where the distribution of (ϵ_i, U_i^T) is spherically symmetric with finite first moment. Assume that q_{τ} is the unique solution to $E\rho_{\tau}(\epsilon_i - q) = 0$, and let $\alpha_{\tau} = \alpha + q_{\tau}\sqrt{1 + |\beta|^2}$. Then the quantile estimate $(\hat{\alpha_{\tau}}, \hat{\beta_{\tau}})$ that minimizes

$$Q(a,b) = n^{-1} \sum_{i} \rho_{\tau} \left(\frac{Y_i - a - W_i^T b}{\sqrt{1 + |b|^2}} \right)$$
(2.4)

over (a, b) converges strongly to (α_{τ}, β) .

Note that q_{τ} is the τ th quantile of ϵ_i . The key requirement for consistency is that $D(a,b) = E\rho_{\tau}(\epsilon - U^T b - (a - \alpha) - X^T (b - \beta))/\sqrt{1 + |b|^2}$ has a unique minimum at $(a,b) = (\alpha + q_{\tau}\sqrt{1 + |\beta|^2}, \beta)$. This is true if $(\epsilon - U^T b)/\sqrt{1 + |b|^2}$ has the same distribution for all b, and this is implied by our assumption that (ϵ, U) is spherically symmetric.

On the other hand, if $D_1(b) = E\rho_{\tau}(\epsilon - U^T b)/\sqrt{1 + |b|^2}$ is not constant but achieves its minimum at some $b = b_1$ different from β , then the minimum of D(a, b) cannot be attained at the true parameters for all distributions of X. Let $d = D_1(\beta) - D_1(b_1) > 0$. When the dispersion of X is sufficiently small relative to that of $\epsilon - U^T b_1$, we would have $D(\alpha, \beta) = D_1(\beta) = D_1(b_1) - d > D(\alpha, b_1)$.

Under the consistency framework, the quantile estimate has a Gaussian limiting distribution. Let f be the density of ϵ .

Theorem 2.2. Under the conditions of Theorem 2.1, we further assume that E(X) = 0, $\Sigma_x = E(XX^T)$ is positive definite, $f(q_\tau) > 0$, $f(e+q_\tau) - f(q_\tau) = o(1)$ as $e \to 0$, and $E\epsilon^2 < \infty$. Then,

$$\sqrt{n}(\hat{\alpha}_{\tau} - \alpha_{\tau}) \to N(0, \tau(1 - \tau)f^{-2}(q_{\tau})),$$
$$\sqrt{n}(\hat{\beta}_{\tau} - \beta) \to N(0, \Sigma_{\beta})$$

in distribution, where $\Sigma_{\beta} = f^{-2}(q_{\tau})(1+|\beta|^2)\Sigma_x^{-1}Q\Sigma_x^{-1}$ with $\xi = (\epsilon - U^T\beta)/\sqrt{1+|\beta|^2}-q_{\tau}$, and

$$Q = \tau (1 - \tau) \Sigma_x + \text{Cov} \{ \psi_\tau(\xi) (U + \xi \beta / \sqrt{1 + |\beta|^2}) \}.$$
 (2.5)

If there were no measurement errors, the second term of (2.5) would be absent. We can view the second part of Q as the additional uncertainty in the slope estimate due to measurement errors. If (ϵ, U^T) is multivariate normal, the expression of Q simplifies to

$$Q = \tau (1 - \tau) \Sigma_x + E \{ U U^T \psi_\tau^2(\xi) \} - \frac{E \{ \xi^2 \psi_\tau^2(\xi) \}}{1 + |\beta|^2} \beta \beta^T.$$

We refer to two recent papers of Cui (1997) and Cui and Li (1998) for a different asymptotic approach.

A consistent estimate of the intercept α can be obtained as $\frac{1}{2}(\hat{\alpha}_{\tau} + \hat{\alpha}_{1-\tau})$. The quantity q_{τ} can be estimated using $\hat{q}_{\tau} = \frac{\hat{\alpha}_{\tau} - \hat{\alpha}_{1-\tau}}{2\sqrt{1+|\hat{\beta}_{\tau}|^2}}$. At $\tau = .5$, we have $\alpha_{\tau} = \alpha$ and $q_{\tau} = 0$.

To gain some understanding of how well the proposed estimator works, we run a small Monte Carlo experiment. We draw samples of size n=100 from the following model: $Y_i = \alpha + \beta X_i + \epsilon_i$ and $W_i = X_i + U_i$, where X_i is uniformly distributed in $(0, \sqrt{12})$, and (ϵ_i, U_i^T) is either standard bivariate normal or has a bivariate t-distribution with 3 degrees of freedom. The mean-square errors for the median estimates of both α and β are estimated from 500 runs. The estimates are compared with the maximum likelihood estimates under Gaussian errors. Some results are given in Table 1. Note that the conditional mean and the median for the model are the same, so the comparison can be made on the same scale.

β	L_2 Estimates (a)	L_1 Estimates (a)	L_2 Estimates (b)	L_1 Estimates (b)
1	0.0230, 0.0056	0.035, 0.0089	2.2177, 0.7104	0.4742, 0.1396
2	0.0495, 0.0120	0.0846, 0.0207	2.2936, 0.7364	0.7132, 0.2071
10	1.0887, 0.2768	1.6943, 0.4188	13.745, 3.6205	8.8325, 2.2509

Table 1. MSE for the L_1 and L_2 estimates.

(a) refers to bivariate normal error, and (b) for bivariate t_3 . The two numbers in each entry are the MSE's for the intercept and slope estimates respectively.

When the error distribution is normal, the median regression estimate has a relative efficiency of above 60% for all three β values considered. In the case of t(3) as errors, the relative efficiency moves above 1. The deficiency for the least squares based estimate is higher for smaller β . When $\beta = 1$, the median estimate is about 5 times more efficient. These comparative results are typical. The median estimate has the desirable property of robustness. We also wish to add that the objective functions for both approaches are nonlinear and nonconvex, so the computational complexities for finding the estimates are similar.

To conclude this section, we note that our approach may be extended somewhat to cases where there exists a known (p+1) by (p+1) matrix A such that the distribution of $A(\epsilon_i, U_i^T)^T$ is spherically symmetric. Gleser (1981) considered such extensions when (ϵ_i, U_i) has finite second moments.

3. Partially Linear EV Models

Partially linear models drew a lot of attention in the 80's due to their flexibility in incorporating nonparametric relationship for some covariates while keeping the simplicity of linear regression on other variables. Engle, Granger, Rice and Weiss (1986) provided a good example for such semiparametric models in studying the relation between weather and electricity sales. Heckman (1986), Speckman (1988), Chen (1988) and He and Shi (1996) considered the asymptotics of partially linear models. They show that the parameters in the linear component can be estimated as efficiently as if the nonparametric component were known. Cuzick (1992a,b) considered adaptive estimation to achieve efficiency when the error distribution is unknown. Liang and Cheng (1993) provided some results on the second-order efficiency. The Gaussian likelihood based estimator for partially linear models has recently been studied by Liang, Härdle and Carroll (1999).

In this section, we consider the quantile estimate of the slope parameter β in the partially linear EV model

$$Y_i = X_i^T \beta + g(T_i) + \epsilon_i, \quad W_i = X_i + U_i, \tag{3.1}$$

under the structure of Section 2, except that a nonparametric relation g(T) enters the model additively. The intercept term is absorbed in g. We assume that T is an observable variable defined on [0, 1] and add the following, which follows from independence of T and X, for example.

Assumption 3.1. E(X|T = t) = 0 for all $t \in [0, 1]$.

The following projection operation is useful and defined first. Let $\omega_{ni}(t) = \omega_{ni}(t; T_1, \ldots, T_n)$ be probability weight functions depending only on the design points T_1, \ldots, T_n . For any sequence of variables or functions (S_1, \ldots, S_n) , we define $\mathbf{S}^T = (S_1, \ldots, S_n)$, $\tilde{S}_i = S_i - \sum_{j=1}^n \omega_{nj}(T_i)S_j$, and $\tilde{\mathbf{S}}^T = (\tilde{S}_1, \ldots, \tilde{S}_n)$. The conversion from \mathbf{S} to $\tilde{\mathbf{S}}$ will be applied to W_i and Y_i .

Choices of the weight function $\omega_{ni}(t)$ will be made clear later. The estimator $\tilde{\beta}_n$ we consider minimizes

$$\sum_{i} \rho_{\tau} \left(\frac{\widetilde{Y}_{i} - \widetilde{W}_{i}^{T} b}{1 + |b|^{2}} \right)$$
(3.2)

over $b \in \mathbb{R}^p$. We suppress the dependence of β_n on τ in this section.

The weights are assumed to satisfy the following condition, essentially the same as Assumption 1.3 of Liang, Härdle and Carroll (1999).

Assumption 3.2. Weight functions $\omega_{ni}(\cdot)$ satisfy:

(i) $\sum_{j=1}^{n} \omega_{ni}(T_j) = 1$, for any i,

(ii) $\max_{1 \le i,j \le n} \omega_{ni}(T_j) = O(b_n),$

(iii) $\max_{1 \le i \le n} \sum_{j=1}^{n} \hat{\omega}_{nj}(T_i) I(|T_j - T_i| > c_n) = O(c_n),$

for some $b_n = o(1)$, and $c_n = \log n/(nb_n)$.

Note that Assumption 3.2(iii) follows from (ii) if T_i are uniformly spaced on [0, 1]. We now state the main result for partially linear models. Recall that spherical symmetry of the error distributions (ϵ, U^T) is always assumed, as in Section 2.

Theorem 3.1. Suppose that g is Lipschitz, and for some $1 > \delta > 0$, $E\epsilon^{2+\delta} < \infty$ and $E|X|^{2+\delta} < \infty$. Under Assumptions 3.1 and 3.2, with $b_n = n^{-(3-\delta_1)/4}$ and $\delta_1 = \delta/(2+\delta)$, $\tilde{\beta}_n$ is a consistent estimate of β and

$$\sqrt{n}(\hat{\beta}_n - \beta) \to N(0, \Sigma_\beta),$$

where the matrix Σ_{β} is that of Theorem 2.2.

Assumption 3.2 can be weakened slightly for the consistency part of the theorem, but we choose not to elaborate. Finite second moments of ϵ and X may be sufficient for asymptotic normality, but our proof requires existence of the $(2 + \delta)$ th moments where $\delta > 0$ can be arbitrarily small.

To construct the weight functions $\omega_{ni}(t)$, we may use a probability kernel K. Let h_n be a sequence of bandwidth parameters that tends to zero as $n \to \infty$. We propose to use

$$\omega_{nj}(t) = K\left(\frac{t-T_j}{h_n}\right) / \left\{\sum_{i=1}^n K\left(\frac{T_i-T_j}{h_n}\right)\right\}, \quad 1 \le j \le n.$$
(3.3)

This choice can be justified by the following.

Proposition 3.1. Suppose that K(t) is a bounded and symmetric probability density function on [-1,1], $h_n = c/(nb_n)$ for some constant c, and the design points T_i are nearly uniform in the sense that $C_1/n \leq \min\{|T_i - T_{i-1}|\} \leq \max\{|T_i - T_{i-1}|\} \leq C_2/n$ for some constants $C_1, C_2 > 0$. Then the choice (3.3) satisfies Assumption 3.2.

The proof of Proposition 3.1 is immediate. A particular example uses the Nadaraya-Watson kernel $K(t) = (15/16)(1-t^2)^2 I(|t| \le 1)$. Theorem 3.1 suggests using $h_n = cn^{-(1+\delta_1)/4}$ for some small number $\delta_1 > 0$. Since the objective is to estimate β , our limited experience indicates that the choice of the bandwidth h_n here is not as critical as it is in direct nonparametric function estimation.

4. Proofs

Proof of Theorem 2.1. Note that Q(a, b) converges to $E\rho_{\tau}(\epsilon_1 - \frac{a - \alpha + X^T(b - \beta)}{\sqrt{1 + |b|^2}})$. By the assumptions, this expectation has a unique minimum at $a = \alpha_{\tau}$ and $b = \beta$. Now consider any subsequence of $(\hat{\alpha}_{\tau}, \hat{\beta}_{\tau})$. It is easy to show by contradiction that (i) it is bounded, and (ii) any further subsequence that converges has the same limit (α_{τ}, β) .

To see (i), note that if $a/\sqrt{1+|b|^2}$ is unbounded along the sequence, then so is Q(a,b). If $a/\sqrt{1+|b|^2}$ is bounded along the sequence, then $(a/\sqrt{1+|b|^2}, b/\sqrt{1+|b|^2})$ will converge for a further subsequence to, say, (a_0, b_0) with $|b_0| = 1$. This means that along the new subsequence Q(a,b) will converge to $E\rho_{\tau}(\epsilon_1 - a_0 - X^T b_0) > E\rho_{\tau}(\epsilon_1 - q_{\tau})$, which leads to a contradiction. Similar arguments show (ii), and the proof is complete.

Proof of Theorem 2.2. Since the quantile estimate satisfies (2.2), we invoke Corollary 2.2 of He and Shao (1996) for M-estimators. One can verify the assumptions needed for the Corollary by setting r = 1, $A_n = \lambda_{max}(Q)n$, and $D_n = nf(q_\tau)diag(1, (1 + |\beta|^2)^{-1/2}\Sigma_x)$, where $\lambda_{max}(Q)$ denotes the maximum eigenvalue of Q. Furthermore, let $\xi_i = (\epsilon_i - U_i^T \beta)/\sqrt{1 + |\beta|^2} - q_\tau$. It then follows that

$$\hat{\alpha}_{\tau} - \alpha_{\tau} = \{ nf(q_{\tau}) \}^{-1} \sum_{i} \psi_{\tau}(\xi_i) + o_p(n^{-1/2}),$$

and

$$\hat{\beta}_{\tau} - \beta = \{ nf(q_{\tau})(1 + |\beta|^2)^{-1/2} \Sigma_x \}^{-1} \sum_i (X_i + U_i + \xi_i \beta / \sqrt{1 + |\beta|^2}) \psi_{\tau}(\xi_i) + o_p(n^{-1/2}) \psi_{\tau}$$

A routine application of the Central Limit Theorem completes the proof of Theorem 2.2, with

$$Q = E\{(X_i + U_i + \xi_i \beta / \sqrt{1 + |\beta|^2})(X_i + U_i + \xi_i \beta / \sqrt{1 + |\beta|^2})^T \psi_\tau^2(\xi_i)\}$$

= $E\psi_\tau^2(\xi_i)\Sigma_x + \operatorname{Cov}\{(U + \xi\beta / \sqrt{1 + |\beta|^2})\psi_\tau^2(\xi_i)\}.$

The following lemma is useful for the proof of Theorem 3.1. It can be proved using Bernstein's inequality, see Liang, Härdle and Carroll (1999, Lemma A4) for a similar proof. Related details can also be found in Cui and Li (1998).

Lemma 4.1. For any sequence of independent variables $\{V_k, k = 1, ..., n\}$ with mean zero and finite $(2 + \delta)$ th moment, and for a set of positive numbers $\{a_{ki}, k, i = 1, ..., n\}$ such that $\sup_{1 \le i, k \le n} |a_{ki}| \le n^{-p_1}$ for some $0 < p_1 < 1$ and $\sum_{j=1}^n a_{ji} = O(n^{p_2})$ for some $p_2 \ge \max\{0, 2/(2 + \delta) - p_1\}$,

$$\max_{1 \le i \le n} \left| \sum_{k=1}^{n} a_{ki} V_k \right| = O_p(n^{-(p_1 - p_2)/2} \log n).$$

Proof of Theorem 3.1. Assume without loss of generality that δ is small enough that $\delta_1 < 1/4$. Assumption 3.2(ii) and Lemma 4.1 (using $p_1 = (3 - \delta_1)/4$ and $p_2 = 1 - \delta_1 - p_1$) imply that $\max_{1 \le i \le n} |\omega_{nk}(T_i)V_k| = O(n^{-(1+\delta_1)/4} \log n)$ when $V_k = \epsilon_k$ or X_k or U_k . Assumption 3.2(iii) implies that $\max_{1 \le i \le n} |\tilde{g}(T_i)| = O(c_n) = O(n^{-(1+\delta_1)/4} \log n)$.

For simplicity in notation, let $\tilde{a}_i = \widetilde{W}_i + \frac{\widetilde{Y}_i - \widetilde{W}_i^T \beta}{1 + |\beta|^2} \cdot \beta$, $\tilde{b}_i = \psi_\tau \left(\frac{\widetilde{Y}_i - \widetilde{W}_i^T \beta}{\sqrt{1 + |\beta|^2}}\right)$, $a_i = W_i + \frac{\epsilon_i - U_i^T \beta}{1 + |\beta|^2} \cdot \beta$, and $b_i = \psi_\tau \left(\frac{\epsilon_i - U_i^T \beta}{\sqrt{1 + |\beta|^2}}\right)$. Then it is straightforward to verify that

$$\max_{1 \le i \le n} |a_i - a_i| = O_p(n^{-(1+\delta_1)/4} \log n),$$

$$\max_{1 \le i \le n} |\tilde{b}_i - b_i| = O_p(n^{-(1+\delta_1)/4} \log n).$$
(4.1)

Note that both a_i and b_i are sequences of i.i.d. variables with mean zero and finite variances. By re-arranging, we have for any β ,

$$\sum_{i} \widetilde{a}_{i} \widetilde{b}_{i} - \sum_{i} a_{i} b_{i} = \sum_{i} (\widetilde{b}_{i} - b_{i})(\widetilde{a}_{i} - a_{i}) + \sum_{i} (\widetilde{b}_{i} - b_{i})a_{i} - \sum (\widetilde{a}_{i} - a_{i})b_{i}.$$
 (4.2)

We now show that each term on the right hand side of (4.2) is $o_p(n^{-1/2})$.

138

Since b_i and \tilde{b}_i take only two possible values, τ and $\tau - 1$, (4.1) implies that $P(\tilde{b}_i = b_i, 1 \leq i \leq n) \to 1$. So, only the last summation in (4.2) needs to be dealt with. To this end, we write

$$\sum_{i=1}^{n} (\tilde{a}_i - a_i)b_i = \sum_{j \neq i} \omega_{nj}(T_i)X_jb_i + \sum_{j \neq i} \omega_{nj}(T_i)\left(U_j + \frac{\epsilon_j - U_j^T\beta}{1 + |\beta|^2}\beta\right)b_i$$
$$+ \sum_{i=1} \frac{\tilde{g}(T_i)}{1 + |\beta|^2}\beta b_i + \sum_{i=1} \omega_{ni}(T_i)X_ib_i$$
$$+ \sum_{i=1} \omega_{ni}(T_i)\left(U_i + \frac{\epsilon_i - U_i^T\beta}{1 + |\beta|^2}\beta\right)b_i.$$

By the Chebyshev inequality, it is easy to see that the third to fifth terms on the right hand side of the above identity are of the order $o_p(n^{-1/2})$. The same bound for the other two terms follows from the arguments used in Lemma A.6 of Liang, Härdle and Carroll (1999). We omit the details.

We have shown that the parameter estimate β_n satisfies

$$\sum_{i} (W_i + \frac{\epsilon_i - U_i^T \widetilde{\beta}_n}{1 + |\widetilde{\beta}_n|^2} \cdot \widetilde{\beta}_n) \psi_\tau \Big(\frac{\epsilon_i - U_i^T \widetilde{\beta}_n}{1 + |\widetilde{\beta}_n|^2} \Big) = o_p(n^{1/2}).$$

Then, as in the proofs for linear models in Section 2, we obtain the representation

$$\widetilde{\beta}_n - \beta = -(1 + |\beta|^2)^{1/2} (nf(q_\tau)\Sigma_x)^{-1} \sum_i a_i b_i + o_p(n^{-1/2}),$$

from which the desired result follows.

Acknowledgements

The authors are grateful to two referees and an associate editor for very helpful comments. The research of Xuming He was supported in part by National Science Foundation Grant SBR 9617278. The work of Hua Liang was partially supported by Alexander von Humboldt Foundation.

References

- Brown, M. L. (1982). Estimating line estimation with error in both variables. J. Amer. Statist. Assoc. 77, 71-79. Correction in 78, 1008.
- Carroll, R. J., Ruppert, D. and Stefanski, L. A. (1995). Measurement Error in Nonlinear Models. Chapman and Hall, New York.
- Chen, H. (1988). Convergence rates for parametric components in a partly linear model. Ann. Statist. 16, 136-146.
- Cheng, C. L. and Van Ness, J. W. (1992). Generalized *M*-estimators for errors-in-variables regression. *Ann. Statist.* **20**, 385-397.

- Cui, H. (1997). Asymptotic normality of M-estimates in the EV model. Systems Sci. Math. Statist. 10, 225-236.
- Cui, H. and Li, R. (1998). On parameter estimation for semi-linear errors-in-variables models. J. Multivariate Anal. 64, 1-24.
- Cuzick, J. (1992a). Semiparametric additive regression. J. Roy. Statist. Soc. Ser. B 54, 831-843.
- Cuzick, J. (1992b). Efficient estimates in semiparametric additive regression models with unknown error distribution. Ann. Statist. 20, 1129-1136.
- Engle, R. F., Granger, C. W. J., Rice, J. and Weiss, A. (1986). Semiparametric estimates of the relation between weather and electricity sales. J. Amer. Statist. Assoc. 81, 310-320.
- Efron, B. (1991). Regression percentiles using asymmetric squared error loss. *Statist. Sinica* 1, 93-125.
- Fuller, W. A. (1987). Measurement Error Models. Wiley, New York.
- Gleser, L. J. (1981). Estimation in a multivariate "errors in variables" regression model: large sample results. Ann. Statist. 9, 24-44.
- He, X. (1997). Quantile curves without crossing. Amer. Statist. 51, 186-192.
- He, X. and Shi, P. D. (1996). Bivariate tensor-product B-splines in a partly linear model. J. Multivariate Anal. 58, 162 -181.
- He, X. and Shao, Q. (1996). A general Bahadur representation of M-estimators and its application to linear regression with nonstochastic designs. Ann. Statist. 24, 2608-2630.
- Heckman, N. E. (1986). Spline smoothing in partly linear models. J. Roy. Statist. Soc. Ser. B 48, 244-248.
- Jerison, H. J. (1973). Evolution of the Brain and Intelligence. Academic Press, New York.
- Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica 46, 33-50.
- Liang, H. and Cheng, P. (1993). Second order asymptotic efficiency in a partially linear model. Statist. Probab. Lett. 18, 73-84.
- Liang, H., Härdle, W. and Carroll, R. J. (1999). Large sample theory in a semiparametric partially linear errors-in-variables model. To appear in *Ann. Statist.*
- Lindley, D. B. (1947). Regression lines and the functional relationship. J. Roy. Statist. Soc. Ser. B 9, 219-244.
- Madansky, A. (1959). The fitting of straight lines when both variables are subject to error. J. Amer. Statist. Assoc. 54, 173-205.
- Rousseeuw, P. J. and Leroy, A. M. (1987). *Robust Regression and Outlier Detection*. Wiley, New York.
- Speckman, P. (1988). Kernel smoothing in partial linear models. J. Roy. Statist. Soc. Ser. B 50, 413-436.
- Zamar, R. H. (1989). Robust estimation in the errors-in-variables model. *Biometrika* **76**, 149-160.

Department of Statistics, University of Illinois, 725 S. Wright, Champaign, IL 61820, U.S.A. E-mail: x-he@uiuc.edu

Institut für Statistik und Ökonometrie, Humboldt-Universität zu Berlin, Germany.

(Received February 1998; accepted March 1999)