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Appendix A Proof of Formulas

Proof of Formulas (F1) and (F2)

TBRF(QJ) = P(Y1 — Yo > C|X = a:)

= P((a1,0 — a0o0) + (a1,1 —ao1) @ + (a1,2 — a02)U + (1,3 — ao3) aU + (1 — €0) > ¢)
( €0 — €1 (1,0 — ao0) + (11 — 20,1) x4 (01,2 — 20 ,2)U + (a1,3 — a0,3)TaU — C)
Voi + o2 Vol +o?

/‘i_((al,o —apy) + (a1,1 — ao,l)TJC + (1,2 —ao2)u+ (1,3 — a0,3)T$U — C)fU(u)du

Voi + ot

— /@((wl + wQU)/w3)fU(U)d“

(wi+wau) /w3
= // 12 exp(—s /2) fu (u)dsdu
V2T

_ // —exp 7L{(wg+w§)(u+w2(w3s+w1))2+w%(w3s+1;1)2}]dsdu

2 2 2 2
2 w3 + wj w3 + w3

[l e

")

where fu(-) is the density functions of U, w1 = (a1,0 — ao,0) + (@11 — ao,1) 2 — c,wy =
(@12 —ao2)+ (1,3 —ao3) Tz, w3 = \/o? + o2. Similarly, we can derive the form for THR.(z).

Proof of Formulas (F3) and (F4)
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Let K(ay,z,u) = ato + azlm + agou+ azj;;mu, we have

TBR(z) = / {1-®(K(aw,z,u) } (K (a1, z,u)) fu(u)du

/{/}:& » \/lzfﬂexp(fsg/Q)dSO}{ /_:(al,x,u) \/%exp(*S%/Q)d&}fU(u)du

0 o] 2 2 2
// / (2 1)3/2 exp{ _ (50 + K(Oé071'7 u)) + (251 + K(Oﬂ,m,u)) +u }d80d81du.
—c0 JO s

Let K1(at, ) = arot+ai iz, Ko(ow,z) = a2 +ai sz, thus K(ap, z,u) = K1 (o, z) +uKa (o, z).

Then

{s0 + K(ao,z,u)}* + {s1 + K (o, w,u)}* + u®

= {1+ Ka(ao, z)* + Kg(ozl,a:)Q}u2 + 2{(so + K1(aw, ) K2(ao, z) + (51 + K1 (a1, z))Ka(oa, x) fu

+{s0 + K1 (a0, )} + {51 + Ki (o, 2)}?

_ 2 2 (so + Ki(ao,z))K2(ao,x) + (s1 + Ki(a1,z)) Kz (a1, x) 2
= {1+K2(O‘07m) + K2(aa, ) }{qu 1+ Ka(ao, )2+ Ka(ai, )2 }
1

+
1+ Ko(ao,x)? + Ko(a1,x)?

[ {50+ Ka(ao, )} {1 + Ka(on,)°)
Hs1 + Ki(an,2)}* {1 + Ka(ao,2)"}

—2{s0 + Ki(ao, )} Ka2(ao, z){s1 + K1 (a1, z)} K2 (ax, x)] .

So
TBR(z) = /0°° /;Ooo ﬁ exp ( — g)dé}odsl, (Al1.1)

where 5% = 1 + Ka(ao, z)? + Ka(aa, )2,

F = |:{80+K1(Oéo,l')}2{1+K2(a1,1‘)2}+{51+K1(CM1,ZE)}2{1+K2(010,23)2}
—2{80 + Kl (Oéo,ﬂ?)}Kz(Olo, 1’){81 +4 K1 (ahx)}Kg(oq, 33):| /S2

- {(50,81) - M}Eil{(smsl) - M}T7

p=(—Ki(ao,2), —Ki(or,x)),
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1+K2(o¢0,m)2 Ky (oo, z)Ka (o, )

KQ(O(Q,ZIZ’)KQ(OQ,JZ) 1+K2(041,LE)2

Thus, TBR(z) = CI>2((O, 00), (—00, 0); i, E), where ®2(Ao, A1;p, X)) is the distribution function
of bivariate normal vector with mean pu, covariance matrix ¥ and integral region Ag x Aj.
Similarly, we can derive the form for THR(x).

Relationship of ATE(z), TBR.(z) and THR.(z)

Note for any random variable Z, we have

E(Z) = /000{1 — Fz(2)}dz — /j)o Fz(2)dz,

where Fz is the cumulative distribution function of Z. Thus,

ATE(x)

E(Yl — Y0|X = .T)

/000{1 — Fy,—vyj(c)}de — /io Fyy _yyjo(c)de

/0 " TBR.(2)de — [ Ooo{1 — TBR.(2)}de

/0 " TBR(2)de — / * THR_.(2)de

— 00

/ " [TBR.(x) — THR.(x)}de,

0
where the penultimate step holds since Y1 — Yp is continuous.

Appendix B Proof of Theorem 1

Instead of proving Theorem 1 directly, we first provide sufficient and necessary identification

conditions of (g+(X); h+(X)) in the general models (3) and (4).

Theorem B.1. Under Assumption 2,
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(i) When the outcome is continuous, if the following model (??) holds for t=0,1,

Yi = g:(X) + Uhe(X) + e,
(A2.2)

EtJ-(Xv U)76t ~ N(Oyth)a U~ N(07 1)7 ht(o) >0,

then the following Condition A is the sufficient and necessary condition to identify (go(X), ho(X), 03, g1(X), h1(X), 0})
Condition A. hi(X) belongs to the family S(X) for t =0, 1, where

S(X) = {h(X) : h(X) can be identified if 2(X)h'(X) is known.}

(i1s) When the outcome is continuous, if the following model (??) holds for t=0,1,
Vit = 0u(X) + Uhy(X) + <.
Y, = I(Yy > 0), (A2.3)
EtJ—(X7 U)7 €t ~ N(07 02)7 U~ N(07 1)7 ht(o) > 07

then the following Condition B is the sufficient and necessary condition to identify (go(X), ho(X), g1(X), h1(X)).

Condition B. (g:(X), h:(X)) belongs to the family (S1(X),S2(X)) fort =0,1,

where

(81(X), S2(X))

g(X;a1) g(X; B1) }
V1R (X an) | 1 RE(X; Br) )

- {(g(x; a1), h(X;a2))| (a1, a2) € A, V(a1 a2) # (B1,82) € A
Proof.
(i) Since E[Y|X,T =t] = E[Y:|X] = g:(X), we can identify ¢g.(X) and we have
(Y — g:(X))[(X,T = t) ~ N(0,h; (X) + 07).
Thus A:(X) = h(X) + o7 can also be identified, so is A;(X) = h(X)h;(X).

Next we show that Condition A is sufficient and necessary to identify h:(z),t = 0,1.

It is easy to see that if hi(X) belongs to S(X), then hi(X) is also identified. On the
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other hand, if h¢(X) does not belong to S(X), then h:(X) can not be decided uniquely
from h:(X)h;(X). Besides, knowing h:(X)h},(X) is equivalent to knowing h7(X) up to
a constant, i.e., h?(Xl) — h?(Xg) for all X1, X2. Note that (Y — gt(X)) ’(X,T =t) ~
N(0,h?(X) + o}), the distribution of Y — g;(X) condition on (X,T = t) is determined
by the variance, so all the information we have about h:(X) is h7(X) + o7, which is the
same as knowing h?(X1) — h#(Xz) for all X1, X2. Thus, we can not identify h:(X). So

the sufficient and necessary condition is that h(X) € S(X) for t =0, 1.

Since P(Y = 1|X,U, T =t) = ®(g:(X) + Uh(X)), we have

gt(X)

P(Y =1|X,T=t) = @(m),

It is easy to see that (go(X),ho(X),g1(X),h1(X)) can be identified if and only if the

Condition B holds. |

The identification of heterogeneous treatment effects given in Theorem 1 follows from the

following corollaries.

Corollary 1. When h(X) = h(X;n) =no + 771TX, where n = (770777T)T’771 = (771,17 s 7771,17)T

and no > 0, we have h(X) € S.

Proof. Since h(X)h' (X) = (no + 771TX)771 = nom + mnt X, we can identify (nom, mni) if

h(X)h'(X) is known. Besides, h(0) = no > 0, so the sign of every component of 71 can be

determined since we know 7no7n:. Then 71 can be identified since we know the diagonal elements

of mini . Then 1o can also be identified from non1. Thus (1o, 71) is identifiable, so is h(X). This

completes the proof of the part (i) in Theorem 1. O

We impose the following regularity condition on X which is the domain of X.
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Condition C. There exists linear independent (71,--- ,Tp) C X, where X is the domain of X,

st. PY =1X=7)=0,0=1,...,p.

Corollary 2. When g(X) = g(X;a) = agt+af X, h(X) = M(X;a) = az+ad X with (o, 1) #
0,02 > 0, a3 # 0, where a = (ap,af ,02,03)" 00 = (a1, ,a1,)", as = (as1,-+ ,03p)",

if the Condition C holds, we have {g(X), h(X)} € {S1(X),S2(X)}.

Proof. It is enough to show that if & = (ao, af , a2, o), 8 = (Bo, BT, B2, B1)T satisfy:

a0 +al X Bo+ B X

= vX eX A2.4
Vit(az+alX)? 1+ B2+ pIX)? e (829

then @ = B. To keep the same signs on both sides, the following two subsets of a hyperplane

(Ho, H1) must be the same,

Ho={X C X|ao+af X =0}, H ={X C X|fo + B{ X =0},

since there exists linear independent (71,---,7p) C X such that P(Y = 1|X = ) = 0.5,5 =

1,...,p, thus, the following two hyperplane (ﬁo, ﬁl) must be the same,

Ho={X CRP|ap + af X =0}, Hy = {X C RP|Bo + BT X =0},

which means (ao, af ) = k(Bo, 7), and k > 0 since the signs on the two sides of equations (??)

must be the same. And (oo, a1) # 0 exclude the case k = 0. Thus from equation (??) we have

1+ (a2 +ad X)?

k=t
1+ (B2 + B3 X)*

By arranging the equation above we have

XT(azad —K*B363)X + 2(cai —k*Bafi)X +1+a3 —k— kB3 =0.
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So
asas — kB3B3 =0, (A2.5a)
a0 — k*Bafft =0, (A2.5D)
1+as -k —kB3=0. (A2.5¢)

With a little abuse of notation, we use 0 to denote not only the number 0 but also the matrix and
vector of 0 in (?7?) and (?7) respectively. Take the (¢,%) element of (??) and the i-th component

of (?7?), with a little arrangement we have

a3, = kB3, (A2.5d)
azasi = k*B2Psi, (A2.5e)
a3 = k> + kB3 — 1. (A2.5f)

Note (?2)-(??) — (??)? = k?63,(k* — 1) = 0, since k > 0 we have k = 1. And since az, 32 > 0,
from (?7) we have ag = (2, then from (??) we have oz = B3. Thus, a = . This completes the

proof of part (ii) in Theorem 1. O

Appendix C Non-identification without interaction term

between X and U

Theorem C.1. Under the same assumptions as in Theorem 77,

(i) If there is no interaction term between X and U in model (?77), i.e., he(X) = hy is a

constant, the (TBR.(z), THR(z)) can not be identified for any c # £E[Y1 — Yo].

(i) If there is no interaction term between X and U in model (?77), i.e., hy(X) = hy is a

constant, the (TBR(x), THR(z)) can not be identified for any (go(z), g1(z)) # (0,0).
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Proof.

(i)

We have

}MXT:ONN@MLﬁ+ﬁ)

Since P(Y, X,T) = P(Y|X,T)P(X,T) and P(X,T) is not related to the parameters in
the model, we can only identify g;(X) and hi 4+ o7 for t = 0,1. Since A} is a constant,
we can no longer separate h; and o7 from (hf + a?) without further assumptions, i.e.,

(ht,0%) can not be identified. Additionally, we have
(Yo, )| X = & ~ N(u(@), S(2)),

where

h2+02  hohy
(@) = (go(x), 91(z)), B(z) =
hoh1 h% + 0’%

Thus,
V- Yo) X =z~ N(gl(w) —go(z), (hg+03) + (hT +0F) — 2hoh1).

Since h? + o7 can be identified while (h7,07) can not, the joint distribution of (Yo, Y1)

given X = x can not be identified, so is the distribution of Y7 — Yy given X = z.

Since TBR¢(z) = P(Y1 — Yo > ¢|X = z) and Y1 — Y) given X = z is normally distributed
with mean identified and variance unidentified, so TBR.(x) is unidentified if ¢ # E[Y; —

Yo]. Similarly, THR.(x) is unidentified if ¢ # —E[Y7 — Yp).

Since

P(Y =1|X,T=t) = @(M),

V14 h?

we can only identify g.(X)/+/1+ h? in the model with the numerator and denominator
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unseparate, which means (g¢(X), h7) can not be identified. Additionally, we have

TBR(z) = P(Yo=0,Y; =1|X =xz)
-1
= / / 27T|Eb|1/2 exp{ 80781 Mb)zb ((80,51) — ub)}dSOdsl,

where

1+ h(z) hoh1
w = (—go(z), —g1(x)), Xp=
hoht 14 h2

Let (to = so/+/1+ hi, t1 = s1/y/1+ h?), we have

TBR(z) = PYo=0,Y1=1|X=1x)
B / / 27r|Eb1/2 p{ ((to, t1) ﬁb)ib_l((toatl)_/Ib)}dtodtl,
where
1 __ _hohi
~ 0 _
fiv = (— go(@)/\/1+ B3, —g1(@)/ /1 + h2), Sp= Virhay /T
__ hohys 1

So pp is identified while ib not. Thus, we can easily conclude that TBR(x) can not be
identified when (go(z), g1()) # (0,0), so is THR(z) and the joint distribution of (Yo, Y1)

given X = . O

Appendix D Proof of Theorem 2

Proof. The estimator 6 = (&o,o, aal, Qo,2, &53733,&1,0, &1T717 alyg,&lT,g,Ef)T maximize the fol-

lowing likelihood

£ =log L(Y|X)

= 35 g1 =0 -tostor) o s+ o o) - (Rt 2L

i=1t=0,1
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According to the M-estimator property, we have

V@-6) - N(o, [Po{aeagT}] O{gﬁgeﬁ}[ {aaaeT}} )

where Py is the true mean and

(T, X,Y;0)
_ 1 _ T 2 2 (Y — O¢o0 — atT,lX)Q
= Z 3 {I(T = t){ log(2m) — log (a2 + @ 3X)" + 07 ) (avs T ol XV 1 o7 }
t=0,1 ,
Let
ma(X;0) = cI)( (1,0 — aoo) + (11 —@o1)TX —¢ )
’ \/((061,2 —ao,2) + (a1,3 — @0,3)TX)? + (02 + o) '
and

mu(X;0) =

( (a0 — a1,0) + (o1 —a1,1)TX — ¢ )
V(@2 —a12) + (w03 — 1,3)TX)2 + (02 4 02)/’

-~

thus, @C(ZE) — TBRe(z) = mB(x;g) — mp(x;0) and ﬁc(x) — THRc(z) = mu(z;0) —
mu(x;0).

By the Delta-Method, we have

Va(TBR(z) — TBR(z)) ~5 N(0,025(x;0)),
Va(THR(2) ~ THR(z)) ~ N(0, 024 (x;0)),
where

2 gy = 9 oY 0y 19
oen(@:0) = Ggzms(w:0) [Po{aoaeT }] e aeT}[ O{aeaeT}] 0" P 50,

and

1o} oY 0 -19
on(as0) = ggmma(oi0) ol o)) PG e [Pelpger ] )
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Appendix E Proof of Theorem 3

Proof. The estimator § = (62070,aal,&0,2,62({3,aLo,alT’l,al,z,a{S)T maximize the following
likelihood
C=log L(Y|X)=>" [ T; = t){mog (G(Xi;6:)) + (1 — i) log (1 — G(Xi;et))}},
i=1t=0,1

where

( a0+ a1 X )
\/1 + (o2 + QZQ,X)Q

According to the M-estimator property, we have

6-6= —[Po{aeaww(T,X,Y;G)}]_% > %w(Ti,Xi,m;e) +0p(1/v/n),
where
(T, X,Y;0) = [I(T = t){Ylog (G(X;6:)) + (1 =Y)log (1 — G(X;6)) }]

Let mp(X;0) = &, (u(z;0), (23 0)), and mu (X;60) = p (p(z;0), S(x;0)), we have Tﬁ(x)—
TBR(z) = mp(x;0) — mp(x;0) and THR(z) — THR(z) = mu (z;0) — mu (x;0).

By the Delta-Method, we have

Va(TBR(z) — TBR(z)) ~ N(0,075(z;0)),
d

Vn(THR(z) — THR(x)) ~% N(0, 03 (3 0)),

where

8 oy 8
oin(w:0) = ggmms(x;0) [Po{aeaeT}} O{aleﬁaewT}[ O{aeaeT}] %mB(w;a)’
and
K oy 8 8%y 110
otutas0) = ggrman(s:0) [P e )] ol o) [Pogggge)] gt
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Appendix F Estimates of Parameters and Their Asymp-

totic Properties in Models (3) and (4)

The corresponding formulas of (F1), (F2), (F3) and (F4) for the general models are:

)
(91(x) — go

TBR.(z) = ( \/(h

and

TBR(z) = & (ji(z), E(x)),

THR(x) = @ (ji(2), S()),
where
i(x) = —(go(z), g1(x)),
. 1+ hi(x)  ho(z)hi(x)

Y(z) =
ho(x)h () 1+ hi()

In estimation, we first model g¢(X) and h¢(X) as ¢g:(X;aq,1) and he(X;aq,2). Also let
(T, X,Y;0) denote the log-density function, where 6 = (o1, 0,2,08, a1.1,1,2,0:)7 in the
continuous case and 6 = (a1, 0,2, 21,1, @1,2)" in the binary case. The estimation for 8 can be
obtained by maximizing P, [¢(T, X,Y’;0)], denote as 6. Then TBR(z), THR(z), TBR.(z) and

THR.(x) can be estimated by:

TBR(z) = (ji(X;0), S(X;0)),

ﬁ(w) = @ (A(X;6), 2(X; 5))7

where

H(X;0) = (— go(X;@01), —g1(X;@11)),
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1+ h§(X;a0,2) ho(X; @o,2)h1(X;a1,2)

ho(X;Q0,2)h1(X;a1,2) 1+h%(X;a1’2)

We estimate the variances of ﬁ{c(:ﬁ), ”ﬁ-ﬁ{c(a@), T/BT{(x) and rﬁ-ﬁ%(m) by the plug-in

estimator respectively.

Appendix G Identification When U Depends on X

Theorem G.1. Under the Assumption 2:

(i) When the outcome is continuous, if the following model (??) holds for t=0,1

Yi = g:(X) + he(X)U + €1, €1 ~ N(ut,07), eL(X,U, €4),
(A7.6)

U=W(X)+eu, € ~ N(phu,0?), €,1X

then the Condition A in the Appendiz 77 is sufficient to identify the joint distribution of

(Yo, Y1) given X.

(i) When the outcome is binary, if the following model (?7) holds for t=0,1
Yy = ge(X) + he(X)U + €1, 0 ~ N(pi, 07), €0 L(X, U, €w),
Y, = I(Yy > 0), (A7.7)
U=W(X)+ eu, eu ~ N(ttu,0?), euLX,
then the following Condition D is sufficient to identify the joint distribution of (Yo, Y1)
given X.
Condition D. (g:(X) + W(X)hi(X),h(X)) belongs to the family (S1(X),S2(X)) for
t=0,1, where
(S1(X),S:(X)) = {(Sl(X;ﬁl)y52(X;52))’(51752) €A,

S1(X;81) S1(X; %) }

Vst 857) # (8. 5.7) € A, — —
ViS50 1+ s30658)
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Proof.

(i)

Without loss of generality, we assume o> = 1 since otherwise it can be absorbed into
ht(X), pu = 0 since otherwise it can be absorbed into W(X) and assume u; = 0 since
otherwise it can be absorbed into g:(X). Also, we assume h(0) > 0 since otherwise we

use U* = —U to replace U. By a little arrangement, we have
Y = (9e(X) + he(X)W(X)) + he(X)ew + €.
Thus,
Y’ (X, T = t) ~ N (g:(X) + he(X)W(X), h2(X) + o?).

Then (g¢(X) + ht(X)W (X)) and (hi(X)+07) can both be identified, so is k(X )h;(X).

Since h¢(X) belongs to S(X), we can also identify h;(X) and oF.

Note that
P(Yo,Yi|X = ) = P((go(x)+ho(a:)W(x))+ho(x)eu—|—eo, (gl(X)—Hzl(X)W(X))—i—hl(X)eu—&—q).

Thus, we can identify the joint distribution of (Yo, Y1) given X.

Without loss of generality, we can assume that €, follows a standard normal distribution.
Also, we assume yu; = 0 since otherwise it can be absorbed into g:(X), o7 = 1 since
otherwise we can use f’;* = Y,"/o+ to replace Y;" and h:(0) > 0 since otherwise we can

use U™ = —U to replace U. By a little arrangement, we have



ASSESSING THE TREATMENT EFFECT HETEROGENEITY 15

P(Y =1|X,T = t) = P(Y; = 1|X)

= P(9:(X) + he (X)W (X) + he(X)ew + e > 0]X)

= //iexp(* ss +3§)I(9t(X) + he(X)W(X) + he(X) S0 + 8¢ > O)dstdsu

2
gt (X)+he (X)W(X)+he(X) sy 53 sf

— // % exp ( — —2'_ )dstdsu
_ // 7exp o+ (ge(X) +ht(X)V[;(X) + hi(X) s +st)2)d8tdsu
= / /—exp (1 +hi (X)) (su + ht(X)(gt(XiiZ%(()Q)W(X) o)y

(9¢(X) + he (X)W X)—i—st

+ Tt h2 )dsudst

_ /0 ( 1 (st +ge(X) + he(X)W (X)) )ds

o V21 \/HT 2 1+ h2(X) !

_ <I,(gt(X)+ht(X)W(X))
1+ h2(X) '

Thus, if the Condition D is satisfied, we can identify (g:(X) + W (X)h¢(X), h¢(X)). Let

Ki(x,€eu) = ge(x) + he(x)W () + he(z)ew, we have

TBR(z) = {1 — ®(Ko(z,s)) }®(K1(,s)) fe, (s)ds

= Lexp(fs(z)/2)dso e 1 exp(—s1/2)ds1 b fe,, (s)ds
Kole, g)\/ﬂ V2r

— 00

(so + Ko(x,5))” + (s1 + Ki(x, )% + s°
// / 271' (971)3/2 eXp{ ° 0 )) ( ! 1( )) }dS()dSldS.

Let Kii1(x) = gi() + he(z)W (), thus Ki(x,s) = Ki1(z) + she(xz). Then the term in
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exp ( — %()) can be arranged as

{50 + KO(.T78)}2 + {81 + Kl(xﬂs)}Q + 52

{1 + h(Q)(x) + h?(ac)}s2 + 2{(50 + Ko,1(x))ho(z) + (s1 + K1,1(z))h1 (1‘)}5

+{s0 + Ko,l(x)}2 + {s1+ K1,1($)}2

2 (s0+ Ko, (@)ho(@) + (s1 + K11 (@))ha () 12
{1+ h(z) + hi(z)}{s+ 1+ hi(z) + h3(x) }
1 )

+m |:{50 + Ko,l(l‘)}Q{l + h%(a}

s+ Kua(@) {1+ hi(2)}

~2{s0 + Koa(2)ho(@){s1 + K1a(2)a (2)|.
So

oo 0 1 F
TBR(z) = /0 [w @ms exp ( - E)dsodsl,

where

S% =14 hd(z) + hi(z),

Fo= [{so+ Koa(@} {1+ hi(@)} +{s1 + Kia(@) {1+ h3(@)}

~2{s0 + Ko (@) ho(@) {1 + K1 (2)}hn (2)] /7

{(50751) - H}E_l{(so,sl) - M}T7

p=(-Koa(z), —Ki1(x)),
1+hd(x)  ho(z)hi(x)
Z =
ho(x)hi(z) 1+ hi(z)
Thus, TBR(z) = ®2((0,00), (—00,0); 1, Z), where ®2(Ao, A1; 11, ¥) is the distribution
function of bivariate normal vector with mean p, covariance matrix ¥ and integral region

Ao x Az. Similarly, we can derive the form for THR(z). Thus, we can identify the TBR(x)

and THR(z), so the joint distribution of (Yp, Y1) given X are identifiable. O

Appendix H Additional Tables
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Table 1: The true value, bias, average estimated standard error (ASE), empirical stan-

dard error (ESE) and 95% confidence interval (CI) coverage in continuous case. Every

table cell contains two elements, which corresponds to the population TBR,. (first row

in each cell) and THR, (second row in each cell) (¢ = 0.5) respectively.

Distribution of U  true value bias ASE  ESE  95% CI coverage
0.501 —0.001 0.017 0.017 0.945
Normal
0.397 —0.001 0.016 0.016 0.949
0.500 —0.001 0.017 0.017 0.951
t(3)
0.396 0.002  0.016 0.016 0.948
0.499 < 0.001 0.017 0.017 0.953
t(10)
0.395 0.002  0.016 0.016 0.939
0.501 —0.001 0.017 0.016 0.955
X*(3)
0.397 < 0.001 0.016 0.016 0.954
0.502 —0.002 0.017 0.017 0.952
x*(10)
0.397 < 0.001 0.016 0.016 0.956
0.502 —0.002 0.017 0.017 0.951
P(3)
0.398 —0.002 0.016 0.016 0.943
0.503 —3e-03 0.017 0.017 0.933
P(10)
0.397 —Te-04 0.016 0.016 0.942
0.501 —8e-04 0.017 0.017 0.949
B(0.5)
0.395 6e-04  0.016 0.016 0.953
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Table 2: Estimates, estimated standard deviation (SD) and p-value of parameters of the

Mind Study
t=20 t=1

Estimate SD  p-value Estimate  SD  p-value
Gender —0.656  0.275  0.017 —-0.248 0.321  0.439
CVD 0.581 0.353  0.100 0.100 0.395  0.801
Age 1.075 0.202 < 0.001 0.500 0.231  0.030
DSST —0.483 0.190 0.011 —0.652  0.231  0.005
Race 0.619 0.309  0.045 0.355 0.383  0.354
U 1.768 0.791  0.025 0.148 0.374  0.693
UGender —1.916 0480 < 0.001 —1.742 0414 < 0.001
UCVD —0.321  0.398  0.420 —1.669 0.506  0.001
UAge 1.280 0.513  0.013 2.090 0.435 < 0.001
UDSST —1.166  0.313 < 0.001 —1.157 0.339  0.001
URace 1.729 0.390 < 0.001 2.239 0.479 < 0.001

o? 1.080 0.277 < 0.001 1.992 0.491 < 0.001




