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Abstract: Estimating the residual variance is an important question in nonparamet-

ric regression. Among the existing estimators, the optimal difference-based variance

estimation proposed in Hall, Kay, and Titterington (1990) is widely used in prac-

tice. Their method is restricted to the situation when the errors are independent

and identically distributed. In this paper, we propose the optimal difference-based

variance estimation in heteroscedastic nonparametric regression under settings of

uncorrelated errors and correlated errors. The proposed estimators are shown to

be asymptotically unbiased and their mean squared errors are derived. Simula-

tion studies indicate that the proposed estimators perform better than existing

competitors in finite sample settings. In addition, data examples are analyzed

to demonstrate the practical usefulness of the proposed method. The proposed

method has many applications and we apply it to the nonparametric regression

model with repeated measurements and the semiparametric partially linear model.
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1. Introduction

Consider the nonparametric regression model

Yi = f(xi) + εi, i = 1, 2, . . . , n, (1.1)

where Yi are observations, f is an unknown mean function, xi are design points,

and εi are random errors. When the errors εi are assumed to be independent

and identically distributed (i.i.d.) with zero mean and variance σ2. This is a ho-

moscedastic nonparametric regression model. The estimation of σ2 has received

a lot of attention in the literature. An accurate estimate of σ2 is needed for

the purpose of constructing confidence bands, choosing the amount of smooth-

ing, testing the goodness of fit, and for other uses (Carroll (1987), Carroll and

Ruppert (1988), Kay (1988), Buckley, Eagleson, and Silverman (1988), Eubank

and Spiegelman (1990), Gasser, Kneip, and Kohler (1991), Härdle and Tsybakov

(1997), Kulasekera and Gallagher (2002)).
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The existing estimators of σ2 fall into two classes. The first consists of

residual-based estimators and the second consists of difference-based estimators.

Difference-based estimators do not require an estimate of the mean function,

and so is popular in practice. Rice (1984) proposed a first-order difference-based

estimator; Gasser, Sroka, and Jennen-Steinmetz (1986) constructed a second-

order difference-based estimator; Hall, Kay, and Titterington (1990) proposed

an mth-order difference-based estimator with m ≥ 2 a fixed integer. Specifically,

let {dj , j = −m1, . . . .,m2} be a sequence of real numbers that satisfy
m2∑

j=−m1

dj = 0 and

m2∑
j=−m1

d2j = 1, (1.2)

where m1 and m2 are non-negative integers, with m = m1+m2 termed the order

of the sequence. The estimator of Hall, Kay, and Titterington (1990) is

σ̂2
H =

1

n−m

n−m2∑
k=m1+1

( m2∑
j=−m1

djYj+k

)2

. (1.3)

Without loss of generality, we take m1 = 0 and m2 = m. The optimal sequence

{d0, . . . , dm} is then obtained by minimizing the asymptotic mean squared error

(MSE) of the estimator σ̂2
H. The optimal sequence {d0, . . . , dm} is unique except

for the initial sign and reversal order.

Beyond the above estimators, there exists more complicated difference-based

estimators in the literature. Nevertheless, most of them suffer from at least one of

the following: the method applies only to restricted situations, e.g., the difference-

based estimator in Dette, Munk, andWagner (1998) only works for a small sample

size or a rough mean function; the method is not easy to apply, e.g., the covariate-

matched U-statistic estimator in Müller, Schick, and Wefelmeyer (2003) requires

an appropriate choice of bandwidth in advance; the method requires rigorous

assumptions, e.g, the least squares estimators in Tong and Wang (2005) and

Tong, Ma, and Wang (2013) require that the mean function have a bounded

second derivative and that the design points be equidistant.

The optimal difference-based estimator in Hall, Kay, and Titterington (1990)

remains widely used in practice, and the optimal sequence idea has been used

elsewhere. For instance, Levine (2006) and Brown and Levine (2007) applied

the optimal sequence idea to estimate the variance function in nonparametric

regression; Wang, Brown, and Cai (2011) and Zhao and You (2011) applied it in

semiparametric partially linear regression models. Hall, Kay, and Titterington

(1990) require a homoscedastic nonparametric regression model and, in practice,

it is not uncommon that the errors have different variances or be correlated to

each other. This motivates us to propose an optimal difference-based variance

estimation in heteroscedastic nonparametric regression.
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The rest of the paper is organized as follows. In Section 2, we propose

the optimal difference-based estimator of σ2 in heteroscedastic nonparametric

regression under uncorrelated errors and under correlated errors. We derive the

asymptotic MSEs of the proposed estimator, and present a simulation study

to evaluate its finite sample performance. In Sections 3, we apply the proposed

method to the nonparametric regression model with repeated measurements, and

to the semiparametric partially linear model. Two data examples are presented

and analyzed to demonstrate the practical usefulness of the proposed method.

We conclude the paper in Section 4 and provide the technical proofs in Section 5.

2. Main Results

Let Y =(Y1, . . . , Yn)
T, f=(f1, . . . , fn)

T with fi=f(xi), and ε=(ε1, . . . , εn)
T .

In matrix notation, the regression model is

Y = f + ε,

where Cov(ε) = σ2Σ. Hall, Kay, and Titterington (1990) assumed Σ = I. We

extend the optimal difference-based variance estimation to a general covariance

matrix Σ. We need assumptions on the design points, the mean function, and

the random errors.

Assumption 1: The design points xi satisfy 0 ≤ x1 ≤ · · · ≤ xn ≤ 1 and xi−xi−1 =

1/n+ o(1/n).

Assumption 2: The mean function f(x) satisfies the following Lipschitz condition

|f(xj)− f(xi)| ≤ M |xj − xi|, where M > 0 is a constant.

Assumption 3: E(ε4i ) < ∞.

2.1. Uncorrelated errors

We first consider uncorrelated but heteroscedastic errors. Specifically, we

take

Σ =


c1 0 . . . 0

0 c2 . . . 0
...

...
. . .

...

0 0 . . . cn

 , (2.1)

where the constants ci > 0 are assumed to be known. Without loss of generality,

we assume that
∑n

i=1 ci = n.

When Σ = I, the expectation of the estimator at (1.3) is

E(σ̂2
H) = σ2 +

1

n−m

n−m∑
k=1

( m∑
j=0

djfj+k

)2
.
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Under Assumptions 1 and 2,
∑n−m

k=1 (
∑m

j=0 djfj+k)
2/(n−m) = O(m3/n2). Thus

σ̂2
H is an asymptotically unbiased estimator σ2 in homoscedastic nonparametric

regression when m = nr with 0 ≤ r < 2/3. When Σ ̸= I, we have

E(σ̂2
H) =

[
1 +

1

n−m

{
m−

m∑
j=0

d2j

( j∑
i=1

ci +

n∑
i=j+n−m+1

ci

)}]
σ2

+
1

n−m

n−m∑
k=1

( m∑
j=0

djfj+k

)2
,

where
∑0

i=1 ci = 0 and
∑n

i=n+1 ci = 0. Here the bias term for σ̂2
H is non-negligible

when the ci values, with i close to 1 or n, are significantly far from 1. We propose

a new difference-based estimator of σ2 that is asymptotically unbiased.

Let ωj =
∑n−m

k=1 cj+k/(n−m) for j = 0, . . . ,m. Define a new estimator as

σ̂2
new =

1

n−m

n−m∑
k=1

( m∑
j=0

dj√
ωj

Yj+k

)2
.

Under mild conditions, we can verify that σ̂2
new is an asymptotically unbiased

estimator of σ2. For ease of notation, let d′j = dj/
√
wj for j = 0, . . . ,m. Then

σ̂2
new =

1

n−m

n−m∑
k=1

( m∑
j=0

d′jYj+k

)2
, (2.2)

where the difference sequence {d′j} satisfies

m∑
j=0

d′j = 0 and

m∑
j=0

ωjd
′2
j = 1. (2.3)

Note that the sequence {d′j} in (2.3) differs from the sequence {dj} in (1.2)

except when Σ = I. With the sequence {d′j}, the proposed estimator σ̂2
new has

the quadratic form,

σ̂2
new =

1

n−m
Y TDTDY =

1

n−m
Y TAY ,

where A = DTD and D is an (n−m)× n matrix of form

D =


d′0 d′1 d′2 · · · d′m 0 · · · · · · 0

0 d′0 d′1 d′2 · · · d′m 0 · · · 0
...

...
. . .

. . .
. . .

. . .
. . .

...
...

0 · · · 0 d′0 d′1 d′2 · · · d′m 0

0 · · · · · · 0 d′0 d′1 d′2 · · · d′m

 .
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Theorem 1. If Σ at (2.1) has min{w0, . . . , wm} ≥ c0, where c0 > 0 is a constant

independent of m and n, under Assumptions 1−3, for any m = nr with 0 < r <

2/7,

MSE(σ̂2
new) =

1

(n−m)2

{( m∑
j=0

d′j
2
)2

n∑
i=1

var(ε2i ) + 4σ4
m∑
k=1

bk

(m−k∑
j=0

d′jd
′
j+k

)2
}

+o
( 1

n

)
, (2.4)

MSE(σ̂2
H) =

1

(n−m)2

[ n∑
i=1

var(ε2i ) + 4

m∑
k=1

bk

(m−k∑
j=0

djdj+k

)2
σ4

+
{ n−m∑

k=1

m∑
j=0

d2jcj+k − (n−m)
}2

σ4

]
+ o

( 1

n

)
, (2.5)

where bk =
∑n−k

i=1 cici+k for k = 1, . . . ,m.

The proof of Theorem 1 is given in Section 5. When the εi are normally

distributed, var(ε2i ) = 2c2iσ
4, and the optimal sequence {d′j} is obtained by min-

imizing
n∑

i=1

c2i

( m∑
j=0

d′j
2
)2

+ 2

m∑
k=1

bk

(m−k∑
j=0

d′jd
′
j+k

)2
. (2.6)

For m = 1, the optimal sequence is {d′0, d′1} = {1/
√
ω0 + ω1,−1/

√
ω0 + ω1}. For

m ≥ 2, the optimal sequence can be numerically computed by the Lagrange mul-

tiplier method. When the εi are non-normally distributed, the optimal sequence

{d′j} is obtained by minimizing

n∑
i=1

(γi − 1)c2i

( m∑
j=0

d′j
2
)2

+ 4

m∑
k=1

bk

(m−k∑
j=0

d′jd
′
j+k

)2
, (2.7)

where γi = E(ε4i )/(c
2
iσ

4) for i = 1, . . . , n. In general, we need estimates of γi to

substitute into (2.7) to obtain the optimal sequence {d′j}. Accordingly, we can

use (2.5) to obtain the optimal sequence of {dj} in Hall’s estimator σ̂2
H.

2.2. Correlated errors

We consider correlated errors. Specifically, let Σ = (cjk)n×n be a known

non-diagonal matrix. Under this setting, the expectation of Hall’s estimator is

E(σ̂2
H) =

1

n−m

{
σ2

n−m∑
v=1

m∑
k=0

m∑
j=0

dkdjcj+v,k+v +

n−m∑
k=1

( m∑
j=0

djfj+k

)2
}
.
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In general, σ̂2
H is an asymptotically biased estimator of σ2.

Let ω =
∑n−m

v=1

∑m
k=0

∑m
j=0 dkdjcj+v,k+v/(n − m) and d̃j = dj/

√
ω for j =

0, . . . ,m. Take

σ̃2
new =

1

n−m

n−m∑
k=1

( m∑
j=0

d̃jYj+k

)2
, (2.8)

where the difference sequence {d̃j} satisfies

m∑
j=0

d̃j = 0 and
m∑
j=0

ωd̃2j = 1. (2.9)

Then σ̃2
new can be written as the quadratic form Y T ÃY /(n − m), where Ã =

D̃T D̃ and D̃ is a matrix that replaces d′j in matrix D by d̃j accordingly. Under

Assumptions 1 and 2, we can verify that E(σ̃2
new) = σ2 + O(1/n2) for any fixed

m. The asymptotic MSE of σ̃2
new is stated in a theorem.

Theorem 2. Let Σ be a known non-diagonal positive semi-definite matrix and

suppose Assumptions 1−3 hold. Then for any fixed m,

MSE(σ̃2
new) =

1

(n−m)2
E

{ n−m∑
k=1

( m∑
j=0

d̃jεj+k

)2
}2

− σ4

(n−m)2

( n−m∑
v=1

m∑
k=0

m∑
j=0

d̃kd̃jcj+v,k+v

)2

+O
( 1

n2

)
,

MSE(σ̂2
H) =

1

(n−m)2
E

{ n−m∑
k=1

( m∑
j=0

djεj+k

)2
}2

− σ4

(n−m)

{
2
n−m∑
v=1

m∑
k=0

m∑
j=0

dkdjcj+v,k+v − (n−m)

}
+O

( 1

n2

)
.

The proof is given in Section 5. Here the optimal sequence {d̃j} is obtained

by minimizing

E

{ n−m∑
k=1

( m∑
j=0

d̃jεj+k

)2
}2

− σ4

( n−m∑
v=1

m∑
k=0

m∑
j=0

d̃kd̃jcj+v,k+v

)2

.

For m = 1, the optimal sequence is {d̃0, d̃1} = {1/
√
2ω,−1/

√
2ω}, where ω =∑n−1

v=1(cv,v+cv+1,v+1−cv,v+1−cv+1,v)/2(n−1). For m ≥ 2, the optimal sequence

can be numerically computed by the Lagrange multiplier method.
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When Σ has a special structure, one can say more. For instance, when Σ is

the Toeplitz matrix

Σ =


a0 a1 a2 . . . . . . an−1

a1 a0 a1 a2 . . . an−2
...

...
. . .

. . .
...

...

an−2 an−3 . . . . . . a0 a1
an−1 an−2 an−3 . . . a1 a0

 ,

it can be shown that the optimal sequence {d̃j} is obtained by minimizing

E

{ n−m∑
k=1

( m∑
j=0

d̃jεj+k

)2
}2

− (n−m)2
(
a0

m∑
j=0

d̃2j + 2
∑

0≤s<t≤m

d̃sd̃tat−s

)2

σ4.

In particular, form=1 the optimal sequence is given as {d̃0, d̃1}={1/
√

2(a0−a1),

−1/
√

2(a0 − a1)}. The higher-order optimal sequence, accordingly, can be ob-

tained numerically by the Lagrange multiplier method.

Consider the first-order autoregressive model

Yt = ρYt−1 + εt, t = 1, 2, . . . , (2.10)

where εt are the i.i.d. random errors with mean zero and variance σ2, with

ρ known. Let Y = (Yt+1, Yt+2, . . . , Yt+k)
T , f = (f(Yt), . . . , f(Yt+k−1))

T and

ε = (εt+1, εt+2, . . . , εt+k)
T . In matrix notation, the model can be written as

Y = f + ε, where E(ε) = 0, var(ε) = σ2Σ with

Σ =


1 ρ ρ2 . . . ρk−1

ρ 1 ρ . . . ρk−2

ρ2 ρ 1 . . . ρk−3

...
...

...
. . .

...

ρk−1 ρk−2 ρk−3 . . . 1

 .

Let ω = 1 + 2
∑

0≤s<t≤m dsdtρ
t−s. We then estimate σ2 by σ̂2

AR =
∑k−m

v=1

(
∑m

j=0 d̃jYj+v)
2/(k −m). The asymptotic MSE of the estimator σ̂2

AR is

1

(k−m)2

[
E

{ k−m∑
v=1

( m∑
j=0

d̃jεj+v

)2
}2

−(k−m)2
( m∑

j=0

d̃2j+2
∑

0≤s<t≤m

d̃sd̃tρ
t−s

)2

σ4

]
.

For m = 1, by minimizing its asymptotic MSE we have the optimal sequence as

{d̃0, d̃1} = {1/
√
2(1− ρ),−1/

√
2(1− ρ)}, consistent with what was found for a

general Toeplitz matrix.
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2.3. Simulation study

We conducted three simulation studies to evaluate the finite sample perfor-

mance of the proposed estimators. We compared our proposed estimators with

Hall’s estimator σ̂2
H1 using the optimal sequence derived in Hall, Kay, and Tit-

terington (1990), and Hall’s estimator σ̂2
H2 using the optimal sequence derived in

Theorem 1.

The first simulation study considered a regression model with uncorrelated

errors. Let xi = i/n for i = 1, . . . , n, and m = 2. We simulated εi indepen-

dently from N(0, ciσ
2), where ci = nc′i/

∑n
i=1 c

′
i with c′i being generated from

the standard exponential distribution with parameter λ = 1, so
∑n

i=1 ci = n

and Σ = diag(c1, . . . , cn). With m = 2, the optimal sequences of {d0, d1, d2}
and {d′0, d′1, d′2} can be obtained by minimizing the corresponding quantities in

Theorem 1 along with the information in Σ. We considered the mean functions

f1(x) = 5x, f2(x) = 5x(1 − x), and f3(x) = 5 sin(2πx). We took σ = 0.5 and

2, corresponding to small and large variances, and n = 20, 30 and 40. In total,

there are 18 combinations of simulation settings. For each setting, we repeated

the simulation 1,000 times, and report the means, standard errors and MSEs for

σ̂2
H1, σ̂

2
H2 and σ̂2

new in Table 1.

From Table 1, we see that MSE(σ̂2
new) ≤ MSE(σ̂2

H2) ≤ MSE(σ̂2
H1) for most

cases, no matter whether the smoothness function is rough or the variance is

large. The proposed estimator σ̂2
new, being asymptotically unbiased, provides a

smaller standard error than the other two estimators. The biases of σ̂2
H1 and σ̂2

H2

are comparable, suggesting that σ̂2
H2 does not provide bias reduction compared

to σ̂2
H1.

The second study considered unknown c′is. For the nonparametric regression

Yi = f(xi) + v(xi)
1/2εi with εi i.i.d. random errors with mean 0 and variance

1, we took v(x) = a + bx. For estimating a and b, we let si = (Yi+1 − Yi)
2/2

and zi = (xi + xi+1)/2, so E(si) = a + bzi + o(1). Then we fit si as a linear

model of zi, si = a + bzi + ϵi, where i = 1, . . . , n − 1. In matrix notation,

S = Zβ + ϵ, with S = (s1, . . . , sn−1)
T , β = (a, b)T , ϵ = (ϵ1, . . . , ϵn−1)

T , and Z

an (n− 1)× 2 matrix with i-th row elements (1, zi). The least squares estimator

of β is β̂ = (â, b̂)T = (ZTZ)−1ZTS, where â and b̂ are consistent estimators of a

and b. Then v̂(x) is a consistent estimator of v(x). With c̃i = v̂(xi), we have the

estimator of ci as ĉi = nc̃i/
∑n

i=1 c̃i.

To check whether â and b̂ are consistently estimated, we conducted a simu-

lation study with xi = i/n for i = 1, . . . , n, and the mean functions f1(x) = 5x,

f2(x) = 5x(1−x) and f3(x) = 5 sin(2πx). The variance function v(x) was 1+0.5x

and the sample size was n =1,000. We repeated the simulation 1,000 times for

each setting and report the estimated values of a and b in Table 2.
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Table 1. Means, standard errors (SE) and mean squared errors (MSE) of
σ̂2
H1, σ̂

2
H2, and σ̂2

new for the equidistant design with uncorrelated errors under
various settings.

σ̂2
H1 σ̂2

H2 σ̂2
new

n σ f Mean SE MSE Mean SE MSE Mean SE MSE

20

0.5
f1 0.3392 0.1267 0.0240 0.3293 0.1253 0.0220 0.3215 0.1218 0.0199
f2 0.2821 0.1264 0.0170 0.2798 0.1252 0.0165 0.2705 0.1215 0.0151
f3 1.6039 0.1880 1.8685 1.4667 0.1692 1.5090 1.4511 0.1749 1.4733

2
f1 4.2536 2.0105 4.1026 4.2307 1.9956 4.0317 4.0966 1.9344 3.7478
f2 4.1962 2.0098 4.0739 4.1837 1.9949 4.0095 4.0453 1.9338 3.7380
f3 5.5167 2.0792 6.6192 5.3592 2.0439 6.0211 5.2251 1.9930 5.4694

30

0.5
f1 0.2915 0.1017 0.0120 0.2905 0.1016 0.0119 0.2768 0.0946 0.0096
f2 0.2668 0.1018 0.0106 0.2665 0.1016 0.0106 0.2481 0.0946 0.0089
f3 0.8867 0.1180 0.4193 0.8694 0.1172 0.3974 0.8052 0.1090 0.3201

2
f1 4.1435 1.6248 2.6580 4.1425 1.6226 2.6508 3.8635 1.5105 2.2981
f2 4.1187 1.6252 2.6530 4.1184 1.6231 2.6458 3.8346 1.5108 2.3077
f3 4.7389 1.6437 3.2451 4.7215 1.6407 3.2100 4.3919 1.5271 2.4834

40

0.5
f1 0.2789 0.0892 0.0088 0.2768 0.0889 0.0086 0.2689 0.0868 0.0079
f2 0.2651 0.0894 0.0082 0.2643 0.0891 0.0081 0.2575 0.0869 0.0076
f3 0.6244 0.0953 0.1492 0.5889 0.0941 0.1237 0.5820 0.0908 0.1185

2
f1 4.1672 1.4286 2.0668 4.1629 1.4242 2.0531 4.0528 1.3902 1.9336
f2 4.1528 1.4292 2.0639 4.1499 1.4248 2.0506 4.0410 1.3903 1.9327
f3 4.5187 1.4355 2.3277 4.4806 1.4300 2.2739 4.3701 1.3964 2.0852

Table 2. The estimated values of a and b for various mean functions.

f â b̂
f1 0.9938191 0.5083688
f2 0.9938108 0.5083684
f3 0.9940543 0.5083678

We looked at the proposed estimator with v(x) estimated, in a simulation

study with n = 20, 30 and 40 and the other settings those of the first study.

With the estimated ĉi values, for m = 2 we can obtain the optimal sequences of

{d0, d1, d2} and {d′0, d′1, d′2} by minimizing the corresponding quantities in Theo-

rem 1. We then repeated the simulation 1,000 times and report the means, stan-

dard errors and mean squared errors of the estimator of σ2 in Table 3. There the

proposed estimator outperforms the existing estimator with a parametric form

of the variance function assumed.

A third study considered correlated errors, with Σ a n×n symmetric matrix,

diagonal elements of 2.5 and off-diagonal elements of 0.9|i−j| for 1 ≤ i, j ≤ n and

i ̸= j. We simulated the random errors ε from Nn(0,Σσ
2) independently. All

other settings were the same as before. We chose m = 2 and compared σ̃2
new

in Section 2.2 with σ̂2
H1 and σ̂2

H2. The optimal sequences of {d0, d1, d2} and
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Table 3. Means, standard errors (SE) and mean squared errors (MSE) of
σ̂2
H1, σ̂

2
H2 and σ̂2

new for the estimated variances under various settings.

σ̂2
H1 σ̂2

H2 σ̂2
new

n σ f Mean SE MSE Mean SE MSE Mean SE MSE

20

0.5
f1 0.3868 0.1138 0.0316 0.3874 0.1138 0.0318 0.3119 0.0913 0.0121
f2 0.3294 0.1163 0.0198 0.3296 0.1164 0.0198 0.2647 0.0934 0.0089
f3 1.6480 0.1924 1.9914 1.6575 0.1931 2.0186 1.3476 0.1563 1.2292

2
f1 5.0178 1.8158 4.3301 5.0188 1.8161 4.3332 4.0274 1.4574 2.1226
f2 4.9592 1.8272 4.2554 4.9598 1.8275 4.2579 3.9793 1.4667 2.1495
f3 6.2667 1.9082 8.7760 6.2766 1.9097 8.8265 5.0503 1.5336 3.4528

30

0.5
f1 0.3452 0.0976 0.0185 0.3496 0.0991 0.0197 0.2757 0.0782 0.0067
f2 0.3201 0.0975 0.0144 0.3244 0.0987 0.0152 0.2561 0.0779 0.0061
f3 0.9398 0.1175 0.4897 0.9591 0.1180 0.5168 0.7494 0.0928 0.2580

2
f1 4.9997 1.5595 3.4293 5.0589 1.5835 3.6265 3.9956 1.2502 1.5614
f2 4.9733 1.5592 3.3761 5.0337 1.5820 3.5688 3.9761 1.2490 1.5590
f3 5.5927 1.5796 5.0297 5.6659 1.6013 5.3371 4.4673 1.2638 1.8140

40

0.5
f1 0.3299 0.0823 0.0131 0.3298 0.0823 0.0131 0.2642 0.0658 0.0045
f2 0.3165 0.0824 0.0112 0.3165 0.0824 0.0112 0.2534 0.0658 0.0043
f3 0.6728 0.0879 0.1865 0.6722 0.0879 0.1860 0.5381 0.0705 0.0880

2
f1 4.9879 1.3181 2.7117 4.9881 1.3181 2.7121 3.9961 1.0541 1.1100
f2 4.9753 1.3188 2.6888 4.9755 1.3188 2.6893 3.9855 1.0540 1.1102
f3 5.3293 1.3196 3.5069 5.3289 1.3196 3.5057 4.2701 1.0570 1.1891

{d̃0, d̃1, d̃2} were obtained by the Lagrange multiplier method. We repeated the

simulation 1,000 times for each setting and report the means, standard errors and

MSEs of the estimators in Table 4. In Table 4, our estimator performs better

than its competitors under most settings.

3. Applications

In this section, we applied the proposed method to the nonparametric re-

gression model with repeated measurements, and to the semiparametric partially

linear model.

3.1. Nonparametric regression with repeated measurements

Consider the nonparametric regression model with repeated measurements

Yij = f(xi) + εij , i = 1, . . . , n, j = 1, . . . , ri, (3.1)

where εij are i.i.d. normal with zero mean and variance σ2. All other settings

are the same as those at (1.1).

To estimate σ2, consider the within-design-point variation. Let S2
i =

∑ri
j=1

(Yij − Ȳi)
2/(ri − 1) be the sample variance of the repeated observations in the

ith design point, where Ȳi =
∑ri

j=1 Yij/ri. For the special case ri = 1, we let
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Table 4. Means, standard errors (SE) and mean squared errors (MSE) of
σ̂2
H1, σ̂

2
H2, and σ̃2

new for the equidistant design with correlated errors, under
various settings.

σ̂2
H1 σ̂2

H2 σ̃2
new

n σ f Mean SE MSE Mean SE MSE Mean SE MSE

20

0.5
f1 112.01 36.281 13807.1 0.3859 0.1734 0.0485 0.2346 0.1054 0.0113
f2 16.892 13.561 460.69 0.3861 0.1734 0.0485 0.2347 0.1054 0.0113
f3 3.2421 4.1069 25.803 0.4080 0.1736 0.0550 0.2480 0.1055 0.0111

2
f1 149.37 154.11 44863 6.1759 2.7753 12.429 3.7545 1.6871 2.9040
f2 59.341 80.683 9566.0 6.1760 2.7754 12.431 3.7546 1.6872 2.9041
f3 48.586 65.846 6319.4 6.1981 2.7757 12.528 3.7679 1.6874 2.8983

30

0.5
f1 175.39 49.407 33113.8 0.3951 0.1404 0.0407 0.2402 0.0853 0.0073
f2 24.746 17.847 918.29 0.3951 0.1404 0.0407 0.2402 0.0853 0.0073
f3 3.6395 5.1569 38.056 0.3994 0.1405 0.0420 0.2428 0.0854 0.0073

2
f1 222.62 206.64 90457.1 6.3226 2.2473 10.440 3.8437 1.3662 1.8891
f2 76.119 102.57 15712.1 6.3226 2.2473 10.440 3.8437 1.3662 1.8891
f3 57.285 82.625 9659.4 6.3269 2.2475 10.460 3.8462 1.3663 1.8886

40

0.5
f1 242.06 61.728 62281.1 0.3930 0.1235 0.0357 0.2389 0.0751 0.0057
f2 33.531 22.450 1611.1 0.3930 0.1235 0.0357 0.2389 0.0751 0.0057
f3 3.9996 5.4911 44.182 0.3944 0.1235 0.0361 0.2397 0.0751 0.0057

2
f1 306.80 265.23 161974 6.2894 1.9767 9.1449 3.8234 1.2017 1.4737
f2 94.878 126.66 24287.5 6.2894 1.9767 9.1449 3.8235 1.2016 1.4737
f3 63.515 87.793 11242.0 6.2907 1.9767 9.1509 3.8242 1.2017 1.4735

S2
i = 0. For independent normal errors, since (ri − 1)S2

i /σ
2 is chisquared with

ri − 1 degrees of freedom,
n∑

i=1

(ri − 1)S2
i

σ2
∼ χ2

κ, (3.2)

where κ =
∑n

i=1(ri − 1). We take

σ̂2
1 =

1

κ

n∑
i=1

(ri − 1)S2
i . (3.3)

As only information within design points is being used, refer to σ̂2
1 as the within-

design-points estimator.
For the between-design-point variation, ε̄i =

∑ri
j=1 εij/ri. Then, E(ε̄i) = 0

and var(ε̄i) = σ2/ri. Using the average information, the regression model (3.1)
reduces to

Ȳi = f(xi) + ε̄i, (3.4)

a heteroscedastic nonparametric regression model with uncorrelated errors var(ε̄i)
= σ2/ri. Thus, by Section 2.1 we can also estimate σ2 by

σ̂2
2 =

n

(n−m)R

n−m∑
k=1

( m∑
j=0

d′j Ȳj+k

)2

, (3.5)
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where R =
∑n

i=1 1/ri, d′j = dj/
√
νj and νj = (n/[(n−m)R])

∑n−m
k=1 1/rj+k.

The sequence {d′j} satisfies
∑m

j=0 d
′
j = 0,

∑m
j=0 νjd

′
j
2 = 1. We refer to σ̂2

2 as the

between-design-points estimator as it does not take the advantage of the repeated

measurements.

As σ̂2
1 and σ̂2

2 are suboptimal, we propose the estimator

σ̂2
3(α) = (1− α)σ̂2

1 + ασ̂2
2, (3.6)

where 0 ≤ α ≤ 1 is the tuning parameter. As Ȳi and S2
i are independent of each

other, σ̂2
1 and σ̂2

2 are independent, and

MSE(σ2
3(α)) = (1− α)2MSE(σ̂2

1) + α2MSE(σ̂2
2). (3.7)

The optimal tuning parameter α is then chosen to minimize MSE(σ2
3(α)),

αopt =
MSE(σ̂2

1)

MSE(σ̂2
1) +MSE(σ̂2

2)
. (3.8)

From Theorem 1 and the fact that MSE(σ̂2
1) = 2σ4/κ, we estimate α by

α̂opt =

[
1 +

κn2

R2(n−m)2

{
n2

R2

n∑
i=1

1

r2i

( m∑
j=0

d′j
2
)2

+ 2

m∑
k=1

hk

(m−k∑
j=0

d′jd
′
j+k

)2
}]−1

,

(3.9)

where νj = n/{(n − m)R}
∑n−m

k=1 1/rj+k, hk = n2/R2
∑n−k

i=1 1/(riri+k), R =∑n
i=1 1/ri and κ =

∑n
i=1(ri − 1). In the special case when ri are all the same,

the estimated optimal tuning parameter can be simplified as α̂opt = {1 + (2m+

1)κ/(2mn)}−1. With the estimated tuning parameter, we estimate σ2 by σ̂2
3(α̂opt)

and refer to it as the combined estimator.

3.1.1. Simulation study

We conducted a simulation study to evaluate the finite sample performance

of σ̂2
1, σ̂

2
2, and σ̂2

3(α̂opt). The design points were xi = i/n and the εij were i.i.d.

N(0, 1). We took f(x) = sin(2πx). The measurement numbers of all samples

were set to 1 + bi, where the bi were generated from the binomial (3, 0.4). We

took n = 25, 50, and 200. In our simulations, the difference sequence {dj} was

the optimal sequence. The order m of optimal sequence was m = 1, 2, 3 and

4. For comparison, we also considered a residual-based estimator of the form

σ̂2 = (1/N)
∑n

i=1

∑ri
j=1(Yij − f̂(xi))

2, where N =
∑n

i=1 ri. We used cubic spline

smoothing to estimate f , with smoothing parameter selected by generalized cross

validation, and refer to the variance as σ̂2
spline. In total, we had 12 combinations

of simulation settings.
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Table 5. Mean squared errors (MSE) of σ̂2
1 , σ̂

2
2 , σ̂2

3(α̂opt), and σ̂2
spline under

various settings.

n m MSE(σ̂2
1) MSE(σ̂2

2) MSE(σ̂2
3(α̂opt)) MSE(σ̂2

spline)

25

1 0.0757 0.1286 0.0561 0.0682
2 0.0757 0.1177 0.0555 0.0682
3 0.0757 0.1087 0.0557 0.0682
4 0.0757 0.1456 0.0571 0.0682

50

1 0.0357 0.0661 0.0277 0.0287
2 0.0357 0.0563 0.0269 0.0287
3 0.0357 0.0553 0.0268 0.0287
4 0.0357 0.0585 0.0269 0.0287

200

1 0.0080 0.0169 0.0064 0.0050
2 0.0080 0.0148 0.0062 0.0050
3 0.0080 0.0143 0.0061 0.0050
4 0.0080 0.0142 0.0061 0.0050

For each setting, we generated observations and computed the estimators

σ̂2
1, σ̂

2
2, σ̂

2
3(α̂opt) and σ̂2

spline. 1,000 times, and report the mean squared errors in

Table 5. Simulation results indicate that the proposed estimator σ̂2
3(α̂opt) has a

smaller MSE than the other estimators in all settings when the sample size is

small; for large sample sizes, the performance of σ̂2
3(α̂opt) is still comparable with

that of the residual-based estimator.

3.1.2. Data examples

The first data set was from Interactive Data Analysis (McNeil (1977)) and

named “cars”, it can be downloaded in the R package “datasets”. There are 50

observation measurements on the speed of a car in mph and the distance taken

to stop, in ft. We took distance as the response variable. From the scatter plot

and the fitted smoothing spline curve (the left figure in Figure 1), we observe a

nonlinear relationship with heteroscedastic errors. The estimated σ2 values with

m = 2 are σ̂2
1 = 221.8963, σ̂2

2 = 256.3992, σ̂2
3(α̂opt) = 224.3759, and σ̂2

spline =

219.0512, respectively. Here σ̂2
3(α̂opt) and σ̂2

spline are close, suggesting that the

proposed estimator performs as well as the residual-based estimator.

The second data set consisted of measurements of the fetal mandible. It is

named “Mandible” and can be downloaded in the R package “lmtest” (Chitty,

Campbell, and Altman (1993), Royston and Altman (1994)). There are 167

observations on gestational age in weeks and mandible length in mm. The

scatter plot in Figure 1 shows the smoothing spline fitted curve with evident

heteroscedastic errors. With m = 2 the estimated σ2 values are σ̂2
1 = 4.0164,

σ̂2
2 = 8.7518, σ̂2

3(α̂opt) = 5.4903 and σ̂2
spline = 5.3030. Again, we observe that

σ̂2
3(α̂opt) and σ̂2

spline perform very similarly.
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Figure 1. The Cars data and Mandible data together with the fitted curves
by smoothing spline.

3.2. Semiparametric partially linear model

Consider the semiparametric partially linear model

Yi = Xiβ + f(zi) + εi, i = 1, . . . , n, (3.10)

where the Xi are known p-dimensional vectors with p < n, β is an unknown

p-dimensional parameter vector, f is an unknown smooth function, and the εi
are i.i.d. random errors with mean zero and variance σ2. To estimate σ2, Wang,

Brown, and Cai (2011) proposed a difference-based method. They applied Hall,

Kay, and Titterington (1990)’s optimal sequence to remove the nonparametric

part, and then used a linear regression to estimate β. They used the residuals to

estimate σ2.

Our proposed method can be applied when Σ ̸= I, or when Σ = I but there

are repeated measurements at certain design points (Xi, zi). We discuss another

setting in which our method can be applied.

Rewrite (3.10) in matrix form as

Y = Xβ + f + ε, (3.11)

where Y = (Y1, Y2, . . . , Yn)
T , X = (X1, X2, . . . , Xn)

T , f = (f(z1), . . . , f(zn))
T

and ε = (ε1, ε2, . . . , εn)
T . With Cov(ε) = σ2I, we can employ the difference

sequence {d0, d1, . . . , dm} with constraint (1.2) to remove the nonparametric part

by letting

D̄ =


d0 d1 d2 . . . dm 0 . . . . . . 0

0 d0 d1 d2 . . . dm 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . d0 d1 d2 . . . dm 0

0 0 . . . . . . d0 d1 d2 . . . dm

 .
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Then D̄Y = D̄Xβ + D̄f + D̄ε ≈ D̄Xβ + D̄ε. This leads to

Ỹ ≈ X̃β + ε̃, (3.12)

where Ỹ = D̄Y , X̃ = D̄X, and ε̃ = D̄ε. Accordingly, the the least squares

estimator of β is β̂ = (X̃
T
X̃)−1X̃

T
Ỹ . Substituting β̂ into (3.11), we have

Y̌ = f + e, (3.13)

where Y̌ = Y − Xβ̂. It is easy to verify that E(e) = 0 and var(e) = σ2Σ,

where Σ =
(
I−X(X̃

T
X̃)−1X̃

T
D̄
)(

I−X(X̃
T
X̃)−1X̃

T
D̄
)T

. Here Σ is totally

specified since the Xi are known, and D̄ can be derived too. Hence, (3.13) is a

heteroscedastic nonparametric regression with a known covariance matrix, and

suitable for our proposed method.

3.2.1. Simulation study

We conducted a simulation study to evaluate the performance of our pro-

posed estimator in partially linear models, and compared it with the residual-

based estimator in Wang, Brown, and Cai (2011), denoted by σ̂2
W. For the lin-

ear component, we took β = (2, 2, 4)T and generated Xi from N3((1, 2, 4)
T , I3),

where I3 is a 3 × 3 identity matrix. As the nonparametric component, we took

f(z) = 5 sin(ωπz) with ω = 1, 2, and 4. The design points were zi = i/n for

i = 1, . . . , n. The random errors εi were independent N(0, σ2) with σ = 0.5

and 2. We considered the difference order m = 2. For σ̂2
W, the sequence is

d = {
√

m/(m+ 1), −1/
√

m(m+ 1), −1/
√

m(m+ 1)}, recommended in Wang,

Brown, and Cai (2011). For σ̃2
new, the sequence was obtained by the Lagrange

multiplier method. For each setting with n = 50, 200, and 500, we repeated

the simulation 500 times and here report the means, standard errors, and MSEs

of σ̂2
W and σ̃2

new in Table 6. Our proposed estimator performs as well as the

residual-based estimator σ̂2
W.

4. Discussion

We have considered the estimation of the residual variance in nonparametric

regression when the random errors are heteroscedastic but known. Our proposed

estimators are asymptotically unbiased and also have a smaller MSE than existing

estimators. We applied the proposed methods to nonparametric regression mod-

els with repeated measurements and to semiparametric partially linear models.

Data examples and simulation studies suggest that the proposed methods work

well in a wide range of problems. Of course, we hope to clarify that when the
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Table 6. Means, standard errors (SE) and mean squared errors (MSE) of
σ̂2
W and σ̃2

new under various settings.

σ̂2
W σ̃2

new

n σ f Mean SE MSE Mean SE MSE

50

0.5
f1 0.3213 0.0613 0.0088 0.3198 0.0615 0.0086
f2 0.5459 0.0663 0.0919 0.5264 0.0659 0.0807
f3 1.4215 0.0833 1.3795 1.3332 0.0804 1.1798

2
f1 4.0083 0.9675 0.9344 4.0743 0.9731 0.9506
f2 4.2339 0.9748 1.0032 4.2817 0.9797 1.0373
f3 5.1062 0.9765 2.1755 5.0854 0.9789 2.1345

200

0.5
f1 0.2530 0.0279 0.0007 0.2539 0.0280 0.0007
f2 0.2668 0.0280 0.0010 0.2669 0.0280 0.0010
f3 0.3226 0.0280 0.0060 0.3189 0.0281 0.0055

2
f1 3.9782 0.4478 0.2006 3.9981 0.4482 0.2005
f2 3.9919 0.4478 0.2002 4.0111 0.4484 0.2008
f3 4.0479 0.4476 0.2022 4.0636 0.4485 0.2048

500

0.5
f1 0.2502 0.0184 0.0003 0.2504 0.0183 0.0003
f2 0.2525 0.0184 0.0003 0.2523 0.0183 0.0003
f3 0.2614 0.0184 0.0004 0.2597 0.0183 0.0004

2
f1 3.9933 0.2957 0.0873 3.9987 0.2933 0.0858
f2 3.9955 0.2957 0.0872 4.0006 0.2933 0.0858
f3 4.0044 0.2956 0.0872 4.0080 0.2932 0.0859

prior information on Σ is limited, the proposed method may not be practically

useful. Further research is needed in this direction.

5. Proofs

Proof of Theorem 1. By (2.2), we have

E(σ̂2
new) = σ2 +

1

n−m

n−m∑
k=1

( m∑
j=0

d′jfj+k

)2

.

By Cauchy inequality and the fact that min{w0, . . . , wm} ≥ c0 > 0, we have∣∣∣∣ m∑
j=0

d′jfj+k

∣∣∣∣ = ∣∣∣∣ m∑
j=0

dj√
wj

fj+k

∣∣∣∣ = O

(
1

n

∣∣∣ m∑
j=0

(j + 1)
dj√
wj

∣∣∣)

= O

(
1

n

{ m∑
j=0

(j + 1)2

wj

m∑
j=0

d2j

}1/2
)

= O
(m3/2

n

)
.

This leads to
1

n−m

n−m∑
k=1

( m∑
j=0

d′jfj+k

)2

= O
(m3

n2

)
.
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Therefore, E(σ̂2
new) = σ2 +O(m3/n2).

For the variance of σ̂2
new, we have

var(σ̂2
new) =

1

(n−m)2
var(Y TAY )

=
1

(n−m)2
var(fTAf + 2fTAε+ εTAε)

=
1

(n−m)2
{
4var(fTAε) + 4Cov(fTAε, εTAε) + var(εTAε)

}
. (5.1)

We calculate these terms in order. By Lemma A.1 in Yatchew (2000),

4var(fTAε) = 4fTAΣATfσ2 = 4(Df)TDΣDT (Df)σ2

= 4

n−m∑
i=1

n−m∑
j=1

rij

( m∑
l=0

d′lfl+i

)( m∑
l=0

d′lfl+j

)
σ2

= O(m3), (5.2)

4Cov(fTAε, εTAε) = 4E{(Df)TDε(Dε)TDε}

= 4

n−m∑
k=1

n−m∑
v=1

m∑
j=0

d′jfj+vE

{( m∑
j=0

d′jεj+v

)( m∑
j=0

d′jεj+k

)2
}

= O(m7/2). (5.3)

var(εTAε) = tr(η ⊙A⊙A− 3σ4Σ2 ⊙A⊙A) + 2σ4tr(ΣAΣA),

where R = DΣDT = (rij)(n−m)×(n−m) and η = diag(E(ε41), E(ε42), . . . , E(ε4n)). It
is easy to verify that

tr(η ⊙A⊙A− 3σ4Σ2 ⊙A⊙A)

=

{m−1∑
i=0

( i∑
j=0

d′j
2
)2

E(ε4i+1)+

n−m∑
i=m+1

( m∑
j=0

d′j
2
)2

E(ε4i )+

m∑
i=1

( m∑
j=i

d′j
2
)2

E(ε4n−m+i)

}

−3σ4

{m−1∑
i=0

( i∑
j=0

d′j
2
)2

c2i+1 +

n−m∑
i=m+1

( m∑
j=0

d′j
2
)2

c2i +

m∑
i=1

( m∑
j=i

d′j
2
)2

c2n−m+i

}
,

tr(ΣAΣA)=

m−1∑
i=0

c2i+1

( i∑
j=0

d′j
2
)2

+

n−m∑
i=m+1

c2i

( m∑
j=0

d′j
2
)2

+

m∑
i=1

c2n−m+i

( m∑
j=i

d′j
2
)2

+2

m∑
k=1

{m−1∑
i=0

ci+1ci+1+k

( i∑
j=0

d′jd
′
j+k

)2
+

n−m−k∑
i=m+1

cici+k

(m−k∑
j=0

d′jd
′
j+k

)2

+

m−k∑
i=1

cn−m+icn−m+i+k

(m−k∑
j=i

d′jd
′
j+k

)2
}
.
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This leads to

var(εTAε)

=
m−1∑
i=0

( i∑
j=0

d′j
2
)2

var(ε2i+1) +
n−m∑

i=m+1

( m∑
j=0

d′j
2
)2

var(ε2i )

+
m∑
i=1

( m∑
j=i

d′j
2
)2

var(ε2n−m+i) + 4σ4
m∑
k=1

{m−1∑
i=0

ci+1ci+1+k

( i∑
j=0

d′jd
′
j+k

)2

+

n−m−k∑
i=m+1

cici+k

(m−k∑
j=0

d′jd
′
j+k

)2
+

m−k∑
i=1

cn−m+icn−m+i+k

(m−k∑
j=i

d′jd
′
j+k

)2
}
.

(5.4)

Substituting (5.2)−(5.4) into (5.1), we can verify that

var(σ̂2
new) =

1

(n−m)2
var(εTAε) +O

(m3

n2

)
+O

(m5/2

n2

)
=

1

(n−m)2

{ n∑
i=1

( m∑
j=0

d′j
2
)2

var(ε2i ) + 4σ4
m∑
k=1

bk

(m−k∑
j=0

d′jd
′
j+k

)2
}

+O
(m7/2

n2

)
.

Noting that Bias(σ̂2
new) = O(m3/n2), for any m = nr with 0 < r < 2/7 we have

MSE(σ̂2
new) = var(σ̂2

new) +
{
Bias(σ̂2

new)
}2

=
1

(n−m)2

{ n∑
i=1

( m∑
j=0

d′j
2
)2

var(ε2i ) + 4σ4
m∑
k=1

bk

(m−k∑
j=0

d′jd
′
j+k

)2
}

+o
( 1

n

)
.

The derivation of MSE(σ̂2
H) is similar and so is omitted here.

Proof of Theorem 2. By (2.8), we have

E(σ̃2
new) = σ2 +

1

n−m

n−m∑
k=1

( m∑
j=0

d̃jfj+k

)2
.

For any m = O(1), under Assumptions 1 and 2 we have |
∑m

j=0 d̃jfj+k| = O(1/n).
This leads to

Bias(σ̃2
new) =

1

n−m

n−m∑
k=1

( m∑
j=0

d̃jfj+k

)2
= O

( 1

n2

)
.
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For the variance of σ̃2
new, we write

var(σ̃2
new) =

1

(n−m)2

{
4var(fT Ãε) + 4Cov(fT Ãε, εT Ãε) + var(εT Ãε)

}
,

where Σ = (ci,j) and Ã = D̃T D̃. Let D̃ΣD̃T = (γij)(n−m)×(n−m). For any

m = O(1), it is easy to verify that

4var(fT Ãε) = 4σ2fT ÃΣÃTf

= 4σ2
n−m∑
i=1

n−m∑
j=1

γij

( m∑
l=0

d̃lfl+i

)( m∑
l=0

d̃lfl+j

)
= O(1),

4Cov(fT Ãε, εT Ãε) = 4E{(D̃f)T D̃ε(D̃ε)T D̃ε}

= 4

n−m∑
k=1

n−m∑
v=1

m∑
j=0

d̃jfj+vE
{( m∑

j=0

d̃jεj+v

)( m∑
j=0

d̃jεj+k

)2}
= O(1).

For the third term, see Schott (1997),

var(εT Ãε) = tr{(Ã⊗ Ã)E(εεT ⊗ εεT )} − {tr(ÃΣ)}2σ4

= E{tr(ÃεεT ⊗ ÃεεT )} − {tr(ÃΣ)}2σ4

= E{tr(ÃεεT )}2 − {tr(ÃΣ)}2σ4

= E

{ n−m∑
k=1

( m∑
j=0

d̃jεj+k

)2
}2

−
( n−m∑

v=1

m∑
k=0

m∑
j=0

d̃kd̃jcj+v,k+v

)2

σ4.

According, we have

MSE(σ̃2
new) = var(σ̃2

new) + Bias2(σ̃2
new)

=
1

(n−m)2

[
E
{ n−m∑

k=1

( m∑
j=0

d̃jεj+k

)2}2

−
( n−m∑

v=1

m∑
k=0

m∑
j=0

d̃kd̃jcj+v,k+v

)2
σ4

]
+O

( 1

n2

)
.

Similarly, for Hall’s estimator we have

MSE(σ̂2
H)=

1

(n−m)2

[
E
{ n−m∑

k=1

( m∑
j=0

djεj+k

)2}2
−
( n−m∑

v=1

m∑
k=0

m∑
j=0

dkdjcj+v,k+v

)2
σ4

]



1396 YUEJIN ZHOU, YEBIN CHENG, LIE WANG AND TIEJUN TONG

+
1

(n−m)2

{ n−m∑
v=1

( m∑
k=0

m∑
j=0

dkdjcj+v,k+v − 1
)}2

σ4 +O
( 1

n2

)

=
1

(n−m)2
E

{ n−m∑
k=1

( m∑
j=0

djεj+k

)2
}2

− 1

(n−m)

{
2

n−m∑
v=1

m∑
k=0

m∑
j=0

dkdjcj+v,k+v − (n−m)

}
σ4 +O

( 1

n2

)
.

This completes the proof of Theorem 2.
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