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Abstract: We consider the problem of estimating quantile regression coefficients
in errors-in-variables models. When the error variables for both the response and
the manifest variables have a joint distribution that is spherically symmetric but is
otherwise unknown, the regression quantile estimates based on orthogonal residuals
are shown to be consistent and asymptotically normal. We also extend the work to
partially linear models when the response is related to some additional covariate.
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1. Introduction

Regression analysis is routinely carried out in all areas of statistical appli-
cations to explain how a dependent variable Y relates to independent variables
X. Most authors consider the estimation or inference problems based on data
observed on both X and Y variables. However, the covariates are not always
observable without error. If X is observed subject to random error, the regres-
sion model is usually called the errors-in-variables (EV) model. A careful study
of such models is often needed, as the standard results on regression models do
not carry over. The best-known is the effect of attenuation for the likelihood-
based estimators without correction for the measurement error in X. A detailed
coverage of linear errors-in-variables models can be found in Fuller (1987). More
recent work on nonlinear models with measurement errors can be found in Car-
roll, Ruppert and Stefanski (1995). The literature on EV models are mainly
confined to estimating the conditional mean function of Y given X, assuming
Gaussian errors. In the present paper we attempt to consider conditional me-
dian and other quantile functions, as pioneered by Koenker and Bassett (1978),
for a class of unspecified error distributions. For the usefulness of conditional
quantiles, see examples and discussions found in Efron (1991) and He (1997),
among many others.

Let us start with the EV model Yi =XT
i β+εi and Wi =Xi +Ui (i=1, . . . , n),

where the Xi ∈ Rp are unobservable explanatory variables, Wi ∈ Rp are mani-
fest variables, Yi ∈ R are responses, and (εi, UT

i ) ∈ Rp+1 are independent with
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a common error distribution that is spherically symmetric. Spherical symmetry
implies that εi and each component of Ui have the same distribution, which en-
sures model identifiability. A special case of such EV models with Gaussian errors
and known variance ratio is frequently considered in the literature. Multivariate
t-distributions are additional examples for this error structure.

We restrict ourselves to structural models where Xi are independently and
identically distributed random variables. If Xi stem from non-stochastic designs,
the model is said to have a functional relationship, see Fuller (1987) for details.

The least squares estimator of β based on
∑

i(Yi −W T
i β)2 is known to be

biased towards zero. It is instructive to consider the quantile regression in the
same spirit, but we work with the population version with p = 1, for clarity. We
ask which b ∈ R minimizes Eρτ (Y − bW ), where ρτ is the τth quantile objective
function, defined by

ρτ (r) = τ max{r, 0} + (1 − τ)max{−r, 0}. (1.1)

Note that the solution to minimizing Eρτ (Y −c) over c ∈ R is the τth quantile of
Y . If the conditional quantile of Y given W is linear in W , then it is the solution
to minimizing Eρτ (Y − a+ bW ) over a, b ∈ R. Consider the special case where
X,U, ε are independent and normally distributed with mean zero and variances
σ2

x, σ
2 and σ2 respectively. Then (Y,W ) is bivariate normal, and the conditional

distribution of Y given W is normal with mean βσ2
xW/(σ2 + σ2

x) and variance
v2
0 = {(β2

x+σ2)(β2σ2
x+σ2)−β2σ2

x}/(σ2
x+σ2). Thus, for the τth quantile problem,

we obtain a = Ψ−1(τ)v0, and b = βσ2
x/(σ

2 + σ2
x), where Ψ(·) is the standard

normal distribution function. This produces the well-known attenuation for the
slope parameter. However we note in general that the conditional quantile of Y
given W is not linear in W , so the slope parameter from regressing Y directly on
W would result in bias in a more complicated manner.

In the case of least squares estimation for the conditional mean, a number
of authors have proposed methods for correction of the measurement error ef-
fects. Likelihood arguments of Lindley (1947) and Madansky (1959) lead to a
minimization of ∑

i

(
Yi −W T

i b√
1 + |b|2

)2

(1.2)

for Gaussian errors. A common interpretation of this weighted least squares
method is that (Yi −W T

i b)/
√

1 + |b|2 is the orthogonal residual rather than the
vertical distance in regression space. In Section 2, we consider regression quantile
estimation for the linear EV model by applying the loss function (1.1) to orthog-
onal residuals. Under some mild conditions, the resulting quantile estimate is
consistent and asymptotically normal. We also note that without knowing a
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parametric form for the error distribution of (ε, UT ), spherical symmetry is es-
sential for the consistency. Median regression estimates are also compared with
L2 estimates from (1.2) through a small scale simulation study. These ideas are
extended to partly linear models in Section 3, where we adjust for the nonpara-
metric part of the model using an idea of orthogonal projection. It is shown that
the quantile estimate for the parametric component attains the same asymptotic
efficiency as if the nonparametric component of the model were known. Proofs
of the main results in the paper are provided in Section 4.

In the present paper, the identifiability of the EV model is resolved through
classical means by imposing some assumption on the joint error structure. De-
pending on the nature of the problem in practice, other means of identification
might be more appropriate. In some cases, the distribution of the measurement
error U may be estimated. In yet others, instrumental variables may be available.
Further research is clearly needed to identify and analyze appropriate methods
of estimating regression quantiles.

2. Linear EV Models

Median regression is better known in the statistical literature as least abso-
lute deviation regression. In this case, Brown (1982) discussed the approach of
estimating covariates Xi to obtain

β = argminb,x1,...,xn

∑
i

{|Yi − xT
i b| + |Wi − xi|}, (2.1)

and concluded that the procedure will under- or overestimate the slope param-
eter. In this section, we assume that an intercept term α is in the model in
addition to the p-dimensional latent variable X: Yi = α+XT

i β+ εi. We propose
to compute the τth quantile estimate by minimizing Q(a, b) = n−1 ∑

i ρτ (Yi −
a −W T

i b)/
√

1 + |b|2 over a ∈ R, b ∈ Rp, where |b| denotes the L2 norm of the
vector b.

Note that the loss function ρτ is differentiable everywhere except at zero.
The directional derivatives of Q(a, b) at the solution (α̂, β̂) are all non-negative,
which implies that

∑
i

ψτ

(
Yi − a−W T

i b√
1 + |b|2

)
= O(#{i ∈ h}),

and ∑
i

(
Wi +

Yi − a−W T
i b

1 + |b|2 b

)
ψτ

(
Yi − a−W T

i b√
1 + |b|2

)
= O(

∑
i∈h

Wi) (2.2)

at (a, b) = (α̂, β̂), where ψτ is the derivative of ρτ , #A denotes the size of the
set A and {i ∈ h} is the index set for zero residuals. The O notation is used
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in the almost sure sense. Even though the solution (α̂, β̂) does not satisfy a
usual estimating equation exactly, it does so approximately as the number of
zero residuals for any linear fit is less than or equal to p+1 with probability one,
provided the distribution of (W,Y ) is continuous.

Quantile regression can be viewed as a special class of M-estimators and
several authors have studied their properties from a robustness point of view.
Zamar (1989) considered orthogonal regression M-estimators based on the idea
of minimizing a robust scale. Cheng and Van Ness (1992) derived bounded influ-
ence M- and GM-estimators for Gaussian EV models. Such estimators provide
some degree of protection against deviation from the Gaussian assumptions. The
quantile estimation problem we consider in the present paper differs from the ro-
bust M-estimation literature in several ways. For instance, we do not have a
central error model (such as Gaussian). The quantiles are of special interest for
non-Gaussian models. They are not just alternative methods for the least squares
estimation of the conditional mean, but are designed to estimate quantiles di-
rectly for their own sake. M-estimators with more general loss functions, such as
those considered in Cheng and Van Ness (1992), are not scale equivariant unless
a preliminary scale estimate is available.

To illustrate the method of quantiles, consider a simple example. We have
measurements of the brain weight (in grams) and the body weight (in kilograms)
of 28 animals. The data are given in Rousseeuw and Leroy (1987, p.57) and this
sample was taken from larger data sets in Jerison (1973). We assume that the
conditional quantiles of the log brain weight are linear in the log body weight.
We also take the view that the body weights are measured with some error. By
assuming that regression error and measurement error have a symmetric joint
distribution, we computed the 25th, 50th and 75th quantiles, see Figure 1(a). The
slopes for the three quartile lines are 0.68, 0.74 and 0.71 respectively. By contrast,
if we assume Gaussian homoscedastic errors, the quartiles can be obtained as in
Figure 1(b) using parallel lines of slope 0.496. It is clear that a few outliers do not
follow the Gaussian distribution in the regression equation, and have inflated the
spread between quartiles. The regression quantile approach allows for heavier-
tailed errors without having to specify it more exactly. Rousseeuw and Leroy
(1987) computed a robust estimator of the regression with a slope parameter of
0.75, and an approximate 95% confidence interval of (0.6848, 0.8171). The robust
estimate corrected the bias due to the outliers but an exact error distribution (say
Gaussian) for the “good” data must be specified to compute quantiles. Besides,
the quantiles obtained this way would not be consistent for the population with
outliers included.

The rest of the section is devoted to the asymptotic properties of quantile
estimates. From the technical point of view, the quantile estimate involves a non-
differentiable score function, and some of the Taylor-type expansions typically
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used for studying smoothing M-estimators are not directly applicable. However,
the asymptotic expansions derived by He and Shao (1996) can be used. But first,
we state the consistency result for quantile estimates.
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Figure 1(a). Regression quantiles.

Figure 1(b). LS-based quantile estimates.

Theorem 2.1. Consider a random sample (Wi, Yi) from the linear EV model

Yi = α+XT
i β + εi, Wi = Xi + Ui, (2.3)

where the distribution of (εi, UT
i ) is spherically symmetric with finite first mo-

ment. Assume that qτ is the unique solution to Eρτ (εi − q) = 0, and let ατ =
α+ qτ

√
1 + |β|2. Then the quantile estimate (α̂τ , β̂τ ) that minimizes

Q(a, b) = n−1
∑

i

ρτ

(
Yi − a−W T

i b√
1 + |b|2

)
(2.4)

over (a, b) converges strongly to (ατ , β).

Note that qτ is the τth quantile of εi. The key requirement for consistency
is that D(a, b) = Eρτ (ε − UT b − (a − α) − XT (b − β))/

√
1 + |b|2 has a unique

minimum at (a, b) = (α+ qτ
√

1 + |β|2, β). This is true if (ε−UT b)/
√

1 + |b|2 has
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the same distribution for all b, and this is implied by our assumption that (ε, U)
is spherically symmetric.

On the other hand, if D1(b) = Eρτ (ε − UT b)/
√

1 + |b|2 is not constant but
achieves its minimum at some b = b1 different from β, then the minimum of
D(a, b) cannot be attained at the true parameters for all distributions of X. Let
d = D1(β) −D1(b1) > 0. When the dispersion of X is sufficiently small relative
to that of ε− UT b1, we would have D(α, β) = D1(β) = D1(b1) − d > D(α, b1).

Under the consistency framework, the quantile estimate has a Gaussian lim-
iting distribution. Let f be the density of ε.

Theorem 2.2. Under the conditions of Theorem 2.1, we further assume that
E(X) = 0, Σx = E(XXT ) is positive definite, f(qτ ) > 0, f(e+qτ )−f(qτ ) = o(1)
as e→ 0, and Eε2 <∞. Then,

√
n(α̂τ − ατ ) → N(0, τ(1 − τ)f−2(qτ )),

√
n(β̂τ − β) → N(0,Σβ)

in distribution, where Σβ = f−2(qτ )(1 + |β|2)Σ−1
x QΣ−1

x with ξ = (ε − UTβ)/√
1 + |β|2 − qτ , and

Q = τ(1 − τ)Σx + Cov {ψτ (ξ)(U + ξβ/
√

1 + |β|2)}. (2.5)

If there were no measurement errors, the second term of (2.5) would be
absent. We can view the second part of Q as the additional uncertainty in the
slope estimate due to measurement errors. If (ε, UT ) is multivariate normal, the
expression of Q simplifies to

Q = τ(1 − τ)Σx +E{UUTψ2
τ (ξ)} − E{ξ2ψ2

τ (ξ)}
1 + |β|2 ββT .

We refer to two recent papers of Cui (1997) and Cui and Li (1998) for a different
asymptotic approach.

A consistent estimate of the intercept α can be obtained as 1
2(α̂τ + α̂1−τ ).

The quantity qτ can be estimated using q̂τ = α̂τ−α̂1−τ

2
√

1+|β̂τ |2
. At τ = .5, we have

ατ = α and qτ = 0.
To gain some understanding of how well the proposed estimator works, we

run a small Monte Carlo experiment. We draw samples of size n=100 from the
following model: Yi = α + βXi + εi and Wi = Xi + Ui, where Xi is uniformly
distributed in (0,

√
12), and (εi, UT

i ) is either standard bivariate normal or has
a bivariate t-distribution with 3 degrees of freedom. The mean-square errors
for the median estimates of both α and β are estimated from 500 runs. The
estimates are compared with the maximum likelihood estimates under Gaussian
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errors. Some results are given in Table 1. Note that the conditional mean and
the median for the model are the same, so the comparison can be made on the
same scale.

Table 1. MSE for the L1 and L2 estimates.

β L2 Estimates (a) L1 Estimates (a) L2 Estimates (b) L1 Estimates (b)
1 0.0230, 0.0056 0.035, 0.0089 2.2177, 0.7104 0.4742, 0.1396
2 0.0495, 0.0120 0.0846, 0.0207 2.2936, 0.7364 0.7132, 0.2071
10 1.0887, 0.2768 1.6943, 0.4188 13.745, 3.6205 8.8325, 2.2509

(a) refers to bivariate normal error, and (b) for bivariate t3. The two numbers in
each entry are the MSE’s for the intercept and slope estimates respectively.

When the error distribution is normal, the median regression estimate has
a relative efficiency of above 60% for all three β values considered. In the case
of t(3) as errors, the relative efficiency moves above 1. The deficiency for the
least squares based estimate is higher for smaller β. When β = 1, the median
estimate is about 5 times more efficient. These comparative results are typical.
The median estimate has the desirable property of robustness. We also wish
to add that the objective functions for both approaches are nonlinear and non-
convex, so the computational complexities for finding the estimates are similar.

To conclude this section, we note that our approach may be extended some-
what to cases where there exists a known (p+ 1) by (p+ 1) matrix A such that
the distribution of A(εi, UT

i )T is spherically symmetric. Gleser (1981) considered
such extensions when (εi, Ui) has finite second moments.

3. Partially Linear EV Models

Partially linear models drew a lot of attention in the 80’s due to their flexibil-
ity in incorporating nonparametric relationship for some covariates while keeping
the simplicity of linear regression on other variables. Engle, Granger, Rice and
Weiss (1986) provided a good example for such semiparametric models in study-
ing the relation between weather and electricity sales. Heckman (1986), Speck-
man (1988), Chen (1988) and He and Shi (1996) considered the asymptotics of
partially linear models. They show that the parameters in the linear component
can be estimated as efficiently as if the nonparametric component were known.
Cuzick (1992a,b) considered adaptive estimation to achieve efficiency when the
error distribution is unknown. Liang and Cheng (1993) provided some results on
the second-order efficiency. The Gaussian likelihood based estimator for partially
linear models has recently been studied by Liang, Härdle and Carroll (1999).

In this section, we consider the quantile estimate of the slope parameter β
in the partially linear EV model

Yi = XT
i β + g(Ti) + εi, Wi = Xi + Ui, (3.1)



136 XUMING HE AND HUA LIANG

under the structure of Section 2, except that a nonparametric relation g(T ) enters
the model additively. The intercept term is absorbed in g. We assume that T is
an observable variable defined on [0, 1] and add the following, which follows from
independence of T and X, for example.

Assumption 3.1. E(X|T = t) = 0 for all t ∈ [0, 1].

The following projection operation is useful and defined first. Let ωni(t) =
ωni(t;T1, . . . , Tn) be probability weight functions depending only on the design
points T1, . . . , Tn. For any sequence of variables or functions (S1, . . . , Sn), we
define ST = (S1, . . . , Sn), S̃i = Si − ∑n

j=1 ωnj(Ti)Sj , and S̃T = (S̃1, . . . , S̃n). The
conversion from S to S̃ will be applied to Wi and Yi.

Choices of the weight function ωni(t) will be made clear later. The estimator
β̃n we consider minimizes ∑

i

ρτ

(
Ỹi − W̃ T

i b

1 + |b|2
)

(3.2)

over b ∈ Rp. We suppress the dependence of β̃n on τ in this section.
The weights are assumed to satisfy the following condition, essentially the

same as Assumption 1.3 of Liang, Härdle and Carroll (1999).

Assumption 3.2. Weight functions ωni(·) satisfy:
(i)

∑n
j=1 ωni(Tj) = 1, for any i,

(ii) max1≤i,j≤n ωni(Tj) = O(bn),
(iii) max1≤i≤n

∑n
j=1 ωnj(Ti)I(|Tj − Ti| > cn) = O(cn),

for some bn = o(1), and cn = log n/(nbn).
Note that Assumption 3.2(iii) follows from (ii) if Ti are uniformly spaced

on [0, 1]. We now state the main result for partially linear models. Recall that
spherical symmetry of the error distributions (ε, UT ) is always assumed, as in
Section 2.

Theorem 3.1. Suppose that g is Lipschitz, and for some 1 > δ > 0, Eε2+δ <∞
and E|X|2+δ < ∞. Under Assumptions 3.1 and 3.2, with bn = n−(3−δ1)/4 and
δ1 = δ/(2 + δ), β̃n is a consistent estimate of β and

√
n(β̃n − β) → N(0,Σβ),

where the matrix Σβ is that of Theorem 2.2.

Assumption 3.2 can be weakened slightly for the consistency part of the
theorem, but we choose not to elaborate. Finite second moments of ε and X

may be sufficient for asymptotic normality, but our proof requires existence of
the (2 + δ)th moments where δ > 0 can be arbitrarily small.
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To construct the weight functions ωni(t), we may use a probability kernel K.
Let hn be a sequence of bandwidth parameters that tends to zero as n→ ∞. We
propose to use

ωnj(t) = K
(t− Tj

hn

)/{ n∑
i=1

K
(Ti − Tj

hn

)}
, 1 ≤ j ≤ n. (3.3)

This choice can be justified by the following.

Proposition 3.1. Suppose that K(t) is a bounded and symmetric probability
density function on [−1, 1], hn = c/(nbn) for some constant c, and the design
points Ti are nearly uniform in the sense that C1/n ≤ min{|Ti − Ti−1|} ≤
max{|Ti − Ti−1|} ≤ C2/n for some constants C1, C2 > 0. Then the choice
(3.3) satisfies Assumption 3.2.

The proof of Proposition 3.1 is immediate. A particular example uses the
Nadaraya-Watson kernel K(t) = (15/16)(1−t2)2I(|t| ≤ 1). Theorem 3.1 suggests
using hn = cn−(1+δ1)/4 for some small number δ1 > 0. Since the objective is to
estimate β, our limited experience indicates that the choice of the bandwidth hn

here is not as critical as it is in direct nonparametric function estimation.

4. Proofs

Proof of Theorem 2.1. Note that Q(a, b) converges to Eρτ (ε1− a−α+XT (b−β)√
1+|b|2 ).

By the assumptions, this expectation has a unique minimum at a = ατ and b = β.
Now consider any subsequence of (α̂τ , β̂τ ). It is easy to show by contradiction
that (i) it is bounded, and (ii) any further subsequence that converges has the
same limit (ατ , β).

To see (i), note that if a/
√

1 + |b|2 is unbounded along the sequence, then
so is Q(a, b). If a/

√
1 + |b|2 is bounded along the sequence, then (a/

√
1 + |b|2,

b/
√

1 + |b|2) will converge for a further subsequence to, say, (a0, b0) with |b0| = 1.
This means that along the new subsequence Q(a, b) will converge to Eρτ (ε1 −
a0 −XT b0) > Eρτ (ε1 − qτ ), which leads to a contradiction. Similar arguments
show (ii), and the proof is complete.

Proof of Theorem 2.2. Since the quantile estimate satisfies (2.2), we invoke
Corollary 2.2 of He and Shao (1996) for M-estimators. One can verify the as-
sumptions needed for the Corollary by setting r = 1, An = λmax(Q)n, and
Dn = nf(qτ )diag(1, (1 + |β|2)−1/2Σx), where λmax(Q) denotes the maximum
eigenvalue of Q. Furthermore, let ξi = (εi−UT

i β)/
√

1 + |β|2−qτ . It then follows
that

α̂τ − ατ = {nf(qτ )}−1
∑

i

ψτ (ξi) + op(n−1/2),
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and

β̂τ−β={nf(qτ )(1+|β|2)−1/2Σx}−1
∑

i

(Xi+Ui+ξiβ/
√

1 + |β|2)ψτ (ξi)+op(n−1/2).

A routine application of the Central Limit Theorem completes the proof of The-
orem 2.2, with

Q = E{(Xi + Ui + ξiβ/
√

1 + |β|2)(Xi + Ui + ξiβ/
√

1 + |β|2)Tψ2
τ (ξi)}

= Eψ2
τ (ξi)Σx + Cov {(U + ξβ/

√
1 + |β|2)ψ2

τ (ξi)}.

The following lemma is useful for the proof of Theorem 3.1. It can be proved
using Bernstein’s inequality, see Liang, Härdle and Carroll (1999, Lemma A4)
for a similar proof. Related details can also be found in Cui and Li (1998).

Lemma 4.1. For any sequence of independent variables {Vk, k = 1, . . . , n}
with mean zero and finite (2 + δ)th moment, and for a set of positive num-
bers {aki, k, i = 1, . . . , n} such that sup1≤i,k≤n |aki| ≤ n−p1 for some 0 < p1 < 1
and

∑n
j=1 aji = O(np2) for some p2 ≥ max{0, 2/(2 + δ) − p1},

max
1≤i≤n

|
n∑

k=1

akiVk| = Op(n−(p1−p2)/2 log n).

Proof of Theorem 3.1. Assume without loss of generality that δ is small
enough that δ1 < 1/4. Assumption 3.2(ii) and Lemma 4.1 (using p1 = (3− δ1)/4
and p2 = 1 − δ1 − p1) imply that max1≤i≤n |ωnk(Ti)Vk| = O(n−(1+δ1)/4 log n)
when Vk = εk or Xk or Uk. Assumption 3.2(iii) implies that max1≤i≤n |g̃(Ti)| =
O(cn) = O(n−(1+δ1)/4 log n).

For simplicity in notation, let ãi = W̃i + Ỹi−W̃ T
i β

1+|β|2 · β, b̃i = ψτ

(
Ỹi−W̃ T

i β√
1+|β|2

)
,

ai = Wi + εi−UT
i β

1+|β|2 · β, and bi = ψτ

(
εi−UT

i β√
1+|β|2

)
. Then it is straightforward to verify

that
max
1≤i≤n

|ãi − ai| = Op(n−(1+δ1)/4 log n),

max
1≤i≤n

|̃bi − bi| = Op(n−(1+δ1)/4 log n). (4.1)

Note that both ai and bi are sequences of i.i.d. variables with mean zero and
finite variances. By re-arranging, we have for any β,∑

i

ãib̃i −
∑

i

aibi =
∑

i

(b̃i − bi)(ãi − ai) +
∑

i

(b̃i − bi)ai −
∑

(ãi − ai)bi. (4.2)

We now show that each term on the right hand side of (4.2) is op(n−1/2).
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Since bi and b̃i take only two possible values, τ and τ − 1, (4.1) implies that
P (b̃i = bi, 1 ≤ i ≤ n) → 1. So, only the last summation in (4.2) needs to be
dealt with. To this end, we write

n∑
i=1

(ãi − ai)bi =
∑
j �=i

ωnj(Ti)Xjbi +
∑
j �=i

ωnj(Ti)
(
Uj +

εj − UT
j β

1 + |β|2 β
)
bi

+
∑
i=1

g̃(Ti)
1 + |β|2βbi +

∑
i=1

ωni(Ti)Xibi

+
∑
i=1

ωni(Ti)
(
Ui +

εi − UT
i β

1 + |β|2 β
)
bi.

By the Chebyshev inequality, it is easy to see that the third to fifth terms on
the right hand side of the above identity are of the order op(n−1/2). The same
bound for the other two terms follows from the arguments used in Lemma A.6
of Liang, Härdle and Carroll (1999). We omit the details.

We have shown that the parameter estimate β̃n satisfies

∑
i

(Wi +
εi − UT

i β̃n

1 + |β̃n|2
· β̃n

)
ψτ

(εi − UT
i β̃n

1 + |β̃n|2
)

= op(n1/2).

Then, as in the proofs for linear models in Section 2, we obtain the representation

β̃n − β = −(1 + |β|2)1/2(nf(qτ )Σx)−1
∑

i

aibi + op(n−1/2),

from which the desired result follows.
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