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Abstract: This article is concerned with the file linkage problem first investigated by

DeGroot and Goel (1980). LetX1, . . . ,Xn be a random sample from a bivariate nor-

mal distribution. Suppose that before the sample can be observed, it is broken into

the components X1,1, . . . , X1,n and X2,ψ(1), . . . , X2,ψ(n) where Xj = (X1,j , X2,j)
′

and ψ is some unknown permutation of {1, . . . , n}. The aim is to estimate the

parameters (in particular the correlation coefficient) of the bivariate normal distri-

bution using the above broken random sample. The main difficulty here is that

direct computation of the likelihood is in general a NP-hard problem. Thus for n

sufficiently large, standard likelihood or Bayesian techniques may not be feasible.

This article proposes to reformulate the problem as a moment problem via Fisher’s

k-statistics. The resulting likelihood can be approximated as a product of bivariate

normal likelihoods and consequently standard statistical methods can be applied.

It is also shown that this approximation is very good in that very little Fisher

information is lost.

Key words and phrases: Bivariate normal distribution, broken random sample,

correlation coefficient, file linkage, Fisher information, k-statistics.

1. Introduction

Let X1, . . . ,Xn, Xj = (X1,j ,X2,j)′, j = 1, . . . , n, be a simple random sample
from a bivariate normal distribution with mean µ = (µ1, µ2)′ and covariance
matrix

Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
.

In this article we suppose that before X1, . . . ,Xn can be observed, the sample
is broken into the components X1,1, . . ., X1,n and X2,ψ(1), . . . ,X2,ψ(n) where
ψ is some unknown permutation of {1, . . . , n}. The aim of this article is to
estimate the parameters ρ, µ1, µ2, σ1, σ2 using only the broken random sample
X1,(1), . . . ,X1,(n),X2,1, . . . ,X2,n where X1,(1) ≤ · · · ≤ X1,(n) denotes the order
statistics of X1,1, . . . ,X1,n.

The problem was first investigated by DeGroot and Goel (1980). One mo-
tivation comes from the increasing interest in the methodology of merging data
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files to create comprehensive files from multiple but incomplete sources of data.
For a detailed survey of related file linkage literature, we refer the reader to Co-
pas and Hilton (1990), Goel and Ramalingam (1989) and the references cited
therein.

Let Sn denote the set of all permutations of {1, . . . , n}. We note, for example
from Vaughan and Venables (1972), that

fX1,(1),...,X1,(n),X2,1,...,X2,n(x1,(1), . . . , x1,(n), x2,1, . . . , x2,n)

=fX1,(1),...,X1,(n)|X2,1,...,X2,n
(x1,(1), . . . , x1,(n)|x2,1, . . . , x2,n)fX2,1,...,X2,n(x2,1, . . . , x2,n)

=
∑
ψ∈Sn

n∏
i=1

fX1,i,X2,i(x1,(i), x2,ψ(i)), x1,(1) ≤ · · · ≤ x1,(n),−∞<x2,1, . . . , x2,n<∞,

where fX1,(1),...,X1,(n),X2,1,...,X2,n denotes the joint density ofX1,(1), . . . ,X1,(n),X2,1,
. . ., X2,n, fX1,(1),...,X1,(n)|X2,1,...,X2,n

denotes the conditional density of X1,(1), . . .,
X1,(n) given X2,1, . . . , X2,n, etc. Hence the log-likelihood function based on the
broken random sample X1,(1), . . . , X1,(n),X2,1, . . . ,X2,n is

l(µ1, µ2, σ1, σ2, ρ)

= log
{
(2πσ1σ2)−n(1 − ρ2)−n/2

∑
ψ∈Sn

n∏
i=1

exp
[
− 1

2(1 − ρ2)

×[(
X1,(i) − µ1

σ1
)2 − 2ρ(

X1,(i) − µ1

σ1
)(
X2,ψ(i) − µ2

σ2
) + (

X2,ψ(i) − µ2

σ2
)2]
]}

= −n log(2πσ1σ2)−n

2
log(1 − ρ2) − 1

2(1 − ρ2)

n∑
i=1

[(
X1,(i) − µ1

σ1
)2 + (

X2,i − µ2

σ2
)2]

+ log
{ ∑
ψ∈Sn

exp[
ρ

1 − ρ2

n∑
i=1

(
X1,(i) − µ1

σ1
)(
X2,ψ(i) − µ2

σ2
)]
}
,

X1,(1) ≤ · · · ≤ X1,(n),−∞ < X2,1, . . . ,X2,n <∞. (1)

Remark. Vaughan and Venables (1972) observed that the above likelihood can
be expressed as a matrix permanent. It is well known (see Valiant (1979)) that,
in general, computing the permanent is a NP-hard problem.

We note that the above log-likelihood function was obtained by DeGroot
and Goel (1980) using a Bayesian argument with a uniform distribution on Sn.
In that paper, it was called the integrated (or summed) likelihood function.
DeGroot and Goel further obtained an expression for the Fisher information
matrix I(n)(ρ, µ1, µ2, σ1, σ2) for the broken bivariate sample. However, except
for the case ρ = 0, they were unable to compute I(n)(ρ, µ1, µ2, σ1, σ2) when n is
large.
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A Monte Carlo study of the above likelihood was performed by DeGroot and
Goel (1980) for n = 5, and versions of the Metropolis-type Markov chain Monte
Carlo algorithm were implemented by Liu (1994) and Wu (1995) to compute
posterior probabilities in a Bayesian setting of the broken bivariate normal sample
problem when n = 100. In this article, we are concerned with much larger sample
sizes, for example n = 1000 or more, for which direct computation of the above
likelihood may be infeasible.

The rest of this article is organized as follows. In Section 2, a power se-
ries expansion of I(n)(ρ, µ1, µ2, σ1, σ2) about ρ = 0 is obtained. We note that
I(n)(ρ, µ1, µ2, σ1, σ2) involves summation of approximately O(n!) terms and so
again direct computation of I(n)(ρ, µ1, µ2, σ1, σ2) appears infeasible for large n.

Section 3 proposes that we reformulate the broken sample problem as a
moment problem. In particular, Corollary 1 shows that the broken sample and
its Fisher’s k-statistics contain the same amount of Fisher information about
the unknown parameters. Furthermore (9) indicates that the set of low order
Fisher’s k-statistics appears to contain most of the information. Hence we suggest
ignoring the high order k-statistics and take only into consideration the low order
ones. Moreover, it is well known, from the practical standpoint of robustness,
that k-statistics of order more than four are seldom required (see for example
McCullagh (1987, p.110)). Another advantage gained in keeping only the low
order k-statistics is that, for n large, the likelihood function of these k-statistics
can be well approximated by a product of bivariate normal likelihoods and hence
standard (either frequentist or Bayesian) statistical techniques can be brought
to bear on this problem (thus bypassing the NP-hard problem of computing the
original likelihood as given in (1)).

In Section 4 we consider the estimation of the correlation coefficient ρ with
the other parameters known (for simplicity). Theorem 3 shows that it is unlikely
that ρ can be consistently estimated given only a broken bivariate normal sample.
By expressing the difference between the information from the original broken
sample and that of its low order k-statistics (up to order j, j = 1, . . . , 4) as a
power series in ρ, Theorem 4 shows that the difference is of order O(ρ2j) for large
n. Our calculations suggest that this result should hold for larger values of j as
well. The reason for stopping at j = 4 is that k-statistics of higher orders are
generally seldom used in practice (see previous paragraph).

On the other hand, lest we give the impression that consistent estimation of
the correlation coefficient is impossible for problems of this nature, we conclude
with a simple, though somewhat artificial example where consistent estimation
of ρ is indeed possible, and that the k-statistics approach of this article shows
that the information in this example is unbounded with increasing n.

Finally, the Appendix contains the proof of Proposition 1.
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2. Fisher Information

Let X1,1, . . . ,X1,n,X2,ψ(1), . . . ,X2,ψ(n) be as in Section 1. Following DeGroot
and Goel (1980) define

βψ ≡
n∑
i=1

(
X1,i − µ1

σ1
)(
X2,ψ(i) − µ2

σ2
), (2)

αψ ≡ exp(
ρβψ

1 − ρ2
)[
∑
φ∈Sn

exp(
ρβφ

1 − ρ2
)]−1,

γ1 ≡ 1 + ρ2

n(1 − ρ2)2
E[
∑
ψ∈Sn

β2
ψαψ − (

∑
ψ∈Sn

βψαψ)2],

γ2 ≡ ρ2

n(1 − ρ2)
E[
∑
ψ∈Sn

β2
ψαψ − (

∑
ψ∈Sn

βψαψ)2].

Writing (θ1, . . . , θ5) ≡ (µ1, µ2, σ1, σ2, ρ), we further define I(n)(µ1, µ2, σ1, σ2, ρ)
to be the 5×5 matrix whose (i, j)th element is I(n)

i,j (µ1, µ2, σ1, σ2, ρ) ≡ −E[ ∂2

∂θi∂θj

l(µ1, µ2, σ1, σ2, ρ)], i, j = 1, . . ., 5, and l(µ1, µ2, σ1, σ2, ρ) is as in (1). DeGroot
and Goel (1980, p.274), showed that the Fisher information matrix based on the
broken random sample X1,1, . . . ,X1,n,X2,ψ(1), . . . , X2,ψ(n) is given by

I(n)(µ1, µ2, σ1, σ2, ρ) =
n

1 − ρ2
(3)

×




σ−2
1 −ρσ−1

1 σ
−1
2 0 0 0

σ−2
2 0 0 0

σ−2
1 (2−ρ2−γ2) −σ−1

1 σ
−1
2 (ρ2+γ2) −σ−1

1 ρ(1−γ1)
σ−2

2 (2−ρ2−γ2) −σ−1
2 ρ(1−γ1)

(1+ρ2)(1−ρ2)−1(1−γ1)


 .

Remark. We note that there is an error in the expression for one of the elements
of the information matrix on page 274 of DeGroot and Goel (1980).

We proceed to obtain a power series expansion of E(
∑
ψ∈Sn βψαψ)2 in ρ.

Once that is done, the elements of I(n)(µ1, µ2, σ1, σ2, ρ) can be similarly approx-
imated.

Proposition 1. Let αψ and βψ be as in (2). Then expanding as a power series
about ρ = 0, we have

E[(
∑
ψ∈Sn

βψαψ)2] = 1 + (1 + 4n+ n2)ρ2 − (
32

n− 1
+ 11 + 4n)ρ4 +O(ρ6),

where O(ρ6) denotes terms of the order ρ6.
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We defer the proof of Proposition 1 to the Appendix.

Theorem 1. Let I(n)(µ1, µ2, σ1, σ2, ρ) be as in (3). Then expanding formally as
a power series, we have

I(n)
3,3 (µ1, µ2, σ1, σ2, ρ) = σ−2

1 [2n+ ρ2 + (2n+ 3)ρ4] +O(ρ6),

I(n)
3,4 (µ1, µ2, σ1, σ2, ρ) = −σ−1

1 σ−1
2 [(2n − 1)ρ2 − 3ρ4] +O(ρ6),

I(n)
3,5 (µ1, µ2, σ1, σ2, ρ) = −σ−1

1 [ρ+ 5ρ3 + (2 − 32
n− 1

)ρ5] +O(ρ7),

I(n)
5,5 (µ1, µ2, σ1, σ2, ρ) = 1 + 7ρ2 + (14 − 32

n− 1
)ρ4 +O(ρ6).

Proof. We observe from DeGroot and Goel (1980) that E
∑
ψ∈Sn β

2
ψαψ = n +

n2ρ2 + nρ2, which, together with (2) and Proposition 1, proves the theorem.

3. Fisher’s k-Statistics

Let Xi,1, . . . ,Xi,n and Xi,(1) < · · · < Xi,(n), i = 1, 2, be as in Section 1. Its
rth sample moment is defined to be

mi,r ≡ n−1
n∑
j=1

Xr
i,(j), r = 1, 2, . . . , n. (4)

Proposition 2. Given mi,1, . . . ,mi,n, the solution Xi,(1), . . . ,Xi,(n) of (4) is
unique a.s. if it exists.

Proof. Given mi,1, . . . ,mi,n, suppose there are two solutions of (4), say, Xi,(1) <

· · · < Xi,(n) and ξi,(1) < · · · < ξi,(n). With probability 1, we can assume
without loss of generality that there are no ties. Writing QXi,(1),...,Xi,(n)

(z) ≡
(z −Xi,(1)) · · · (z −Xi,(n)), we have

1
QXi,(1),...,Xi,(n)

(z)
d

dz
QXi,(1),...,Xi,(n)

(z)

=
1

z −Xi,(1)
+ · · · + 1

z −Xi,(n)

=
1
z

+
mi,1

z2
+ · · · + mi,n

zn+1
+ terms of order z−n−2.

Hence

1
QXi,(1),...,Xi,(n)

(z)
d

dz
QXi,(1),...,Xi,(n)

(z) − 1
Qξi,(1),...,ξi,(n)

(z)
d

dz
Qξi,(1),...,ξi,(n)

(z)

= terms of order z−n−2. (5)
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Integrating both sides of (5) with respect to z, we obtain

log[
QXi,(1),...,Xi,(n)

(z)
Qξi,(1),...,ξi,(n)

(z)
] = terms of the order z−n−1.

Since QXi,(1),...,Xi,(n)
(z) and Qξi,(1),...,ξi,(n)

(z) are both monic polynomials in z of
degree n, we conclude that they must be identical and hence Xi,(j) = ξi,(j) for
j = 1, . . . , n.

In Fisher (1929), a new class of symmetric functions of the observations
was proposed, the so-called k-statistics, and it was shown that in many ways
they are analytically more tractible than the sample moments. For example, the
sampling cumulants of the k-statistics can be obtained by combinatorial methods.
For i = 1, 2, let {ki,r : r = 1, 2, . . . , n} denote the family of Fisher’s k-statistics
based on Xi,1, . . . ,Xi,n, respectively. Then Eki,r equals κi,r, the rth cumulant of
N(µi, σ2

i ), for all r = 1, 2, . . .. An explicit expression for ki,r is given by

ki,r = r!
∑ (−1)η−1(η − 1)!

n(n− 1) . . . (n− η + 1)

∑ Xr1
i,γ1

. . . Xr1
i,γπ1

. . . Xrs
i,γη

(r1!)π1 . . . (rs!)πsπ1! . . . πs!
,

where the second summation extends over all ways of assigning the π1+· · ·+πs =
η distinct subscripts γ1, . . . , γη (including permutations) from the n available,
and the first summation extends over all partitions (rπ1

1 · · · rπss ) of the number
r = r1π1 + · · · + rsπs. As illustrations, we have

ki,1 =
1
n
mi,1, ki,2 =

1
n(n− 1)

(nmi,2 −m2
i,1),

ki,3 =
1

n(n− 1)(n − 2)
(n2mi,3 − 3nmi,2mi,1 + 2m3

i,1).

For a very readable account of k-statistics, we refer the reader to Chapter 12 of
Stuart and Ord (1994). We further observe from Wishart (1929) that

Corr(ki,r, kj,s) =

{
ρr, if r = s and i �= j,

0, if r �= s,

and
Var(ki,r) = σ2r

i Υr, (6)

where

Υr ≡ r!
r∑
s=1

(s− 1)!∆s0r

sn(n− 1) · · · (n− s+ 1)
, r = 1, 2, . . . ,

and ∆s0r is defined as the sth difference of |t|r when t = 0.
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Proposition 3. With probability 1, there is a one-to-one correspondence between
the sample Xi,1, . . . ,Xi,n and its k-statistics ki,1, . . . , ki,n.

Proof. This follows from Proposition 2 and the well known fact that mi,1, . . .,
mi,n determines ki,1, . . ., ki,n and vice versa (see, for example, Stuart and Ord
(1994, p.422)).

Corollary 1. The broken random sample X1,(1), . . . ,X1,(n),X2,1, . . . ,X2,n, and
its k-statistics k1,1, . . . , k1,n, k2,1, . . . , k2,n, have the same Fisher information ma-
trix I(n)(µ1, µ2, σ1, σ2, ρ), where I(n)(µ1, µ2, σ1, σ2, ρ) is defined as in (3).

It is convenient to define the normalized k-statistics

k∗i,r = (ki,r − κi,r)/[Var(ki,r)]1/2, i = 1, 2, r = 1, 2, . . . , n. (7)

Proposition 4. Let m be a fixed positive integer. Then as n → ∞, (k∗1,1, k∗2,1,
. . ., k∗1,m, k∗2,m)′ converges in distribution to the 2m-variate normal distribution
with mean 0 and covariance matrix

Σm =




1 ρ 0 0 · · · 0 0
ρ 1 0 0 · · · 0 0
0 0 1 ρ2 · · · 0 0
0 0 ρ2 1 · · · 0 0
...

...
. . .

...
...

0 0 0 0 · · · 1 ρm

0 0 0 0 · · · ρm 1



.

Proof. See McCullagh (1987, p.135).

The following theorem gives an approximation for the Fisher information
matrix I(n)(µ1, µ2, σ1, σ2, ρ).

Theorem 2. Let m ≥ 3. Then an asymptotic “lower bound” approximation
for the Fisher information matrix I(n)(µ1, µ2, σ1, σ2, ρ) is given by the Fisher
information matrix Î(n)(µ1, µ2, σ1, σ2, ρ) of a 2m-variate normal random vector
Y = (Y1, . . . , Y2m)′ with mean ν and covariance matrix DmΣmDm where Σm is
as in Proposition 4, ν = (µ1, µ2, σ

2
1 , σ

2
2 , 0, . . . , 0)

′, and Dm = (di,j) denotes a
2m× 2m diagonal matrix such that for i = 1, . . . ,m,

d2i−1,2i−1 ≡ (Var(k1,i))1/2, d2i,2i ≡ (Var(k2,i))1/2. (8)

In particular,

Î(n)
1,1 (µ1, µ2, σ1, σ2, ρ) =

n

(1 − ρ2)σ2
1

,
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Î(n)
1,2 (µ1, µ2, σ1, σ2, ρ) = − nρ

(1 − ρ2)σ1σ2
,

Î(n)
3,3 (µ1, µ2, σ1, σ2, ρ) =

2n
(1 − ρ4)σ2

1

+
ρ2

(1 + ρ2)σ2
1

+
m∑
i=2

2i2 − i2ρ2i

(1 − ρ2i)σ2
1

,

Î(n)
3,4 (µ1, µ2, σ1, σ2, ρ) = −2nρ2 − ρ2 + 5ρ4

(1 − ρ4)σ1σ2
−

m∑
i=3

i2ρ2i

(1 − ρ2i)σ1σ2
,

Î(n)
3,5 (µ1, µ2, σ1, σ2, ρ) = −

m∑
i=1

i2ρ2i−1

(1 − ρ2i)σ1
,

Î(n)
5,5 (µ1, µ2, σ1, σ2, ρ) =

m∑
i=1

i2ρ2(i−1)(1 + ρ2i)
(1 − ρ2i)2

.

Proof. The first statement of Theorem 2 follows from Corollary 1 and Proposi-
tion 4. We observe that the likelihood function of Y = (Y1, . . . , Y2m)′ is

fY (y1, . . . , y2m) =
m∏
i=1

1
2πd2i−1,2i−1d2i,2i(1−ρ2i)1/2

exp{− 1
2(1−ρ2i)

[(
y2i−1−κ1,i

d2i−1,2i−1
)2

+(
y2i − κ2,i

d2i,2i
)2 − 2ρi(

y2i−1 − κ1,i

d2i−1,2i−1
)(
y2i − κ2,i

d2i,2i
)]},

and from (6) and (8), we have

log fY (y1, . . . , y2m)

= − 1
2(1 − ρ2)

[(
y1 − µ1

σ1Υ
1/2
1

)2 + (
y2 − µ2

σ2Υ
1/2
1

)2 − 2ρ(
y1 − µ1

σ1Υ
1/2
1

)(
y2 − µ2

σ2Υ
1/2
1

)]

− 1
2(1 − ρ4)

[(
y3 − σ2

1

σ2
1Υ

1/2
2

)2 + (
y4 − σ2

2

σ2
2Υ

1/2
2

)2 − 2ρ2(
y3 − σ2

1

σ2
1Υ

1/2
2

)(
y4 − σ2

2

σ2
2Υ1/2

2

)]

−
m∑
i=3

{ 1
2(1 − ρ2i)

[(
y2i−1

σi1Υ
1/2
i

)2 + (
y2i

σi2Υ
1/2
i

)2 − 2ρi(
y2i−1

σi1Υ
1/2
i

)(
y2i

σi2Υ
1/2
i

)]}

−
m∑
i=1

{log(2π) + log(σi1Υ
1/2
i ) + log(σi2Υ

1/2
i ) +

1
2

log(1 − ρ2i)}.

Now we observe from the definition of the information matrix that

Î(n)
5,5 (µ1, µ2, σ1, σ2, ρ) = E[−∂

2 log fY (Y1, . . . , Y2m)
∂ρ2

] =
m∑
i=1

i2ρ2(i−1)(1 + ρ2i)
(1 − ρ2i)2

.

The other elements of Î(n)(µ1, µ2, σ1, σ2, ρ) can be similarly evaluated and the
proof of Theorem 2 is complete.
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Remark. From (3) and Theorem 2, Î(n)
i,j (µ1, µ2, σ1, σ2, ρ) = I(n)

i,j (µ1, µ2, σ1, σ2, ρ)

for 1 ≤ i ≤ 2, 1 ≤ j ≤ 5, and lim|ρ|→1 Î(n)
i,j (µ1, µ2, σ1, σ2, ρ) = lim|ρ|→1 I(n)

i,j

(µ1, µ2, σ1, σ2, ρ), for 1 ≤ i, j ≤ 5. Furthermore Theorem 1 and Theorem 2 show
that

I(n)
3,3 (µ1, µ2, σ1, σ2, ρ) − Î(n)

3,3 (µ1, µ2, σ1, σ2, ρ) = −σ−2
1

m∑
i=2

2i2 +O(ρ6),

I(n)
3,4 (µ1, µ2, σ1, σ2, ρ) − Î(n)

3,4 (µ1, µ2, σ1, σ2, ρ) = 8ρ4σ−1
1 σ−1

2 +O(ρ6),

I(n)
3,5 (µ1, µ2, σ1, σ2, ρ) − Î(n)

3,5 (µ1, µ2, σ1, σ2, ρ) =
8(n + 3)ρ5

σ1(n− 1)
+O(ρ6),

I(n)
5,5 (µ1, µ2, σ1, σ2, ρ) − Î(n)

5,5 (µ1, µ2, σ1, σ2, ρ) = − 32ρ4

n− 1
+O(ρ6). (9)

For ρ �= 0, since I(n)
3,3 (µ1, µ2, σ1, σ2, ρ) and I(n)

3,4 (µ1, µ2, σ1, σ2, ρ) both tend to
infinity as n → ∞, the approximations given by Î(n)(µ1, µ2, σ1, σ2, ρ) appear to
be remarkably good.

4. Estimating the Correlation Coefficient

As in the Introduction, let X1,(1), . . . ,X1,(n),X2,1, . . . ,X2,n denote a broken
random bivariate normal sample with parameters ρ, µ1, µ2, σ1, σ2. For simplicity,
we assume in this section that µ1, µ2, σ1 and σ2 are known and hence without
lost of generality, set µ1 = µ2 = 0 and σ1 = σ2 = 1.

Theorem 3. Let ρ̂(X1,(1), . . . ,X1,(n),X2,1, . . . ,X2,n) ∈ [−1, 1] be an estimator
for ρ ∈ (−1, 1). Suppose that there exists a constant ε > 0 such that

lim inf
n→∞ [

∂

∂ρ
Eρ(ρ̂)]2|ρ=0 ≥ ε. (10)

Then ρ̂ does not converge in probability to 0 as n→ ∞ when ρ = 0. (Eρ denotes
expectation when ρ is the value correlation coefficient).

Proof. First we observe from the information inequality (see, for example, The-
orem 6.4 of Lehmann (1983)) that

Eρ(ρ̂− Eρρ̂)2 ≥ [
∂

∂ρ
Eρ(ρ̂)]2/in(ρ), (11)

where in(ρ) denotes the Fisher information about ρ in the broken random sample.
DeGroot and Goel (1980, p.277), showed that in(0) = 1. Hence it follows from
(10) and (11) that

lim inf
n→∞ E0(ρ̂− E0ρ̂)2 ≥ ε.



1040 HOCK-PENG CHAN AND WEI-LIEM LOH

This implies that ρ̂ does not converge in probability to 0 as n→ ∞ when ρ = 0.

Remark. Condition (10) is very weak and is satisfied for “sufficiently smooth”
estimators of ρ that are asymptotically unbiased. Theorem 3 indicates that
consistent estimation of ρ is unlikely.

Remark. With µ1 = µ2 = 0, and σ1 = σ2 = 1, the Fisher information
about ρ in the broken bivariate normal sample is in(ρ) = I(n)

5,5 (0, 0, 1, 1, ρ), where

I(n)
5,5 (0, 0, 1, 1, ρ) is as in (3). We believe that the use of a set of low order k-

statistics is the appropriate approach to summarize the amount of information
about ρ in the broken random sample. The key observation is in (6) where it
is seen that different k-statistics of unequal orders are uncorrelated and more
importantly, the correlation between different k-statistics of the same order de-
creases geometrically with increasing order. This indicates that the information
about ρ contained in k-statistics should decrease very rapidly with order and
hence high order k-statistics could be omitted without significant information
loss.

Theorem 4. With the above notation, expanding as a power series about ρ = 0,
we have

lim
n→∞ in(ρ) =

j∑
i=1

i2ρ2(i−1)(1 + ρ2i)
(1 − ρ2i)2

+O(ρ2j), j = 1, . . . , 4. (12)

Proof. The proof is similar (though obviously more tedious) to that of (9), the
reader is referred to Chan and Loh (2000b) for the proof.

Remark. We observe that the first term on the right hand side of (12) is
asymptotically (as n→ ∞) equal to the information about ρ contained in the set
of low order k-statistics up to and including order j. Our calculations seem to
further indicate that (12) holds for larger values of j as well. Indeed we believe
the following conjecture to be true.

Conjecture. limn→∞ in(ρ) =
∑∞
i=1 i

2ρ2(i−1)(1 + ρ2i)(1 − ρ2i)−2, for all ρ ∈
(−1, 1).

On the other hand, here is an example (though somewhat artificial) where
consistent estimation of ρ is indeed possible.

Let ρ ∈ [−1, 1] and X1,1, . . ., X1,n, Z1, . . ., Zn, J1, . . ., Jn be a sequence
of independent random variables where, for i = 1, 2, . . . , n, X1,i ∼ N(0, 1), Zi ∼
N(0, 1) and P (Ji = 1) = |ρ|, P (Ji = 0) = 1 − |ρ|. Now define for i = 1, . . . , n,

X2,i =

{
X1,iJi + Zi(1 − Ji) if ρ ≥ 0,

−X1,iJi + Zi(1 − Ji) if ρ < 0.
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We would like to estimate ρ using the broken sample X1,(1), . . ., X1,(n), X2,1, . . .,
X2,n. It is easily seen that E(X1,1X2,1) = ρ. A key point to note is that both
marginal distributions of the broken sample are standard normal, independent
of ρ, but their joint distribution is not bivariate normal. As in Section 3, for
i = 1, 2 and r = 1, . . . , n, let ki,r denote the rth order k-statistic based on
Xi,1, . . . ,Xi,n and consequently E[ki,r] = κr, the rth cumulant of the standard
normal distribution. Define the normalized k-statistics k∗i,r as in (7).

Lemma 1. Let r and s be fixed positive integers. Then

lim
n→∞Corr(k1,r, k2,s) =

{
ρ if r = s,

0 if r �= s.

Proof. For any positive integer p, let Sn,p be the set of all injective functions
ψ : {1, 2, . . . , p} → {1, 2, . . . , n}. Thus |Sn,p| = n[p] ≡ n(n− 1) · · · (n− p+1). Let
P(r) denote the set of all partitions of an integer r (see, for example, Chapter 1
of Andrews (1976)). In any partition λ ∈ P(r), let λi > 0 denote the number of
times ri is repeated for i = 1, . . . , tλ. Then

∑tλ
i=1 riλi = r and we write

#(λ) ≡
tλ∑
i=1

λi, Cλ ≡ (−1)#(λ)−1[#(λ) − 1]!r!
(r1!)λ1 · · · (rtλ !)λtλλ1! · · ·λtλ !

.

It follows now from Stuart and Ord (1994, p.420), that for i = 1, 2,

ki,r =
∑

λ∈P(r)

Cλ(n[#(λ)])−1
∑

ψ∈Sn,#(λ)

Xr1
i,ψ(1) · · ·X

rtλ
i,ψ(#(λ)).

Hence, via symmetry,

Ek1,rk2,s − Ek1,rEk2,s

=
∑

λ∈P(r)

∑
θ∈P(s)

CλCθ(n[#(θ)])−1
∑

ψ∈Sn,#(θ)

{E[Xr1
1,1 · · ·X

rtλ
1,#(λ)X

s1
2,ψ(1) · · ·X

stθ
2,ψ(#(θ))]

−E[Xr1
1,1 · · ·X

rtλ
1,#(λ)]E[Xs1

2,ψ(1) · · ·X
stθ
2,ψ(#(θ))]}. (13)

Note that P(r) and P(s) do not depend on n. Fix λ and θ. Each term in the
inner sum is 0 if the subscripts of X1,1, . . . ,X1,#(λ) and X2,ψ(1), . . . ,X2,ψ(#(θ)) do
not match is 0. If exactly one subscript matches, say ψ(1) = 1, then it becomes
ρ(EXr1+s1

1,1 −EXr1
1,1EX

s1
1,1)Q(λ, θ), where Q(λ, θ) is a quantity independent of n.

The number of terms with one subscript matching is #(λ)#(θ)(n−#(λ))[#(θ)−1].
Similarly for exactly ν > 1 matches, the number of terms is C#(λ)

ν #(θ)[ν](n −
#(λ))[#(θ)−ν]. Thus by (13), we have

Cov(k1,r, k2,s) =
βr,sρ

n
+O(n−2) (14)
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for some constant βr,s. Letting ρ = 1 in (14), we get Cov(k1,r, k1,s) = βr,sn
−1 +

O(n−2). Hence we conclude from (6) that βr,r �= 0, βr,s = 0 for all r �= s, and
that Var(k1,r) = Var(k2,r) is exactly of order O(n−1). This proves Lemma 1.

Hence as in Proposition 4, for an arbitrary but fixed m and suitably large
n, the likelihood of (k∗1,1, k∗2,1, . . . , k∗1,m, k∗2,m)′ can be approximated by a prod-
uct of bivariate normal likelihoods each with mean 0 and covariance matrix Σ
where Σ1,1 = Σ2,2 = 1 and Σ1,2 = ρ. This implies that the amount of Fisher
information about ρ is unbounded with increasing m. This is in direct contrast
to the broken bivariate normal sample treated previously. In fact consistent es-
timation of ρ is indeed possible here and a simple consistent estimate is given
by ρ̃ = 1

n

∑n
i=1

∑n
j=1 I{X1,i = X2,j} − 1

n

∑n
i=1

∑n
j=1 I{X1,i = −X2,j}, where I{.}

denotes the indicator function.
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Appendix

Proof of Proposition 1. Let Eψ denote the conditional expectation with
respect to the uniform distribution on ψ ∈ Sn keeping the broken sample X1,(1),
. . ., X1,(n), X2,1, . . ., X2,n fixed. For simplicity, write Yi,j ≡ Xi,j−µi

σi
√

1−ρ2 , i = 1, 2,

j = 1, . . . , n, β̃ψ ≡ ∑n
i=1 Y1,iY2,ψ(i), ψ ∈ Sn, α̃ψ ≡ exp(ρβ̃ψ)[Eψ exp(ρβ̃ψ)]−1,

ψ ∈ Sn. Let E∗ denote the expectation for which Y1,1, . . . , Y1,n, Y2,1, . . . , Y2,n are
i.i.d. N(0, 1) random variables. We observe from (2) that

E[(
∑
ψ∈Sn

βψαψ)2]

=
1
n!

∫
R2n

[
∑
ψ∈Sn

βψe
ρβψ(1−ρ2)−1

]2[
∑
ψ∈Sn

eρβψ(1−ρ2)−1
]−1(2πσ1σ2

√
1 − ρ2)−n

× exp{− 1
2(1 − ρ2)

n∑
i=1

[(
X1,i − µ1

σ1
)2 + (

X2,i − µ2

σ2
)2]}dX1,1 · · · dX2,n

=
(1 − ρ2)(n+4)/2

(2π)n

∫
R2n

(Eψβ̃ψα̃ψ)(
∞∑
j=0

ρjEψβ̃
j+1
ψ

j!
)e−

∑n

i=1
(Y 2

1,i+Y
2
2,i)/2dY1,1 · · · dY2,n

=




∞∑
j=0

(−1)jρ2j [
j∏
l=1

(
n+ 6 − 2l

2l
)]


E∗[(Eψβ̃ψα̃ψ)(

∞∑
j=0

ρjEψβ̃
j+1
ψ

j!
)]. (15)
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We further observe that

∂

∂ρ
Eψβ̃

l
ψα̃ψ = Eψβ̃

l+1
ψ α̃ψ − (Eψβ̃lψα̃ψ)(Eψβ̃ψα̃ψ), l = 1, 2, . . . . (16)

Since α̃ψ|ρ=0 = 1 for all ψ ∈ Sn, it follows from (16) that

Eψβ̃ψα̃ψ|ρ=0 = Eψβ̃ψ,

∂

∂ρ
Eψβ̃ψα̃ψ|ρ=0 = (Eψβ̃2

ψ) − (Eψβ̃ψ)2,

∂2

∂ρ2
Eψβ̃ψα̃ψ|ρ=0 = (Eψβ̃3

ψ) − 3(Eψβ̃2
ψ)(Eψ β̃ψ) + 2(Eψ β̃ψ)3,

∂3

∂ρ3
Eψβ̃ψα̃ψ|ρ=0 = (Eψβ̃4

ψ) − 4(Eψβ̃3
ψ)(Eψ β̃ψ) − 3(Eψ β̃2

ψ)2

+12(Eψ β̃2
ψ)(Eψβ̃ψ)2 − 6(Eψ β̃ψ)4,

∂4

∂ρ4
Eψβ̃ψα̃ψ|ρ=0 = (Eψβ̃5

ψ) − 5(Eψβ̃4
ψ)(Eψ β̃ψ) − 10(Eψ β̃3

ψ)(Eψ β̃2
ψ)

+20(Eψ β̃3
ψ)(Eψβ̃ψ)2 + 30(Eψ β̃2

ψ)2(Eψβ̃ψ)

−60(Eψ β̃2
ψ)(Eψβ̃ψ)3 + 24(Eψ β̃ψ)5.

Now, by formally expanding Eψβ̃ψα̃ψ as a power series about ρ = 0, we have

Eψβ̃ψα̃ψ = (Eψβ̃ψ) + ρ[(Eψβ̃2
ψ) − (Eψβ̃ψ)2]

+
ρ2

2!
[(Eψ β̃3

ψ) − 3(Eψ β̃2
ψ)(Eψβ̃ψ) + 2(Eψβ̃ψ)3]

+
ρ3

3!
[(Eψ β̃4

ψ) − 4(Eψ β̃3
ψ)(Eψβ̃ψ) − 3(Eψβ̃2

ψ)2

+12(Eψ β̃2
ψ)(Eψβ̃ψ)2 − 6(Eψ β̃ψ)4]

+
ρ4

4!
[(Eψ β̃5

ψ) − 5(Eψ β̃4
ψ)(Eψβ̃ψ) − 10(Eψ β̃3

ψ)(Eψβ̃2
ψ)

+20(Eψ β̃3
ψ)(Eψβ̃ψ)2 + 30(Eψ β̃2

ψ)2(Eψβ̃ψ)

−60(Eψ β̃2
ψ)(Eψβ̃ψ)3 + 24(Eψ β̃ψ)5] +O(ρ6). (17)

From (15) and (17), we obtain

E[(
∑
ψ∈Sn

βψαψ)2]

= E∗{(Eψβ̃ψ)2 + ρ[2(Eψ β̃2
ψ)(Eψ β̃ψ) − (Eψβ̃ψ)3]

+ρ2[(Eψ β̃2
ψ)2+(Eψβ̃3

ψ)(Eψ β̃ψ)−5
2
(Eψβ̃2

ψ)(Eψ β̃ψ)2+(Eψβ̃ψ)4− (n+4)
2

(Eψβ̃ψ)2]
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+ρ3[
1
3
(Eψβ̃4

ψ)(Eψ β̃ψ)+(Eψβ̃3
ψ)(Eψβ̃2

ψ)− 7
6
(Eψβ̃3

ψ)(Eψ β̃ψ)2−2(Eψβ̃2
ψ)2(Eψβ̃ψ)

+3(Eψβ̃2
ψ)(Eψβ̃ψ)3−(Eψβ̃ψ)5−(n+ 4)(Eψβ̃2

ψ)(Eψβ̃ψ) +
(n+ 4)

2
(Eψβ̃ψ)3]

+ρ4[
1
3
(Eψβ̃4

ψ)(Eψ β̃2
ψ) − 1

2
(Eψ β̃2

ψ)3 − 7
2
(Eψβ̃2

ψ)(Eψ β̃ψ)4 +
13
4

(Eψ β̃2
ψ)2(Eψ β̃ψ)2

+
4
3
(Eψβ̃3

ψ)(Eψ β̃ψ)3 − 11
6

(Eψβ̃3
ψ)(Eψβ̃2

ψ)(Eψβ̃ψ) +
1
4
(Eψβ̃3

ψ)2

−3
8
(Eψβ̃4

ψ)(Eψ β̃ψ)2 +
1
12

(Eψβ̃5
ψ)(Eψβ̃ψ) + (Eψβ̃ψ)6 − (n+ 4)

2
(Eψβ̃2

ψ)2

+
5(n+ 4)

4
(Eψβ̃2

ψ)(Eψ β̃ψ)2 − (n+ 4)
2

(Eψβ̃3
ψ)(Eψβ̃ψ)

−(n+ 4)
2

(Eψβ̃ψ)4 +
(n+ 4)(n + 2)

8
(Eψβ̃ψ)2]} +O(ρ6) (18)

= 1 + (1 + 4n+ n2)ρ2 − (
32

n− 1
+ 11 + 4n)ρ4 +O(ρ6).

The last equality uses the mathematical computation software system Mathe-
matica (Wolfram (1996)) to expand each term in the right hand side of (18) as
a power series in ρ. These calculations are extremely tedious and we refer the
reader to Chan and Loh (2000a) for the details. This completes the proof of
Proposition 1.
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