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Abstract: Linear rank invariant tests are developed for testing the equality of q

dependent cause-specific hazard rates in competing risks model. Asymptotic locally

optimal tests are provided using counting process techniques. The performance of

the proposed tests and other existing tests is assessed in a simulation study. An

example is given to illustrate the proposed tests.
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1. Introduction

In the competing risks setting, a unit is exposed to several risks at the same
time, but eventual failure of the unit is due to only one of these risks, which is
called a cause of failure. In many practical situations, it is important to know
whether several risks are equal or not.

One formulation of the competing risks model is in terms of conceptual
or latent failure times for each failure type (Cox (1959)). It assumes that the
competing risks are independent of each other. This approach has been criticized
on the basis of unwarranted assumptions, lack of physical interpretation and
identifiability problems.

Alternatively, Prentice, Kalbfleisch, Peterson, Flournoy, Farewell and Bres-
low (1978) proposed cause-specific hazard rates, and showed that they were the
basic estimable quantities in the competing risks framework. The competing risks
may be dependent on each other. Under this framework, suppose failure time T
is continuous and there are q competing risks. The overall hazard function for
an individual is given by

λall(t; z) = lim
∆t→0

P{t ≤ T < t+ ∆t|T ≥ t; z(t)}/∆t,

where z(t) denotes the value of the regression vector at time t. The cause-specific
hazard functions are defined by

λj(t; z) = lim
∆t→0

P{t ≤ T < t+ ∆t, δ = j|T ≥ t; z(t)}/∆t
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for j = 1, . . . , q, where δ represents failure cause. Assuming that the q failure
types are distinct, the overall hazard function can be expressed in terms of cause-
specific hazard functions as

λall(t; z) =
q∑

j=1

λj(t; z).

Suppose now that n study subjects give rise to data (ti, δi, ci), i = 1, . . . , n,
where ti is the failure or censoring time, and δi = (δi1, . . . , δiq) is the failure cause
indicator vector, with value δij = 1 if the cause of failure for subject i is j, and
δij = 0 otherwise. Let δi be a scalar cause indicator such that δi = j if δij = 1.
Let ci be a censoring indicator which takes value 1 if failure occurs and value 0
otherwise. The cause of failure δi may be specified arbitrarily if ci = 0. As usual,
an independent censoring mechanism is assumed.

The likelihood function under an independent censoring mechanism is, up to
a constant of proportionality,

n∏
i=1

[λδi
(ti; zi)]ci exp{−

q∑
j=1

∫ ti

0
λj(u; zj(u))du}.

The likelihood function is completely specified by the cause-specific hazard func-
tions λj(t; z), j = 1, . . . , q, and they are the basic estimable quantities in the
competing risks framework. The marginal hazard rates are usually not estimable.

A common hypothesis of interest is

H0 : λ1(t) = · · · = λq(t), (1.1)

against the alternative hypothesis H1 : λi(t) �= λj(t) for at least one pair of i, j,
1 ≤ i < j ≤ q.

Various authors have proposed tests of H0 for the case in which there are
two independent competing risks and without censoring: Bagai, Deshpandé and
Kochar (1989a, b) developed distribution-free rank tests; Yip and Lam (1992)
suggested a class of weighted log rank-type statistics; Neuhaus (1991) constructed
asymptotically optimal rank tests for q competing risks against stochastic order-
ing when there was no censoring.

The case of dependent competing risks has been considered only recently.
Aly, Kochar and McKeague (1994) proposed Kolmogrov-Smirnov type tests for
testing the equality of two dependent competing risks with censoring data. Dyk-
stra, Kochar and Robertson (1995) considered a model for q dependent compet-
ing risks with grouped data or with discrete failure times. The likelihood ratio
test statistic was constructed for testing the null hypothesis of the equality of
cause-specific hazard rates against ordered alternatives.
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In Section 2 we introduce our linear rank invariant tests for the q competing
risks problem, they are log-rank type tests. In Section 3, we give large sample
properties of the proposed linear rank tests, and also give asymptotic locally opti-
mal tests within the log-rank type test class. In Section 4, we present simulation
results and give an example. Finally, in Section 5, we give a brief discussion.

2. Linear Rank Invariant Tests

Linear rank invariant tests for testing the equivalence of q dependent com-
peting risks are developed in this section. The statistics arise as score statistics
based on the marginal probability of a generalized rank vector.

The data set (ti, δi, ci), i = 1, . . . , n, is defined as in Section 1. Consider the
following linear model for the cause-specific hazards:

fj(t) = f(t+ bj), j = 1, . . . , q, with b1 = 0, (2.1)

or equivalently λj(t) = λ(t+ bj), j = 1, . . . , q, with b1 = 0. Equation (2.1) is the
location shift model if the competing risks are independent.

The likelihood function under an independent censoring mechanism, up to a
constant of proportionality, may be written as

n∏
i=1

{[λ(ti + bT δi)]ci exp[−
q∑

j=1

∫ ti

0
λ(u+ bj)du]},

where b = (0, b2, . . . , bq). The null hypothesis at (1.1) can be re-expressed under
model (2.1) as H0 : b = 0, and the alternative hypothesis is H1 : b �= 0.

Let t(1) < · · · < t(k) represent the ordered event times in the sample. In some
arbitrary order, let t(i1), . . . , t(imi) denote the right-censored times in [t(i), t(i+1))
for i = 0, . . . , k, with t(0) = 0, t(k+1) = ∞. Note that we assume no ties among
the event times, but there may be ties between right-censored observations and
uncensored observations.

The accumulated probability of possible underlying rank vectors is then

P (r) =
∫

τ(1)<···<τ(k)

k∏
i=1

{λ(τ(i) + bT δ(i))[exp{−
q∑

j=1

∫ τ(i)

0
λ(u+ bj)du}]mi+1dτ(i)}.

(2.2)
This expression arises because the possible rankings corresponding to each cen-
sored time τ(i) map out an integral over the whole line segment [τ(i),∞) (Prentice
(1978)). Note that at b = 0, (2.2) can be integrated directly, leading to a value
of P (r) equal to (n1 · · ·nk)−1, where ni = q[(mi +1)+ (mi+1 +1) · · ·+(mk +1)].

The score function for testing b = 0 based on (2.2), as proved in Appendix
1, is

v =
k∑

i=1

di(δ(i) − (1/q)1), (2.3)
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where 1 is a q-vector (1, . . . , 1), and

di =
∫

τ(1)<···<τ(k)

[λ′(τ(i)/λ(τ(i)]
k∏

j=1

{njλ(τ(j))[S(τ(j))]
mj+1dτ(j)}. (2.4)

The covariance matrix of v under the null hypothesis is s2, where

s2 =
k∑

i=1

d2
i



q−1(1 − q−1) −q−2 · · · −q−2

−q−2 q−1(1 − q−1) · · · −q−2

...
...

...
...

−q−2 −q−2 · · · q−1(1 − q−1)


 .

The linear rank score test statistic U2 is a weighted log-rank type test:

U2 = vT (s2)−v =


q

q∑
h=1

[
k∑

i=1

di(δ(ih) − 1/q)

]2

 /

{
k∑

i=1

d2
i

}
, (2.5)

where sign − denotes generalized inverse.
When q = 2, from (2.5), we have

U =
k∑

i=1

di(δ(i1) − 1/2)/

√√√√ k∑
i=1

d2
i /22,

which follows a standard normal distribution under H0. An extreme minimum
value density, f(t) = exp(t− et), yields λ′(t)/λ(t) = 1; then we have di = 1. We
denote this test as T1. A logistic density, f(t) = et/(1 + et)2 gives λ′(t)/λ(t) =
S(t), so that, from (2.4), we have di =

∏i
j=1 nj/(nj + 1). We denote this test

as T2. The weight function di is asymptotically equivalent to the Kaplan-Meier
estimator

∏i
j=1(nj − 1)/nj .

3. Large Sample Properties and Asymptotic Locally Optimal Tests

In this section, we prove that the test U2 at (2.5) has a χ2 distribution with
q − 1 degrees of freedom under the null hypothesis. We also give asymptotic
locally optimal tests within the log-rank type test class.

3.1. General testing

For a dependent counting process N(t) = (N1(t), . . . , Nq(t)), t ∈ Γ = [0, τ ],
for a given terminal time τ where for j = 1, . . . , q, Nj(t) =

∑n
i=1Nij(t) =∑n

i=1 I(Ti ≤ t, δij = 1), Ti is failure or censoring time, the cause-specific in-
tensity process is a(t) = (a1(t), . . . , aq(t)), with ah(t) = λh(t)Y (t), h = 1, . . . , q,
where λh is cause-specific hazard rate and Y (t) =

∑n
i=1 I(Ti ≥ t). It is assumed
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that
∫ t
0 λh(s)ds < ∞, h = 1, . . . , q, t ∈ Γ. It is also assumed that there are no

ties in failure times. Then the counting process Mh(t) = Nh(t) − ∫ t
0 ah(s)ds is

a local square integrable martingale. We denote N(t) =
∑q

l=1Nl(t) and define
stochastic processes

Zh(t) =
∫ t

0
K(s)[dNh(s) − 1/qdN..(s)], h = 1, . . . , q, (3.1)

where K(s) is locally bounded and only depends on (N..(s), Y (s)). When Y (s) is
zero, K(s) is also zero. Under (1.1), Zh(t) is a local square integrable martingale.
We denote the optional variation process of Z(t) as [Zh, Zj ](t). Then [Zh, Zj ](t) =∫ t
0 K(s)2q−1(I(h = j) − 1/q)dN..(s), which is a consistent estimator of Σ, the

covariance matrix of Z(t). A reasonable test statistic for hypothesis (1.1) is the
quadratic form

X2(t) = Z(t)T ([Z,Z](t))−Z(t). (3.2)

By virtue of the Martingale Central Limit Theorem, X2(t) has asymptotically a
χ2 distribution with q − 1 degrees of freedom under hypothesis (1.1), provided
certain regularity conditions are fulfilled (Andersen, Borgan, Gill and Keiding
(1991, Chap.V2)).

We can write X2(t) as follows:

X2(t) = {
q∑

h=1

[Zh(t)]2}/
∫ t

0
K(s)2q−1dN..(s)

=


q

q∑
h=1

[
k∑

i=1

K(t(i))(δ(ih) − 1/q)

]2

 /

{
k∑

i=1

K(t(i))
2

}
.

Test statistics X2(t) and U2 of (2.5) are equivalent when the two weight func-
tions K(t(i)) and di are the same. Therefore, U2 also has asymptotically a χ2

distribution with q − 1 degrees of freedom under hypothesis (1.1).

3.2. Asymptotic locally optimal tests

In this subsection, the behavior of test statistic X2(t) is studied under a
sequence of local alternative hypotheses, and the optimal tests are derived.

Consider a(n)
h (t) = λ

(n)
h (t)Y (n)(t) with

λ
(n)
h (t) = λ(t) + ϕhγ(t)λ(t)/cn + ρ

(n)
h (t), (3.3)

where ϕh are constants, γ(t), λ(t) are fixed functions on [0, τ ], {cn} is a sequence
of constants increasing to infinity as n → ∞, and {ρ(n)

h }, h = 1, . . . , q, are
sequences of functions satisfying sup[0,τ ] |cnρ(n)

h (t)| → 0 for each h as n→ ∞.
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Theorem 1. A test based on X2(t) in (3.2) is an asymptotic locally optimal test
under a sequence of local alternative hypotheses (3.3) when the weight process
K(n)(s) is asymptotically proportional to γ(s).

The proof of Theorem 1 is in Appendix 2.
Under local Lehmann alternative λ(n)

h (t) = λ(t)θh, where θh → 1, we have
γ(t) = 1, cn = ϕhn

−1/2, ρ(n)
h (t) = 0. Therefore, from Theorem 1, asymptotic

local optimality for the Lehmann alternative is achieved when the weight process
K(n)(s) is asymptotically proportional to 1.

Next, we show how to get the optimal weight process K(n)(s) for censored
data using a survival function estimator. We also show that rank tests T1 and T2,
derived from extreme minimum value and logistic distributions respectively, are
indeed the optimal tests for these distributions. We assume that the distribution
functions F (n)

1 , . . . , F (n)q form a generalized local location family in the sense
that

F (n)h(t) = Ψ(g(t) + n−1/2ϕh),

where Ψ is a fixed absolutely continuous distribution function with positive con-
tinuously differentiable density Ψ on (−∞,∞), and g is a fixed non-decreasing
differentiable function from (0,∞) onto (−∞,∞). Note that, F (n)h(t) has hazard
function λ(n)h(t) = h(g(t) + n−1/2ϕh)g′(t), where h = ψ/(1 − Ψ) is the hazard
function corresponding to Ψ. Therefore, a Taylor expansion gives (3.3) with
cn =

√
n, λ(t) = h(g(t))g′(t), and γ(t) = h′(Ψ−1(F (t)))/h(Ψ−1(F (t))), where

F (t) = Ψ(g(t)) is the common distribution function under the null hypothesis.
An optimal test can be obtained by using the weight process

K(n)(t) = I(Y (n)(t) > 0)h′(Ψ−1(F̂ (n)(t−)))/h(Ψ−1((n)(t−))),

where F̂ (n) = 1 − Ŝ(n), and Ŝ(n)(t) is the Kaplan-Meier estimator based on the
combined sample Ŝ(n)(t) =

∏
s≤t{1 − ∆N..(n)(s)/[qY (n)(s)]}.

For the two-sample case, that is, q = 2, (3.2) reduces to

X2(τ) = 4




q∑
h=1

[
k∑

i=1

K(t(i))(δ(ih) − 1/2)

]2

 /

{
k∑

i=1

K(t(i))
2

}
. (3.4)

For the extreme value distribution, Ψ(t) = 1 − exp(−et), h(t) = et and r(t) = 1.
Thus, from (3.4), the optimal test can be achieved whenK(n)(t(i))=I(Y (n)(t(i))>
0), which is also the linear rank test T1 under the extreme minimum value dis-
tribution. For the logistic distribution, Ψ(t) = h(t) = et/(1 + et), h′(t) =
Ψ(t)(1 − Ψ(t)) and r(t) = 1 − Ψ(t). The optimal choice of weight process is,
therefore, K(n)(t(i)) = I(Y (n)(t(i)) > 0)Ŝ(n)(t(i)−). It is, asymptotically, the
linear rank test T2 under the logistic distribution.
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4. Simulation Studies and an Example

4.1. Simulation

Simulation studies were carried out to investigate the finite sample perfor-
mance of proposed tests T1, T2 and existing tests D3n, D4n (Aly, Kochar and
McKeague (1994)). Let X and Y denote the failure times for two different causes.
Three underlying distributions were studied.

(i) Block and Basu’s (1974) absolutely continuous bivariate exponential
(ACBVE) distribution has density

f(x, y) =




λ1λ(λ2+λ0)
λ1+λ2

e−λ1x−(λ2+λ0)y, if x < y,

λ2λ(λ1+λ0)
λ1+λ2

e−λ2y−(λ1+λ0)x, if x > y,

where λ = λ0 + λ1 + λ2. Different values of λ2 correspond to different
departures from H0; X and Y are independent if and only if λ0 = 0. We
set λ0 = 1, λ1 = 1, λ2 = 1, 1.5 and 2.

(ii) Independent logistic distributions with f(t) = et/(1 + et)2.
(iii) Independent extreme minimum value distributions with f(t) = exp(t −

exp(t)).
The censoring distributions were taken respectively to be independent ex-

ponential, logistic and extreme minimum value distributions. The cumulative
censoring percentages were taken to be 0%, 25%-35% and 50% - 70%. The
asymptotic significance level was 5%. Simulations were repeated 5000 times.
The sample size was 100.

The results in Table 1-3 show that T1 and T2 are very close under the logistic
and extreme minimum value distributions. Test T2 is more powerful than T1

under the ACBVE distribution. Test D3n is more powerful than D4n under all
three distributions. Test D3n is close to T2 under all three distributions when
there is no censoring. When there is censoring, especially when the censoring
is heavy, both D3n and D4n have size lower than 5% and lower power than T1

and T2. The relative low reject rate for T1 in the uncensored case may be due to
sample variation.

4.2. Example

Non-Hodgkin’s Lymphoma (NHL) occurs in approximately 2% of all patients
infected with the human immunodeficiency virus (HIV), and may account for 11%
of NHL in the United States. Furthermore, patients surviving HIV infection may
be particularly prone to lymphoma, as evidenced by the 20%-30% actuarial risk
of lymphoma at 3 years in one series of patients treated with antiretroviral ther-
apy. There are two causes of death for HIV positive NHL patients: opportunistic
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infection (OI) and NHL. The two causes of death may be dependent. Our pro-
posed methods are applied to compare the risks of these two potential causes of
death.

Table 1. The observed rejection rates for tests T1, T2, D3n and D4n at an
asymptotic level of 5%. The underlying distribution of (X,Y ) is the ACBVE
distribution.

λ2 T1 T2 D3n D4n

Uncensored
1 4.9 5.2 4.9 3.4
1.5 64.0 80.4 77.8 68.4
2 95.8 99.5 99.5 98.5

Lightly censored 25%-35%
1 5.4 5.3 4.4 3.8
1.5 70.6 77.7 70.9 60.2
2 97.8 99.4 98.7 96.8

Heavily censored 50%-70%
1 4.5 4.7 2.7 2.0
1.5 67.8 70.6 55.6 43.3
2 97.2 98.0 95.0 89.6

Table 2. The observed rejection rates for tests T1, T2, D3n and D4n at
an asymptotic level of 5%. The underlying distributions of X and Y are
independent extreme minimum value distributions.

A T1 T2 D3n D4n

Uncensored
0 4.9 4.9 4.5 3.7
-0.2 24.8 24.9 23.9 19.4
-1 99.9 99.8 99.8 99.8

Lightly censored 25%-35%
0 4.9 5.0 4.1 3.4
-0.2 21.3 20.1 17.3 14.3
-1 99.6 99.2 99.3 98.6

Heavily censored 50%-70%
0 4.5 4.4 1.0 0.1
-0.2 11.7 12.0 3.2 2.0
-1 86.5 85.6 71.7 59.5

We considered a set of mortality data provided by Dr. J. Sparano of the
Albert Einstein Cancer Center. A total of 62 HIV-associated NHL patients were
treated with chemotherapy. The data analyzed was that of the first 12 months
of follow-up.
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Table 3. The observed rejection rates for tests T1, T2, D3n and D4n at
an asymptotic level of 5%. The underlying distributions of X and Y are
independent logistic distributions.

a T1 T2 D3n D4n

Uncensored
0 4.7 5.2 4.6 3.9
-0.2 14.4 16.4 15.1 12.0
-1 94.6 96.7 95.7 92.4

Lightly censored 25%-35%
0 5.1 5.3 4.0 3.4
-0.2 14.4 14.8 11.8 9.4
-1 93.2 94.7 91.9 86.5

Heavily censored 50%-70%
0 4.9 4.6 3.1 2.2
-0.2 11.5 11.6 7.3 5.2
-1 80.8 82.2 70.9 59.1

Among the 62 patients, 18 died of NHL, 7 died of OI, 37 were censored.
The Kaplan-Meier survival curves are plotted in Figure 1, where death from
other causes was considered censored. The cause-specific hazard rate functions
are given in Figure 2. They were estimated by smoothing the increments of the
Nelson-Aalen estimator using a bandwidth of 2 months. We performed both test
T1 and test T2 on this data set.

CAUSE AIDS NHL

Figure 1. Kaplan-Meier survival curves.
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For test T1, we have U = 2.2, P value= 0.007. The NHL death cause-specific
hazard rate was significantly higher than the OI death cause-specific hazard rate.
For test T2, we have U = 2.07, P value= 0.010. The NHL death cause-specific
hazard rate was also significantly higher than the OI death cause-specific hazard
rate. Both tests showed that the HIV positive NHL patients had significantly
higher risk of dying of NHL than OI within the first year of diagnosis of NHL.
The relative smaller P value from T1 may be due to the proportionality of two
cause-specific hazard rates within that period of time (Fig. 2).

CAUSE AIDS NHL

Figure 2. Cause-specific Hazard rate functions.

5. Discussion

In this note, we have proposed linear rank statistics for testing the equality of
q dependent cause-specific hazard rates in competing risks model with censored
data. We have also provided asymptotic locally optimal tests among the pro-
posed log-rank type linear rank tests using martingale techniques. Assuming two
independent competing risks with no censoring, the tests of Bagai, Deshpande
and Kochar (1989a, b) and Yip and Lam (1992) result as special cases of our
tests T1 and T2. Bagai , Deshpande and Kochar (1989a, b) also studied statistics
which are linear combinations of T1 and T2. Aly, Kochar and McKeague (1994)
studied dependent cause-specific hazard rates, and proposed tests D3n and D4n.
Under both dependent and independent competing risks, our simulation stud-
ies show that T1 and T2 are more powerful than D3n and D4n when there is
censoring.

Quantitative assessment for the competing risks, and handling of missing
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cause-of-failure are other interesting topics. We expect to report on these topics
elsewhere.
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Appendix

Proof of (2.3).

v = ∂ ln(P (r))/∂b|b=0 = [P (r)]−1∂(P (r))/∂b|b=0

=
k∏

i=1

{ni} ∂
∂b

∫
τ(1)<···<τ(k)

k∑
i=1

{λ(τ(i) + bT δ(i))[S(τ(i))]
mi+1dτ(i)}|b=0

=
∫

τ(i)<···<τ(k)

k∑
i=1

{niδ(i)λ
′(τ(i))[S(τ(i))]

mi+1

+ni1(mi + 1)λ(τ(i))[S(τ(i))]
mi+1S(τ(i))[−

∫ t(i)

0
λ′(u)du]}dτ(i)∏

j �=i

{njλ(τ(j))[S(τ(i))]
mj+1dτ(j)}

=
∫

τ(1)<···<τ(k)

k∑
i=1

{δ(i)λ′(τ(i))/λ(τ(i)) − 1(mi + 1)λ(τ(i))}

k∏
j=1

{njλ(τ(j))[S(τ(j))]
mj+1dτ(j)}

=
k∑

i=1

(δ(i)di +miDi1),

where Di = −mi+1
mi

∫
τ(1)<···<τ(k)

λ(τ(i))
∏k

j=1{njλ(τ(j))[S(τ(j))]mj+1dτ(j)}.
It is easy to see that di = ni(Di−1 −Di). Then we have

v=
k∑

i=1

δ(i)di−1
k∑

i=1

(mi+1)
k∑

j=1

di/ni =
k∑

i=1

δ(i)di−1(1/q)
k∑

i=1

di =
k∑

i=1

di[δ(i)−(1/q)1].

Proof of Theorem 1. The Z(n)
h (t) of (3.1) may be written as a local square

integrable martingale term W
(n)
h (t) and a convergent term V

(n)
h (t):

Z
(n)
h (t) = W

(n)
h (t) + V

(n)
h (t),
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where W (n)
h (t) =

∫ t
0 K

(n)(s)
∑q

l=1(I(h = l) − 1/q)dM (n)
l (s),

V
(n)
h (t) = c−1

n

∫ t

0
K(n)(s)Y (n)(s)γ(t)λ(t){ϕh − (1/q)

q∑
l=1

ϕl}ds +R
(n)
1h (t),

|R(n)
1h (t)| = o(b−1

n )
∫ t

0
K(n)(s)Y (n)(s)ds.

Under the sequence of local alternatives specified in (3.3), W (n)
h is a lo-

cal square integrable martingale, and V
(n)
h (t) converges in probability to ξh(t).

The optimal variation process [Z,Z](t) is still a consistent estimator of Σ along
the sequence of local alternatives (Anderson, Borgan, Gill and Keiding (1991,
Chap.V2)), where Σ is the covariance matrix of Z(t). We therefore have for any
fixed time t,

Z(n)(t) D→N(ξ(t),Σ(t)) as n→ ∞.

It follows that, under the sequence of local alternatives (3.3), the test statistic
X2(t) given by (3.2) has, asymptotically, a noncentral χ2 distribution with q− 1
degrees of freedom and noncentrality parameter ζ(t) = ξ(t)T Σ(t)−ξ(t), where,
ξ(t) = (ξ1(t), . . . , ξq(t)). Therefore, asymptotic local optimality is achieved when
the noncentrality parameter ζ(t) gets its maximum value. It is not hard to see
that

ζ(t) =
q∑

h=1

[ξ(t)h(t)]2/E
∫ t

0
K(s)2q−1λ(s)dN..(s)

= {(ϕh − ϕ)2}[
∫ t

0
K(n)(s)γ(s)λ(s)Y (n)(s)ds]2/E

∫ t

0

(n)(s)
2
λ(s)Y (n)(s)ds

≤ {
q∑

h=1

(ϕh − ϕ)2}
∫ t

0
K(n)(s)γ(s)λ(s)Y (n)(s)ds.

The last inequality follows from Cauchy-Schwarz, with equality if and only if
K(n)(s) is proportional to γ(s). Thus, a test with weight process K(n)(s) asymp-
totically proportional to γ(s) is the asymptotic locally optimal test.
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