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Abstract: In this article we consider the Two-Way ANOVA model with unequal

cell frequencies without the assumption of equal error variances. By taking the

generalized approach to finding p-values, classical F-tests for no interaction effects

and equal main effects are extended under heteroscedasticity. The generalized F-

tests developed in this article can be utilized in significance testing or in fixed

level testing under the Neyman-Pearson theory. An example is given to illustrate

the proposed test and to demonstrate its advantage over the classical F-test. A

simulation study is carried out to demonstrate that, despite its increased power

under heteroscedasticity, the size of the test does not exceed the intended level.
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1. Introduction

1.1. Motivation

The size of classical F-tests are fairly robust against the assumption of equal
variances when the sample sizes are equal. When the sample sizes are different,
the size of F-tests can substantially exceed the intended size. Most of all, they
suffer from serious lack of power even under moderate heteroscedasticity. As
we demonstrate in Section 4 the p-value suggested by a classical F-test can be
as large as .3 when actually that data provides sufficient evidence to reject the
underlying hypothesis at the .05 level. Lack of power of a test at this magnitude
should be considered unacceptable and serious, especially in bio-medical research
in which data are vital, expensive, and the data collection is time consuming.

As Krutchkoff (1988) pointed out, transformations cannot rectify the het-
eroscedasticity problem when the available data are already normal. If one at-
tempts to tackle the problem by performing weighted least squares regression
with estimated variances, the size of the test can become much larger than the
intended level. The generalized p-value method provides a promising approach to
solve such problems with no adverse effect on the size of the test. Until recently
there were no Bayesian solutions to ANOVA problems either. Now the general-
ized p-value approach has lead to Bayesian solutions as well (see Weerahandi and
Tsui (1996)). Since the assumption of equal variances is made for mathematical
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tractability rather than anything else, then in view of power and size problems
of the classical tests, there is a great need for encouraging further research in
ANOVA, MANOVA, and ANCOVA problems. The purpose of this article is to
undertake one such problem which often arises in practical applications.

1.2. Related work

For the Behrens-Fisher problem of comparing two normal populations,
Barnard (1984) described how exact p-values can be computed without fiducial
arguments. Tsui and Weerahandi (1989) obtained a numerically equivalent and
computationally more efficient formula for the p-value and established that it
is indeed the exact probability of a well defined extreme region. In a Bayesian
treatment, Meng (1994) obtained a formula of the same form as the posterior
predictive p-value under a noninformative prior. The generalized p-values and
posterior predictive p-values have some implications in fixed level testing as well.
Weerahandi (1995a) and Meng (1994) discuss some of these issues. The gen-
eralized inference methods have now been successfully applied to obtain exact
tests in a variety of linear models (see, for instance, Weerahandi (1987), Thursby
(1992), Griffiths and Judge (1992), and Koschat and Weerahandi (1992) for ap-
plications in regression, and Weerahandi (1991), and Zhou and Mathew (1994)
for applications in mixed models).

The ANOVA problems pose new difficulties in extending results to com-
plicated designs. According to our empirical studies, the assumption of equal
variances is more serious in higher-way ANOVA than in one-way ANOVA. In
the former, not only F-tests suffer from lack of power, but also they can lead
to serious erroneous conclusions. Therefore, we consider further research in this
direction to be very important and practically useful.

1.3. Tests in one-way ANOVA

Rice and Gains (1989) extended the argument given by Barnard (1984) to
obtain an exact solution to the one-way ANOVA problem with unequal variances.
Weerahandi (1995a) obtained a numerically equivalent form for the p-value which
is closer in form to the classical F-test and formally proved that it is the exact
probability of an unbiased extreme region (see Tsui and Weerahandi (1989)),
a well defined subset of the underlying sample space with the observed sample
on its boundary. Welch (1951) gave an approximate solution to the problem
which works well with large samples. Krutchkoff (1988) provides a simulation
based method of obtaining an approximate solution which is fairly good even
with small samples. Krutchkoff (1988) and Weerahandi (1995a) also provide
interesting examples to demonstrate the repercussions of applying classical F-
tests when the problem of heteroscedasticity is serious.
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1.4. Tests in two-way ANOVA

There is a large literature on two-way unbalanced models as well as balanced
models. In a recent article Fujikoshi (1993) provided a good survey of previous
work on two-way unbalanced models and discussed available solutions in a unified
framework. We are aware of only a few attempts to tackle the two-way ANOVA
problem under heteroscedasticity. The article of Krutchkoff (1989) which gives
a simulation based method of obtaining an approximate test is of particular
interest.

The purpose of this article is to develop an exact test of significance for
the two-way unbalanced model with unequal variances when the unbalancedness
arises due to unequal samples available from different factor combinations. As
in Weerahandi (1987), we accomplish this by taking a generalized approach to
constructing extreme regions. The proposed tests will be referred to as generalized
F-tests as they are based on the form of the classical F-test for the case of known
variances.

1.5. Exactness and unbiasedness of proposed tests

In significance testing of hypotheses in the two-way ANOVA model, each
generalized F-test proposed in this article is exact in the sense that it is based
on a p-value which is the exact probability of a well defined subset of the sample
space (extreme region). The test is unbiased in the sense that the probability
of the extreme region increases for any deviation from the null hypothesis. This
means that if the probability of the extreme region is computed assuming that
the null hypothesis is true it tends to be lower than it is supposed to be, thus
resulting in smaller probabilities when the null hypothesis is not true.

It should be emphasized that, as in the case of testing parameters of discrete
distributions, these assertions are not valid under the Neyman-Pearson fixed level
testing. More precisely, probability of rejecting a null hypothesis if the p-value
is less than α is not necessarily equal to α. As a matter of fact, exact fixed level
tests based on minimal sufficient statistics do not exist for this type of problem.
Nevertheless, the generalized F-tests developed in this paper can be utilized in
fixed level testing as well. Our limited simulation study has suggested that re-
jecting a null hypothesis when the generalized p-value is less than α provides an
excellent approximate α level test. Moreover, according to our simulation study,
the actual size of the generalized F-test presented in this article does not exceed
the intended level under homoscedasticity as well as under serious heteroscedas-
ticity. According to other simulation studies reported in the literature (see,
for instance, Thursby (1992), Weerahandi and Johnson (1992), and Zhou and
Mathew (1994)), in many linear models, approximate tests based on generalized
p-values often outperform more complicated approximate tests available in the
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literature. Robinson (1976) established that the Behrens-Fisher solution to the
two sample problem does not exceed the intended level. The result also applies
to the Bayesian solution under the noninformative prior and to the generalized
t-test of Tsui and Weerahandi (1989) because all three solutions are numerically
equivalent. In view of that result it is expected that sizes of generalized F-tests in
balanced linear models also do not exceed the intended level in most situations.
Therefore, the generalized F-tests can be utilized as fixed-level tests with size not
exceeding the intended level or as exact significance tests. It is conjectured that
they are also Bayesian tests under appropriate discrepancy measures (see Meng
(1994)) and noninformative priors. For a complete coverage and applications of
the generalized p-values the reader is referred to Weerahandi (1995b).

2. Generalized F-test for No Interaction Effect

Consider the two-way ANOVA model with factors A and B, with factor
levels A1, . . . , AI and B1, . . . , BJ , respectively giving a total of IJ factorial com-
binations or treatments. Suppose a random sample of size nij is available from
ijth treatment, i = 1, . . . , I; j = 1, . . . , J . Let Xijk, i = 1, . . . , I; j = 1, . . . , J ;
k = 1, . . . , nij represent these random variables and xijk represent their observed
(sample) values. Assume that nij > 1 so that sample variances can be computed
for each cell of the design. Sample mean and the sample variance of the ijth
treatment are denoted by X̄ij and S2

ij, i = 1, . . . , I; j = 1, . . . , J respectively,
that is,

X̄ij =
nij∑
k=1

Xijk/nij and S2
ij =

nij∑
k=1

(
Xijk − X̄ij

)2 /nij.

Their observed sample values are denoted by x̄ij and s2
ij, i = 1, . . . , I; j = 1, . . . , J

respectively. Consider the Two-Way ANOVA model with unequal variances:

Xijk = µ + αi + βj + γij + εijk, (1)

εijk ∼ N
(
0, σ2

ij

)
, i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , nij ,

where µ is the general mean, αi is an effect due to the ith level of the factor A,
βj is an effect due to the jth level of the factor B, and γij represents an effect
due to the interaction of the factor level Ai and the factor level Bj .

In order to have µ, αi, βj , and γij uniquely defined, we need to have additional
constraints. Let w1, . . . , wI and v1, . . . , vJ be nonnegative weights (to be defined
later to have additional properties) such that

∑I
i=1 wi > 0 and

∑J
j=1 vj > 0. We

use the constraints

∑
i

wiαi = 0,
∑

j

vjβj = 0,
I∑

i=1

wiγij = 0,
J∑

j=1

vjγij = 0. (2)
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We are mainly interested in testing the following hypotheses

H0AB : γij = 0, i = 1, . . . , I, j = 1, . . . , J (3)

H0A : α1 = α2 = · · · = αI = 0 (4)
H0B : β1 = β2 = · · · = βJ = 0 (5)

against their natural alternative hypotheses. Testing procedures for equal main
effects will be considered in Section 3.

First consider testing the hypothesis H0AB given in (3) for no interaction
effect. Define the standardized interaction sum of squares and the error sum of
squares

S̃I

(
σ2

11, σ
2
12, . . . , σ

2
IJ

)
=

I∑
i=1

J∑
j=1

nij

σ2
ij

(
X̄ij − µ̂ − α̂i − β̂j

)2
(6)

and

S̃E

(
σ2

11, σ
2
12, . . . , σ

2
IJ

)
=

I∑
i=1

J∑
j=1

nij∑
k=1

1
σ2

ij

(
Xijk − X̄ij

)2 =
I∑

i=1

J∑
j=1

nijS
2
ij/σ

2
ij , (7)

where µ̂, α̂i, and β̂j are solutions of µ, αi, and βj that minimize the quadratic
equation

S̃
(
σ2

11, σ
2
12, . . . , σ

2
IJ

)
=

I∑
i=1

J∑
j=1

nij∑
k=1

1
σ2

ij

(Xijk − µ − αi − βj)
2 (8)

subject to the constraints given in equation (2). Also let us denote the observed
value of S̃I as s̃I . When variances are equal or when they are known parameters,
testing procedure for two-way unbalanced design does not depend on chosen
weights and the conventional F-test (Arnold (1981), Chap. 7) is based on the
p-value

p = 1 − H(I−1)(J−1),(N−IJ)

[
(N − IJ)s̃I(σ2

11, σ
2
12, . . . , σ

2
IJ )

(I − 1)(J − 1)s̃E

]
, (9)

where Hk,l is the cdf of the F-distribution with k and l degrees of freedom.
In order to present the formula for computing the p-value when the variances

are unequal and unknown, define IJ − 1 independent beta random variables Bij

as

Bij ∼ Beta
( i−1∑

l=1

J∑
m=1

(nlm − 1)/2 +
j∑

m=1

(nim − 1)/2, (ni,j+1 − 1)/2
)

(10)

if i = 1, . . . , I; j = 1, . . . , J − 1

Bij ∼ Beta
( i∑

l=1

J∑
m=1

(nlm − 1)/2, (ni+1,1 − 1)/2
)

if i = 1, . . . , I − 1, and j = J.
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and a series of Yij, i = 1, . . . , I, j = 1, . . . , J random variables obtained by
changing beta variables as

Yij = (1 − Bi,j−1)
J∏

j′=j

Bij′
I∏

i′=i+1

J∏
j′=1

Bi′ j′ (11)

with B1,0 = 0, BI,J = 1, and Bi,0 = Bi−1,J for i > 0. Then, the hypothesis H0AB

is tested on the basis of the p-value

p =1−E
{
H(I−1)(J−1),(N−IJ)

[ (N − IJ)
(I − 1)(J − 1)

s̃I

(n11s
2
11

Y11
,
n12s

2
12

Y12
, . . . ,

nIJs2
IJ

YIJ

)]}
,

(12)
where Hk,l is the cdf of the F-distribution with k and l degrees of freedom and
the expectation is taken with respect to Yij, i = 1, . . . , I, j = 1, . . . , J random
variables.

We shall show in Section 5 that this is the exact probability of a well defined
extreme region, an unbiased subset of the sample space with observed data on
its boundary; that is a p-value the way Fisher treated problems of significance
testing. The p-value serves to measure the evidence in favor of H0AB . The
proof of this test is given in Section 5. Using the extended definition of the
p-values given in Tsui and Weerahandi (1989), this test is derived from the F-
test when σij values are known. In view of this fact, this test is referred to as
the generalized F-test for two-way ANOVA. Practitioners who prefer to take the
Neyman-Pearson approach and perform tests at a nominal level α can also find
a good approximate test (with size not exceeding the intended level, according
to our simulation study) by the following rule:

reject H0 if p < α.

This p-value can be either computed by numerical integration exact up to a
desired level of accuracy or can be well approximated by a Monte Carlo method.
When there are a large number of factor combinations the latter method is more
desirable and computationally more efficient. In this method the expected value
appearing in (12) is approximated by using a large number of data sets simulated
from underlying beta random variables. Each of these data sets consist of a
total of IJ − 1 independent beta random variates defined in (10). For each
data set, the beta random numbers are transformed to Yij using formula (11),
µ̂, α̂ are computed, β̂ are evaluated, and then the cdf of H(I−1)(J−1),(N−IJ) is
evaluated. Finally, the expected value is estimated by using their sample mean.
The accuracy of this approximation can also be assessed. The Monte Carlo
variance of the estimate of p is σ2

h/L, where L is the number of Monte Carlo
samples used to estimate p and σh is the sample (simulated) standard deviation
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of H values. For example, with a probability of .999, the estimated p-value is
accurate up to about 3σh/L1/2. This integrand is well behaved so that, when the
number of factor levels is small, this p-value can also be computed by numerical
integration. For instance, this method can easily be implemented in FORTRAN
program using IMSL subroutine QAND to evaluate the integral. The p-value
based on the Monte Carlo method has now been integrated into the XPro software
package.

To calculate s̃I , noting that it does not depend on the selected weights, let us
pick the particular set of weights wi = ui. =

∑J
j=1 uij and vj = u.j =

∑I
i=1 uij,

with restrictions
∑

ui.αi = 0 and
∑

u.jβj = 0, where uij = nij/σ
2
ij or uij =

yij/s
2
ij according as the variances are known or unknown. Then µ̂, α̂i and β̂j can

be found by solving the system of equations∑
j

uij(x̄ij − µ̂ − α̂i − β̂j) = 0, i = 1, . . . , I (13)

∑
i

uij(x̄ij − µ̂ − α̂i − β̂j) = 0, j = 1, . . . , J.

Then we have µ̂ =
∑ ∑

uijx̄ij/
∑ ∑

uij . Moreover, the problem of solving the
above system of equations can be somewhat simplified by eliminating β̂j ’s from
the first equation:

ui.α̂i −
I∑

k=1

α̂k


 J∑

j=1

uijukj

u.j


 = bi, i = 1, . . . , I,

where

bi =
J∑

j=1

uijx̄ij −
J∑

j=1

uij

u.j

I∑
k=1

ukjx̄kj, i = 1, . . . , I.

This can be written in matrix form as Âα = b ⇒ α̂ = A−1b where A =
Diag(u1., . . . , uI.) − C and ikth element of C is cik =

∑J
j=1 uijukj/u.j and then

replace the last row of the matrix A by (u1., . . . , uI.). Similarly β̂ = B−1d where
B = Diag(u.1, . . . , u.J)−C; jkth element of C is cjk =

∑I
i=1 uijuik/ui. and then

replace the last row of the matrix B by (u.1, . . . , u.J); and the jth element of d
is dj =

∑I
i=1 uij x̄ij − ∑I

i=1 uij/ui.
∑J

k=1 uikx̄ik.

3. Generalized F-test for the Main Effect

The literature on two-way unbalanced models provide several procedures
available for testing the main effect (in the presence of possible interactions).
There is no common agreement about the circumstances under which these al-
ternative testing procedure should be used. The controversy is not about the
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derivation of testing procedures, but about the appropriate weights. In many
situations there are no natural weights to justify a particular procedure. Arnold
(1981), p. 96-99 gives an excellent coverage of this problem and the controver-
sies behind it. He provides five testing procedures in an attempt to tackle this
problem. Probably the widely used method (see, for instance, Lindman (1992),
Chap. 5) is the one discussed by Fujikoshi (1993) in detail. We will consider
all six methods and give testing procedures for unbalanced design under het-
eroscedasticity using the generalized p-value approach.

Most of the procedures can be easily described by first considering the case
of analyst specified weights to be used in the constraints. Let w1, . . . , wI and
v1, . . . , vJ be the prespecified weights. It is important to note that this testing
procedure depends on the chosen weights and therefore the weights must be cho-
sen prior to performing the experiment. Define the standardized sum of squares
due to factor A

S̃A

(
σ2

11, σ
2
12, . . . , σ

2
IJ

)
=

I∑
i=1

J∑
j=1

nij

σ2
ij

(
X̄ij − µ̂ − β̂j − γ̂ij

)2
, (14)

and it’s observed value by s̃A

(
σ2

11, σ
2
12, . . . , σ

2
IJ

)
. Here µ̂, β̂j , and γ̂ij are the

estimates of µ, βj , and γij obtained by minimizing

S̃1

(
σ2

11, σ
2
12, . . . , σ

2
IJ

)
=

I∑
i=1

J∑
j=1

nij∑
k=1

1
σ2

ij

(Xijk − µ − βj − γij)
2 (15)

subject to the constraints given in equation (2). In the case of known variances
and known weights, testing of H0A in the presence of interactions is based on the
above chi-squared quantity (Arnold (1981), Chap. 7) and, is given by

p = 1 − H(I−1),(N−IJ)

[
(N − IJ)s̃A(σ2

11, σ
2
12, . . . , σ

2
IJ)

(I − 1)s̃E

]
. (16)

In the case of unknown variances (unequal) and unequal cell frequencies, the
p-value of the hypothesis H0A is given by

p = 1 − E
{
H(I−1),(N−IJ)

[(N − IJ)
(I − 1)

s̃A

(n11s
2
11

Y11
,
n12s

2
12

Y12
, . . . ,

nIJs2
IJ

YIJ

)]}
, (17)

where the expectation is taken with respect to the Yij random variables given
in equation (12); µ̂, β̂j , and γ̂ij are the solutions of µ, βj , and γij by minimizing
the quantity S̃1

(
n11s

2
11/Y11, n12s

2
12/Y12, . . . , nIJs2

IJ/YIJ
)

given in (15) subject to
the weights given in (2). The sketch of this proof is also given in Section 5. The
p-value can be computed using the XPro software package.
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Equation (17) enables us to compute p-values with any desired set of weights.
The S̃1() function is determined by point estimates appearing in (14) which in
turn depend on the weights. With particular weights this function can be de-
termined explicitly and (17) can be written in more compact form. To do this,
first consider the widely used procedure discussed by Fujikoshi (1993). This pro-
cedure is based on the nonnegative weights uij which satisfies the identifiability
condition,

∑
i ui.αi =

∑
j u.jβj =

∑
i uijγij =

∑
j uijγij = 0. In the presence of

interactions when variances are equal, using uij = nij he showed that the main
effect can be tested using the sum of squares

sa =
∑

i

∑
j

nij(x̄ij − x̄..)2 − sI −
∑
j

n.j(x̄.j − x̄..)2, (18)

where sI is calculated as in (6) with variances equal to 1, as appropriate in the
case of equal variance assumption considered by Fujikoshi (1993). Here s2

a was
referred to as the sum of squares due to the levels of factor A eliminating the
levels of factor B. The last term of the expression (18) was referred to as the sum
of squares due to levels of factor B ignoring the levels of factor A.

When variances are known and unequal, using uij = nij/σ
2
ij sum of squares

due to factor A given in the above equation is equivalent to

s̃a(σ2
11, . . . , σ

2
IJ ) =

∑
i

∑
j

uij(x̄ij − µ̂)2 − s̃I −
∑
j

u.j(x̄.j − µ̂)2,

where x̄.j =
∑I

i=1 uij x̄ij/u.j and s̃I is as given in (6).
When variances are unknown and unequal, the expression for the generalized

p-value (4) is the same as in (17) except that s̃A must be replaced by s̃a and µ̂, α̂i

and β̂j are solutions of the system of equations in (13) with uij replaced by yij/s
2
ij.

Therefore, the p-value of (4) under heteroscedasticity can be written as

p = 1 − E
{
H(I−1),(N−IJ)

[(N − IJ)
(I − 1)

J∑
j=1

I∑
i=1

Yij

s2
ij

((x̄ij − µ̂)2 − (x̄.j − µ̂)2

−(x̄ij − µ̂ − α̂i − β̂j)2)
]}

, (19)

where the expectation is taken with respect to the Yij random variables. It should
be noted that Yij enter into the formula as a result of σij in the weights being
tackled by the random variables whose distribution depend on such parameters.
The proof of this is very similar to the proof of (10) given in Section 5.

Another popular solution to the problem (Searle (1971), Chap. 7, Arnold
(1981), Chap. 7) is not quite a test for αi = 0 in the presence of interactions, but
rather to test the null hypothesis

H0A∗ : αi + γij = 0 for all i, j (20)
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subject to the constraint
∑

j

∑
i nijβj/σ

2
ij = 0. Here the testing procedure does

not depend on the chosen weights. When variances are known, the conventional
F–test is based on the chi-squared statistic

∑I
i=1

∑J
j=1 nijσ

−2
ij (x̄ij − x̄.j)2. When

variances are unknown and unequal, the p-value of the hypothesis H0A∗ in (20)
is given by

p = 1 − E
{
H(I−1),(N−IJ)

[(N − IJ)
(I − 1)

I∑
i=1

J∑
j=1

Yij

s2
ij

(x̄ij − x̄.j)2
]}

, (21)

where the expectation is taken with respect to the random variables defined in
(12).

The third specific approach (Seber (1977), Chap. 9) is to assume γij = 0 for
all i, j if the no interaction effect hypothesis H0AB in (3) is not rejected. Then the
experiment is equivalent to two one-way experiments, one for factor A and the
other one for factor B. Then the main effect for an unbalanced heteroscedastic
design can be tested using the generalized p-value given by Weerahandi (1995a).

The fourth approach (Arnold (1981), Chap. 7) is to use uniform weights
wi = vj = 1, considering all treatment levels are equally important. Then the
p-value of (4) is as same as in equation (17) except the weights wi = vj = 1 must
be used in the minimization process.

The fifth approach (Arnold (1981), Chap. 7, Scheffe (1959), Chap. 4) is to
use weights wi = ni. and vj = n.j. When variances are equal, these weights
produce nice closed form solutions for the model with proportional sampling.
Again here, the p-value of (4) is as same as in equation (17) except the above
weights must be used in the process.

4. Examples

The objective of this section is to illustrate the proposed test and to demon-
strate with the aid of two examples that it is worth while to resort to a nu-
merically extensive testing procedure when the problem of heteroscedasticity is
serious. The first example attempts to show how one can come to misleading
conclusions or fail to detect significant differences in parameters as a result of
ignoring the possibility of unequal variances implied by sample variances. This
in turn can lead to very serious repercussion in many applications. Data col-
lected in many applications are so vital and designed experiments can be so very
expensive that such repercussions are unacceptable. The second example exam-
ines the size performance of the generalized F-test to demonstrate that under
serious heteroscedasticity as in Example 1, one can draw conclusions based on
generalized p-values in fixed level testing as well.

Example 1. First consider an example of a situation where the interaction
between two factors is negligible. Suppose the first factor has 4 levels and the



TWO-WAY ANOVA UNDER HETEROSCEDASTICITY 641

second factor has 5 levels. Let the factors be A and B with factor levels A1, A2,
A3, A4 and B1, B2, B3, B4, B5 respectively. Suppose that the design is balanced
and that 7 observations are available from each factor combination. To demon-
strate what can happen in a typical application with moderate heteroscedasticity,
consider the sample means and sample variances given by the following table:

Table 1. Sample means and sample variances

B1 B2 B3 B4 B5
x̄i1 s2

i1 x̄i2 s2
i2 x̄i3 s2

i3 x̄i4 s2
i4 x̄i5 s2

i5

A1 5.1 0.61 4.9 1.7 4.2 1.5 3.7 3.4 3.8 1.7
A2 5.0 2.9 4.1 0.31 4.3 1.2 4.0 1.1 4.1 0.30
A3 4.9 1.1 5.1 0.31 5.0 1.2 5.0 1.0 3.9 3.4
A4 4.8 1.8 4.8 4.1 4.0 1.8 3.8 1.7 3.7 2.1

The null hypotheses of no different main effects and no interactions can be
easily performed by classical F-tests under the assumption that cell variances are
all equal. The elements of the F-tests are displayed in the following ANOVA
table; the p-values appearing in the table are computed under the assumption
that all cell variances are equal.

Table 2. ANOVA and p-values under the assumption of equal variances

Source d.f. SS MS F-Value p-value
Inter. AxB 12 9.73 0.8108 0.4183 0.9539
Factor A 3 6.65 2.2167 1.1435 0.3344
Factor B 4 21.26 5.3165 2.7427 0.0317

With these p-values one would conclude that the differences between the lev-
els of factor A as well as the interactions are not statistically significant. More-
over, the null hypothesis of equal effects of factor B levels would be rejected.
Now let us drop the assumption of equal variances and retest the hypotheses.
The p-value for testing the interactions is computed using Equation 10 and the
p-values for testing the main effects are computed by applying the formula given
by Equation 21. The p-values computed by these methods are as follows:

Table 3. P-values without the assumption of equal variances

Source p-value
Interaction AxB 0.815
Factor A 0.033
Factor B 0.123

Now while we come to the same conclusion as far as the interactions are
concerned, these p-values suggest that it is the levels of factor A, and not factor
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B, that are significantly different. Since the significance of factor A differences
are detected with milder assumptions the latter conclusion is more credible. The
misleading conclusions made by applying the classical F-test in this example
is a consequence of trying explain all statistical variations through the means.
In many applications, this is considered more serious than the assumption of
normal distributions. This example demonstrates the danger of resorting to
simple procedures based on unreasonable assumptions. The reader is referred to
Krutchkoff (1988, 1989) for further discussion of these issues.

Example 2. The purpose of this example is to investigate the size performance
of the generalized p-value based on a simulation study. Since the test concerning
H0AB does not depend on chosen weights we confine our study to the problem of
testing the interaction terms. In our limited study we carried out the simulation
for a number of combinations of sample sizes nij and standard deviations σij with
population parameters: µ = 10.0, α1 = 0.0, α2 = 5.0, β1 = 0.0, β2 = 5.0, β3 =
10.0. When H0AB is true, we also have r11 = r12 = r13 = r21 = r22 = r23 = 0. For
each combination of sample sizes and variances, a simulated sample of size 10,000
was generated from normal populations with appropriate means and variances.
The generalized p-value given by (10) was computed using each simulated sample
and then the rejection rate (fraction of times the p-value is less than the nominal
level) of the null hypothesis H0AB was calculated. Two values of nominal levels,
namely α = .1 and α = .05 are studied based on 10000 simulated samples. A
simulation study based on about 100000 samples may provide sufficient data to
assess the size performance at .01 level, which is beyond the scope of this paper.
The findings of the simulated study are summarized in Table 4.

Table 4. Size performance of generalized p-values: Rejection rate of null
hypothesis when it is true

Standard deviations and sample sizes Sizes when level
σ11 σ21 σ12 σ22 σ13 σ23 n11 n21 n12 n22 n13 n23 α = .1 α = .05
1.0 1.5 2.0 2.5 3.0 2.0 5 5 5 5 5 5 .064 .031
1.0 1.5 2.0 2.5 3.0 2.0 10 10 10 10 10 10 .080 .037
1.0 1.5 2.0 2.5 3.0 2.0 10 10 10 15 15 15 .083 .039
1.0 1.5 2.0 2.5 3.0 3.5 10 10 10 15 15 15 .087 .042
1.0 1.5 2.0 2.5 3.0 3.5 15 15 15 15 15 15 .089 .045
1.0 1.0 1.0 1.0 1.0 1.0 5 5 5 5 5 5 .067 .034
1.0 1.0 1.0 1.0 1.0 1.0 10 10 10 15 15 15 .084 .044
1.0 1.0 1.0 1.0 1.0 1.0 15 15 15 15 15 15 .086 .043

Our study covers a wide variety of possible situations ranging from the case
of equal variances and equal sample sizes to extreme heteroscedasticity where the
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largest variance is as large as 12 times the smallest variance. As expected, in all
cases the actual type I error (rejection rate of the null hypothesis) was found to
be less than the intended type I error (nominal level).

5. Derivation of Generalized F-tests

The purpose of this section is to derive the p-values of generalized F-tests
presented in Section 2 and Section 3. This is a generalization of classical F-tests
to the case of unequal variances and it is accomplished by taking the generalized
p-value approach introduced by Tsui and Weerahandi (1989).

To describe the approach briefly, consider the problem of testing a point null
hypothesis of the form H0 : θ = θ0 against the alternative hypothesis H1 : θ �= θ0

based on an observable random vector X. Let ζ = (θ, δ) be the vector of unknown
parameters, where δ are the nuisance parameters and x be the observed (sample)
value of X. Traditionally, testing of a hypothesis is performed by ordering the
sample space according to the possible values of θ by means of a test statistic
and then by establishing a extreme region, a subset of the sample space whose
boundaries depend on x. This method will provide a solution to the problem
only if the probability of the resulting extreme region can be computed without
any knowledge of the nuisance parameters. In many statistical problems, for
instance Behrens-Fisher problem, a test statistic satisfying these requirements
does not exist. Motivated by an exact p-value given by Weerahandi (1987) for
regression comparisons, Tsui and Weerahandi (1989) extended the definition of
an extreme region that can be defined any number of statistics. The idea is to
define subsets in higher dimension and for the purpose of facilitating this they
also defined a test variable of the form T (X;x, ζ) and extreme regions which may
depend on the nuisance parameters ζ, and the observed data x as well as on θ

and X. By means of a test variable, Weerahandi (1995a) gave the exact test
for the unbalanced heteroscedastic one-way ANOVA. Following their notations
and definitions, a test variable T (X;x, ζ) is a real valued function defined on the
sample space with the following properties.
1. The distribution function of T (X;x, ζ0) and tobs = T (x;x, ζ) both do not

depend on nuisance parameters δ, where ζ0 = (θ0, δ);
2. Pr (T (X;x, ζ) ≥ t) ≥ Pr (T (X;x, ζ0) ≥ t) for all θ and given any fixed t,x

and δ.
Then, the generalized p-value is defined as p = Pr (T (X;x, ζ0) ≥ tobs). Require-
ment 1 is imposed to ensure that the p-value is computable and Requirement
2 ensures that tests based on this p-value are unbiased. Just like conventional
p-values, generalized p-values serve to measure the evidence in support or against
hypotheses. It should be also noted that although this approach generalizes the
method of specifying an extreme region, a well defined subset of the underlying
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sample space, there is no difference between classical p-values and generalized
p-values the way Fisher treated problems of significance testing.

First let us derive the test for no interaction effect given in (10). To do
this, consider the standardized error sum of squares S̃E defined in (7) and the
standardized interaction sum of squares S̃I defined in (6). Since nijS

2
ij/σ

2
ij has a

chi-squared distribution with nij−1 degrees of freedom for all ij, the standardized
error sum of squares S̃E has a chi-squared distribution with N − IJ degrees of
freedom. As in standard two-way ANOVA with equal variances, when H0AB

is true, S̃I has a independent chi-squared distribution with IJ − 1 degrees of
freedom and therefore, under H0AB,

S̃I

/
(IJ − 1)

S̃E

/
(N − IJ)

∼ FIJ−1,N−IJ . (22)

If the null hypothesis is not true this random variable tends to take large values.
This suggest that this random variable can be employed to obtain an unbiased
test. Define

Bij =
∑i−1

p=1

∑J
q=1 npqS

2
pq/σ

2
pq +

∑j
q=1 niqS

2
iq/σ

2
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2
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2
iq

if i = 1, . . . , I; j = 1, . . . , J − 1
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2
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2
pq∑i

p=1

∑J
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pq/σ
2
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2
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2
i+1,1

if i = 1, . . . , I − 1.

Then it can be shown that the densities of these Bij random variables are beta
random variables defined in (11). Furthermore, these Bij random variables and
S̃E are all independent random variables. Also note that nijS

2
ij/σ

2
ij = S̃EYij for

all i = 1, . . . , I; j = 1, . . . , J ; where Yij’s are products of beta random variables
defined in (12). Now define a potential test variable as

T (X;x, ζ) =
S̃I

(
σ2

11, . . . , σ
2
IJ

)
s̃I

(
s2
11σ

2
11/S

2
11, . . . , s

2
IJσ2

IJ/S2
IJ

)
=

S̃I

(
σ2

11, . . . , σ
2
IJ

)
s̃I

(
n11s2

11/(S̃EY11), . . . , nIJs2
IJ/(S̃EYIJ)

)

=
S̃I

(
σ2

11, . . . , σ
2
IJ

)
S̃E s̃I

(
n11s2

11/Y11, . . . , nIJs2
IJ/YIJ

) . (23)

The observed value of T (X) is t(x) = 1. From (22) it is clear that, under
the null hypothesis H0AB , the distribution of S̃I/S̃E does not depend on any
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nuisance parameters. Since the Yij terms are product of beta random variables,
the distribution of s̃I

(
n11s

2
11/Y11, . . . , nIJs2

IJ/YIJ
)

also does not depend on any
nuisance parameters. Therefore, under the null hypothesis, the distribution of
T (X) does not depend on any nuisance parameters. Furthermore, if H0AB is not
true, then S̃I has a noncentral chi-squared distribution and consequently T tends
to take larger values for deviations from H0AB. Hence, T is a test variable that
can be employed to test the null hypothesis H0AB and the p-value is given by

p = Pr
(
T (X) ≥ t(x)

)
= Pr
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and this complete the proof of (10).
Similarly, the proof of (17) can be obtain by considering the test variable

T (X) = S̃A(σ2
11, . . . , σ

2
IJ)/s̃A(s2

11σ
2
11/S

2
11, . . . , s

2
IJσ2

IJ/S2
IJ)

with the help of the F-distribution on which (16) is based.
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