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Abstract: Motivated by an empirical analysis of ecological momentary assessment

data (EMA) collected in a smoking cessation study, we propose a joint model-

ing technique for estimating the time-varying association between two intensively

measured longitudinal responses: a continuous one and a binary one. A major chal-

lenge in joint modeling these responses is the lack of a multivariate distribution. We

suggest introducing a normal latent variable underlying the binary response and

factorizing the model into two components: a marginal model for the continuous

response, and a conditional model for the binary response given the continuous re-

sponse. We develop a two-stage estimation procedure and establish the asymptotic

normality of the resulting estimators. We also derived the standard error formulas

for estimated coefficients. We conduct a Monte Carlo simulation study to assess the

finite sample performance of our procedure. The proposed method is illustrated by

an empirical analysis of smoking cessation data, in which the question of interest

is to investigate the association between urge to smoke, continuous response, and

the status of alcohol use, the binary response, and how this association varies over

time.

Key words and phrases: Generalized linear models, local linear regression, varying

coefficient models.

1. Introduction

Early work on modeling longitudinal and clustered data focused on devel-

oping methodologies for datasets with a single response. More recent studies

have involved multiple responses, often of mixed type, e.g., binary and continu-

ous. The work was motivated by an empirical analysis in Section 3.2, in which

the data were collected intensively during a smoking cessation study Shiffman

et al. (1996) and contain multiple responses such as urge to smoke (a continuous

response), alcohol use, and presence of other smokers (both binary responses).

The latter two responses are of interest because it has been observed that alco-

hol consumption and the presence of other smokers increase the odds of smoking

Hymowitz et al. (1997); Shiffman and Balabanis (1995); Shiffman et al. (2002),

http://dx.doi.org/10.5705/ss.2014.213
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and both have been associated with an increased risk of lapsing back to smoking

Kahler, Spillane, and Metrik (2010); Shiffman et al. (2007). Moreover, there is

some hint that the relationship between these stimuli and smoking (and therefore

perhaps urge to smoke) may vary over time, particularly weakening after the ini-

tial few days of abstinence. Our primary interest is to estimate the time-varying

association between these responses and urge to smoke so that researchers can

understand how the association between these variables changes during the smok-

ing cessation process. To estimate the association between the variables, we need

to model the variables jointly. Hence, we develop a new joint modeling method

for longitudinal binary and continuous responses, along with a corresponding

estimation procedure.

The major difficulty in modeling binary and continuous responses jointly is

the lack of a natural multivariate distribution. To overcome this difficulty, many

authors Catalano and Ryan (1992); Cox and Wermuth (1992); Dunson (2000);

Fitzmaurice and Laird (1995); Gueorguieva and Agresti (2001); Liu, Daniels,

M., and Marcus (2009); Regan and Catalano (1999); Sammel, Ryan, and Legler

(1997) have employed what is now a well-known method, namely, introducing

a continuous latent variable underlying the binary response, and assuming that

the latent variable and the continuous response follow a joint normal distribu-

tion. After introducing the latent variable, Catalano and Ryan (1992) suggested

decomposing the joint distribution into components that can be modeled sep-

arately: a marginal distribution for the continuous response, and a conditional

distribution for the binary response given the continuous response. The first

component is readily obtained, and the second component is obtained using the

assumption of joint normality.

Motivated by an empirical analysis in Section 3, we proposed time-varying

coefficient models for jointly modeling binary and continuous response. Time-

varying coefficient models have been introduced to model continuous response in

both independent and identically distributed (i.i.d.) data and longitudinal data

Hastie and Tibshirani (1993); Brumback and Rice (1998); Hoover et al. (1998);

Wu, Chiang, and Hoover (1998); Zhang and Lee (2000), and have been proposed

for i.i.d. data with binary response Cai, Fan, and Li (2000). To our best knowl-

edge, time-varying coefficient models have not been applied for jointly modeling

binary and continuous responses in longitudinal data setting. In this article we

focus on estimating the time-varying association between longitudinal binary and

continuous responses measured at the same time point within a subject.

We propose an estimation procedure to time-varying coefficient model for

jointly modeling binary and responses outcomes in longitudinal data. Adapting

from existing literature, we introduce a continuous latent variable underlying

the binary response, and we decompose the joint distribution into two compo-

nents. This leads to a two-stage estimation procedure. In the first stage we fit
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the marginal model of the continuous response by using time-varying coefficient

models. In the second stage we use generalized time-varying coefficient models

(Cai, Fan, and Li (2000) for i.i.d. data) to fit the conditional model of the binary

response. We systematically study the sampling property of the proposed esti-

mation procedure, and establish its asymptotic normality. The efficacy of our

methodology is demonstrated by a simulation study.

The remainder of the paper is organized as follows. In Section 2, we propose a

joint model for longitudinal binary and continuous responses, and further develop

our two-stage estimation procedure by using local linear regression techniques;

we also study asymptotic properties of the resulting estimators. In Section 3

we report on an extensive simulation study to investigate the finite sample be-

havior of our estimators, and further illustrate the proposed methodology by a

data example. Regularity conditions and proofs are given in the supplementary

material.

2. Joint Models for Binary and Continuous Responses

We propose time-varying coefficient models for joint modeling binary and

continuous responses in Section 2.1. We propose an estimation procedure in

Section 2.2, and study the sampling property of the proposed estimate in Section

2.3.

2.1. Joint models

We begin with notation. For the ith subject, i = 1, . . . , n, denote the bi-

nary response measured at time point tij by Qi(tij), the continuous response

by Wi(tij), where j = 1, . . . , ni. Define the latent variable underlying Qi(tij)

by Yi(tij). Let Xi(tij) = (Xi1(tij), . . . , Xip(tij))
T be the vector of predictors

with Xi1 ≡ 1 to include an intercept term, β(tij) = (β1(tij), . . . , βp(tij))
T, and

α(tij) = (α1(tij), . . . , αp(tij))
T be the vectors of regression coefficients. Consider

the bivariate model:

Wi(tij) =XT
i (tij)β(tij) + ε1i(tij),

(2.1)
Yi(tij) =XT

i (tij)α(tij) + ε2i(tij),

where ε1i(t) and ε2i(t) are normal with mean zero and time-varying variances

σ2
1(t) and σ2

2(t), respectively, strictly positive. We take εi(tij) = (ε1i(tij), ε2i(tij))
T,

and assume that εi(tij) is bivariate normal with corr {ε1i(tij), ε2i(tij)} = τ(tij).

The relation between the latent variable and the binary variable is defined as

Qi(tij) = 1 if Yi(tij) > 0, and Qi(tij) = 0 if Yi(tij) ≤ 0. Thus, the probit model

for the binary response Qi(tij) is

P {Qi(tij) = 1 | Xi(tij)} = Φ

{
XT

i (tij)α(tij)

σ2(tij)

}
.
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The joint distribution ofWi(tij) and Qi(tij) is challenging to derive; however,

the marginal distributions are readily obtained. Thus, we factor the joint distri-

bution of the continuous variable and the binary variable into two components:

a marginal model for the continuous variable Wi(tij) and a conditional model for

Qi(tij) given Wi(tij),

f {qi(tij), wi(tij)} = fW {wi(tij)} f {qi(tij) | wi(tij)} ,

where j = 1, . . . , ni. The marginal model for the continuous response is defined

in (2.1). To derive the conditional model for Qi(tij) given Wi(tij), we start by

obtaining the conditional model Yi(tij) | Wi(tij). As standard normal theory

shows, the conditional distribution Yi(tij) | Wi(tij) is Gaussian. The mean of

this distribution depends on the error from the marginal model of the continuous

response, Yi(tij) | Wi(tij) ∼ N
[
µi(tij), σ

2
2(tij)

{
1− τ2(tij)

}]
, where

µi(tij) = XT
i (tij)α(tij) +

σ2(tij)

σ1(tij)
τ(tij)ε1i(tij), (2.2)

ε1i(tij) = Wi(tij) − XT
i (tij)β(tij) is the error from the marginal model of the

continuous response. Thus,

P {Qi(tij) = 1 | Wi(tij)} = Φ
[ µi(tij)√

σ2
2(tij) {1− τ2(tij)}

]
, (2.3)

where µi(tij) is defined in (2.2). The bivariate normal assumption for εi(tij) is

only necessary to obtain the conditional distribution of the binary response given

the continuous response as described in (2.3).

Not all parameters in (2.3) are estimable, hence we reparameterize (2.3) to

the more parsimonious and fully estimable form

P {Qi(tij) = 1 | Wi(tij)} = Φ
{ p∑

r=1

Xir(tij)α
∗
r(tij) + α∗

p+1(tij)ε1i(tij)
}
, (2.4)

where α∗
r(tij) = αr(tij)/

√
σ2
2(tij) {1− τ2(tij)} with r = 1, . . . , p. Model (2.4)

links the continuous response with the binary response in a probit regression

model using the error from the marginal model as a covariate. From the condi-

tional model, it can be seen that

α∗
p+1(tij) =

1

σ1(tij)
· τ(tij)√

1− τ2(tij)
.

Therefore, α∗
p+1(tij) has the same sign as τ(tij) and increases when τ(tij) in-

creases. Let b(tij) = α∗
p+1(tij)σ1(tij). Then

τ(tij) =
b(tij)√

1 + b2(tij)
. (2.5)
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This joint modeling approach introduces time-varying effects to the well-

known joint modeling framework suggested by Catalano and Ryan (1992): in-

troducing a normally distributed latent variable and then decomposing the joint

distribution of the continuous variable and the binary variable. This decompo-

sition can be done one of two ways: a marginal distribution for the continuous

response along with a conditional distribution for the binary response given the

continuous response, or a marginal distribution for the binary response along

with a conditional distribution for the continuous response given the binary re-

sponse. Although we followed the first formulation, one can easily employ the

second option, and extend the work by Fitzmaurice and Laird (1995) and in-

clude time-varying effects. Another approach would incorporate time-varying

effects to the joint mixed-effects model Gueorguieva (2001); Gueorguieva and

Agresti (2001). However, as pointed out by Verbeke, Molenberghs, and Rizopou-

los (2010), maximum likelihood estimation in this approach is possible only when

strong assumptions are made. An example of this is demonstrated by Roy and

Lin (2000), where corresponding random effects for various outcomes are assumed

to be perfectly correlated. Moreover, confounding can also be a problem with

the mixed-effects approach Hodges and Reich (2010). This may lead to an in-

crease in the variance of fixed-effects estimators; hence, preventing the discovery

of important response–predictor relationships.

2.2. Estimation procedure

We propose a two-stage estimation procedure to estimate the time-varying

association between a longitudinal binary and a continuous response. This also

allows us to estimate the regression coefficients in the marginal model of the

continuous response. In the first stage we fit a time-varying coefficient model

Brumback and Rice (1998) to the marginal model of the continuous response

(2.1). Here we employ local linear fitting Fan and Gijbels (1996) to estimate the

nonparametric coefficient functions. We locally approximate the regression coef-

ficient functions in a neighborhood of a fixed point t0 via the Taylor expansion,

βr(t) ≈ βr(t0) + β′
r(t0)(t− t0) ≡ ar + br(t− t0),

for r = 1, . . . , p. Let a = (a1, . . . , ap)
T, and b = (b1, . . . , bp)

T, we minimize

ℓ(a,b) =

n∑
i=1

ni∑
j=1

{
Wi(tij)−XT

i (tij)a−XT
i (tij)b(tij − t0)

}2
Kh1(tij − t0), (2.6)

with respect to (a,b), where Kh(·) = h−1K(·/h), K(·) is the kernel function

and h1 is the bandwidth at the first stage. Let W =
(
WT

1 , . . . ,W
T
n

)T
be the
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vector of continuous responses for all subjects, with Wi = (Wi1, . . . ,Wini)
T and

i = 1, . . . , n. The solution to the least squares algorithm is,

â = β̂(t0) = (Ip, 0p)(XTκX )−1XTκW, (2.7)

where Ip is the identity matrix with size p, 0p is a size p matrix with each entry
equal to zero, X = (X1, . . . ,Xn)

T, Xi = ((1, ti1 − t0)⊗Xi1, . . . , (1, tini − t0)⊗Xi ni)
and κ is an N × N diagonal matrix with each entry equal to Kh1(tij − t0) for
i = 1, . . . , n and j = 1, . . . , ni.

In order to construct pointwise confidence intervals, we need an estimator for
the asymptotic covariance matrix. Following conventional techniques, we propose
to estimate the asymptotic covariance matrix using the sandwich formula

ĉov{β̂(t0)} ≈ (Ip, 0p)(XTκX )−1
(
XTκQκX

)
(XTκX )−1(Ip, 0p)

T, (2.8)

whereQ = diag(E1, . . . ,En) with E i = (e2i (ti1), . . . , e
2
i (ti ni)) and ei(tij) = Wi(tij)−

XT
i (tij)β̂(tij), i = 1, . . . , n, and j = 1, . . . , ni.
In the second stage we fit a generalized time-varying coefficient model to the

conditional model (2.4) with longitudinal data. Generalized varying coefficient
models for independent and identically distributed data were introduced by Cai,
Fan, and Li (2000). We adapt the related techniques to a longitudinal setting.
We locally approximate the functions in a neighborhood of a fixed point t0 via
the Taylor expansion,

α∗
r(t) ≈ α∗

r(t0) + α∗′
r (t0)(t− t0) ≡ a∗r + b∗r(t− t0),

for r = 1, . . . , p + 1. Let a∗ = (a∗1, . . . , a
∗
p, a

∗
p+1)

T, and b∗ = (b∗1, . . . , b
∗
p, b

∗
p+1)

T.

For the ith subject, take X∗
i (tij) =

(
XT

i (tij), ei(tij)
)T

to be the design matrix
with ei(tij) as the residual from the marginal model. We maximize the local
likelihood,

ℓn(a
∗,b∗)

=
1

N

n∑
i=1

ni∑
j=1

ℓ
(
g−1
[ p+1∑
r=1

{a∗r + b∗r(tij − t0)}X∗
ir(tij)

]
, Qi(tij)

)
Kh2(tij − t0), (2.9)

where g(·) is the link function and h2 is the bandwidth at the second stage. For
our model (2.4) the link function is probit. Hence, the local likelihood with probit
link is

ℓn(a
∗,b∗) =

1

N

∑
Qi(tij)=1

log
(
Φ
[ p+1∑
r=1

{a∗r + b∗r(tij − t0)}X∗
ir(tij)

])
Kh2(tij − t0)

+
1

N

∑
Qi(tij)=0

log
(
1− Φ

[ p+1∑
r=1

{a∗r + b∗r(tij − t0)}X∗
ir(tij)

])
Kh2(tij − t0),

(2.10)
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where Φ(·) is the cumulative distribution function (cdf) for the standard normal.

We extend the iterative local maximum likelihood algorithm described in Cai,

Fan, and Li (2000) to find solutions to (2.10). Write the value of a∗r and b∗r at

the kth iteration as a
∗(k)
r and b

∗(k)
r . Let ℓ′n(a

∗,b∗) and ℓ′′n(a
∗,b∗) as the gradient

and Hessian matrix for the local likelihood (2.10), we update (a∗,b∗) according

to (
a∗(k+1)

b∗(k+1)

)
=

(
a∗(k)

b∗(k)

)
−
{
ℓ′′n(a

∗,b∗)
}−1

ℓ′n(a
∗,b∗).

Let α∗(t) =
(
α∗
1(t), . . . , α

∗
p(t), α

∗
p+1(t)

)T
. The solution of this iterative regression

algorithm satisfies ℓ(a∗,b∗) = 0 and the estimators are given by â∗ = α̂∗(t0) =(
α̂∗
1(t0), . . . , α̂

∗
p(t0), α̂

∗
p+1(t0)

)T
. The asymptotic covariance matrix of these esti-

mators can be estimated as

ĉov{α̂∗(t0)} = (Ip, 0p)Γ̂ (t0)
−1Λ̂(t0)Γ̂ (t0)

−1(Ip, 0p)
T, (2.11)

where

Γ̂(t0) =
1

N

n∑
i=1

ni∑
j=1

ϖ2

p+1∑
r=1

{
â
∗
r + b̂

∗
r(tij − t0)

}
X

∗
ir(tij), Qi(tij)

Kh2
(tij − t0)

(
X∗

i (tij)
X∗

i (tij)(tij − t0)

)⊗
2

,

Λ̂(t0) =
h

N

n∑
i=1

ni∑
j=1

ϖ
2
1

p+1∑
r=1

{
â
∗
r + b̂

∗
r(tij − t0)

}
X

∗
ir(tij), Qi(tij)

K
2
h2

(tij − t0)

(
X∗

i (tij)
X∗

i (tij)(tij − t0)

)⊗
2

with ϖd(Z, q) = (∂d/∂Zd)l{g−1(Z), q}, and A
⊗

2 denotes AAT for a matrix or

vector A.

The estimator of a∗p+1 gives us α̂∗
p+1(t0) and the pointwise asymptotic confi-

dence intervals of α∗
p+1(t0) give us information on the significance of the associ-

ation. To obtain τ̂(t0), we also need to find an estimate for σ2
1(t0). We propose

using the kernel estimator

σ̂2
1(t0) =

∑n
i=1

∑ni
j=1e

2
i (tij)Kh(tij − t0)∑n

i=1

∑ni
j=1Kh(tij − t0)

. (2.12)

Plugging σ̂1(t0) and α̂∗
p+1(t0) into (2.5) gives the estimate for τ(t0).

2.3. Asymptotic results

We study the asymptotic properties of the estimators in both stages of the

estimation procedure. It is assumed throughout that ni = J and thus N = nJ ,

this to simplify the presentation of the asymptotic results. Proofs of the theorems

are provided in the supplementary material.
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Let f(t) be the marginal density of tij and f(tij , tik) the joint density of tij
and tik for j ̸= k. Let µk =

∫
tkK(t)dt, νk =

∫
tkK2(t)dt, and

Γ1(t0) = E{Xi(tij)X
T
i (tij) | tij = t0},

ηlr(t1, t2) = E{Xil(tij)Xir(tik) | tij = t1, tik = t2},
ρ1(t1, t2) = E{ε1i(tij)ε1i(tik) | tij = t1, tik = t2},

where ε1i(tij) is the error term in (2.1), l, r = 1, . . . , p, i = 1, . . . , n, and j =

1, . . . , J .

The following regularity conditions are needed to state the first main result.

A. The observed sample {tij ,Xi(tij),Wi(tij), i = 1, . . . , n} consists of indepen-

dent and identically distributed (i.i.d.) realization of (T,X,W ) for all j =

1, . . . , J . The {ε1i(tij), i = 1, . . . , n} are i.i.d. from a distribution with mean

zero and finite variance σ2
1(tij) for j = 1, . . . , J . The covariate T has finite

support T = [L,U ]. The support for X is a closed and bounded interval in

Rp, denoted by Ω.

B. βr(t) has continuous second order derivatives for r = 1, . . . , p.

C. Γ1(t), ηlr(t1, t2), ρ1(t1, t2), σ1(t), f(t), and f(t1, t2) are continuous for l, r =

1, . . . , p.

D. The kernel density function K(·) is symmetric about 0 with bounded support

and satisfies the Lipschitz condition and∫
K(t)dt = 1,

∫
|t|3K(t)dt < ∞,

∫
t2K2(t)dt < ∞.

E. E{|ε1i(tij) |3 | tij} < ∞ and is continuously differentiable.

By Condition B, we assume that the parameter space for (β(t0),β
′(t0)) is a

closed and bounded subset of R2p for any given t0. The continuity of ρ1(t1, t2)

and ηlr(t1, t2) when t1 and t2 converge to the same time point might not hold

if the predictors and error process contain some measurement errors that are

independent at different time points t. However our proofs are still valid after

some slight modifications of notations. For example, we can replace ρ1(t0, t0) =

σ2
1(t0) by limt1→t0,t2→t0 ρ1(t1, t2). The bounded support condition in D is imposed

for simplicity of proof and can be relaxed.

The asymptotic properties of the estimators β̂(t0) in the first stage of the

estimation procedure, obtained by minimizing the weighted least squares (2.6)

are as follows.

Theorem 1. Under the regularity conditions (A)−(E), if Jh1 → 0 and Nh1 →
∞, we have



TIME-VARYING COEFFICIENT MODELS FOR JOINT MODELING 987

√
Nh1

{
β̂(t0)− β(t0)−

1

2
h21µ2β

′′(t0) + op(h
2
1)

}
L→ Np(0, V1),

where β(t0) is the true value and V1 = f(t0)
−1ν0σ

2
1(t0)Γ

−1
1 (t0).

This result requires the condition Jh1 → 0 that holds if the number of

observations per subject, J , is finite or goes to infinity at a slower rate than

h−1
1 . Based on the result, the asymptotic bias of β̂(t0) is (1/2)h21µ2β

′′(t0) and

the asymptotic variance of β̂(t0) is (Nh1)
−1f(t0)

−1ν0σ
2
1(t0)Γ

−1
1 (t0). Therefore,

the asymptotic bias and variance are the same as for independent data. This is

meaningful, since the condition Jh1 → 0 guarantees that asymptotically there is

no more than one effective observation per subject in the local area around t0.

Theorem 1 can be proved by noting that θ̂−θ0 = (X TκX )−1X Tκ(W−Xθ0),

where θ0 is the true value of θ = (β(t0), h1β
′(t0)). We can show that N−1X TκX

converges in probability to

f(t0)

(
1 µ1

µ1 µ2

)
⊗ Γ1(t0)

and that
√
Nh1{N−1X Tκ(W−Xθ0)−bias(t0)} converges to a normal distribu-

tion. Thus, Theorem 1 follows by using Slutsky’s Theorem. For more detail of

the proof, see the supplementary file.

Next we give the asymptotic properties of the estimators, α̂∗(t0), in the sec-

ond stage of the estimation procedure obtained by maximizing the local likelihood

(2.9).

Let X̃ij = (XT
i (tij), ε1i(tij))

T , θ(tij) = {α∗
p+1(t0) + α∗′

p+1(t0)(tij − t0)} and

m(tij , x̃ij) = E{Qi(tij) | tij , x̃ij} = x̃T
ijα

∗(tij) =

p∑
r=1

α∗
r(tij)xijr + α∗

p+1(tij)ε1i(tij),

ρ(tij , x̃ij) = −ϖ2

[
g{m(tij , x̃ij)},m(tij , x̃ij)

]
,

Γ2(t0) = E
{
ρ(tij , X̃ij)X̃ijX̃

T
ij | tij = t0

}
,

ω(tij) = ϖ1

[
g{m(tij , X̃ij)}, Qi(tij)

]
X̃ij − θ(tij)Γ2(tij)Γ

−1
1 (tij)Xi(tij)ε1i(tij),

Γ3(t1, t2) = E
{
ω(tij)ω(tik)

T | tij = t1, tik = t2
}
.

We need more conditions for the second result.

F. The function ϖ2(Z, q) < 0 for Z ∈ R, and q in the range of the binary

response.

G. The varying coefficient functions α∗
r(tij), r = 1, . . . , p + 1 have continuous

second order derivatives.

H. The functions Γ2(t),Γ3(t1, t2), ϖ1(·, ·), ϖ2(·, ·), and ϖ3(·, ·) are continuous.

Condition (F) guarantees that the local likelihood function (2.9) is concave.
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Theorem 2. Under regularity conditions (A)−(H), if Nh51 → 0, nh1+δ
1 → ∞ for

some δ > 0, Jh2 → 0, and Nh2 → ∞, we have√
Nh2

{
α̂∗(t0)−

1

2
h22µ2α

∗′′(t0) + op(h
2
2)

}
L→ N(0, V2),

where V2 = f(t0)
−1ν0Γ

−1
2 (t0)Γ3(t0, t0)Γ

−1
2 (t0).

Based on this result, the asymptotic normality of α̂∗(t0) requires the under-

smoothing condition of Nh51 → 0 in the first stage. In addition, we can see that

the asymptotic bias of α̂∗(t0) is (1/2)h22µ2α
∗′′(t0) and the asymptotic variance

of α̂∗(t0) is (Nh2)
−1f(t0)

−1ν0Γ
−1
2 (t0)Γ3(t0, t0)Γ

−1
2 (t0).

Theoretical guarantee of accurately estimate τ(t) depends on the accuracy

of the kernel estimate of the variance σ2
1(t) and the estimate for α∗

p+1(t) in (2.4).

The latter is in Theorem 2 and the former was shown in Fan, Huang, and Li

(2007).

Based on the quadratic approximation lemma (see Fan and Gijbels (1996)),

we can get a simple expansion for the estimator (â∗, b̂∗) with the form ϑ̂∗ =

∆−1Dn + op(1), where

ϑ̂∗ =
√

Nh2

(
â∗ −α∗(t0), h2{b̂∗ −α∗′(t0)}

)
,

∆ = f(t0)

(
1 µ1

µ1 µ2

)
⊗ Γ2(t0),

Dn = (Nh2)
−1/2h2

n∑
i=1

J∑
j=1

ϖ1

[
x∗
ij
T {α∗(t0)+(tij−t0)α

∗′(t0)}, Qij

]
∗
ijKh2(tij−t0),

∗
ij =

(
x∗
ij
T,

(tij − t0)

h2x∗
ij
T

)T

,

and x∗
ij is the estimate of x̃ij obtained by replacing ε1(tij) with ei(tij), the resid-

ual from the marginal model. Then, the result of Theorem 2 follows if we can

establish the asymptotic normality of Dn. The main difficulty in dealing with

Dn lies in the the residual ei(tij) used in x∗
ij . Based on the Taylor expansion of

Dn around x̃ij and the asymptotic results for the residual ei(tij) in Theorem 1,

we can prove the asymptotic normality of Dn. The under-smoothing condition

of Nh51 → 0 in the first stage allow the bias of ei(tij) to be asymptotically neg-

ligible for the second stage estimator. For more detail about the proof, see the

supplementary file.

3. Numerical Studies

In this section we examine the finite sample performance of the proposed

methodology via a Monte Carlo simulation study, and illustrate the proposed



TIME-VARYING COEFFICIENT MODELS FOR JOINT MODELING 989

methodology by a data example. In this section we set K(t) = 0.75(1− t2)+, the

Epanechnikov kernel. From our limited experience, the iterative local maximum

likelihood algorithm described in Section 2.2 is not sensitive to the initial value

specification while a good initial value leads to fast convergence of the algorithm.

In its implementation, we suggest fitting a generalized linear model and using

the coefficient estimates as initial values.

3.1. Simulation studies

In this study we generated 500 intensive longitudinal data sets, in which for

each unit the number of measurements, ni, was randomly selected using a discrete

uniform distribution on [10, 20] and the measurement times Ti = (ti1, . . . , tini)

were uniform on [0, 1]. We used sample size n = 150. The continuous and latent

variables were generated from the models

Wi(tij) = β1(tij) + β2(tij)Xi(tij) + ε1i(tij),
(3.1)

Yi(tij) = α1(tij) + α2(tij)Xi(tij) + ε2i(tij),

where β1(tij) = sin(0.5πtij), β2(tij) = cos(πtij − 1/8), α1(tij) = sin(πtij) − 0.5,

α2(tij) = 0.5 cos(2πtij), i = 1, . . . , 150 and j = 1, . . . , ni. In Section 2.1 we de-

fined the binary variable as Qi(tij) = 1 if Yi(tij) > 0, and Qi(tij) = 0 if Yi(tij) ≤
0. It is interesting to demonstrate that decreasing the percentage of successes in

the binary response does not decrease the efficacy of our method. Hence, we de-

fine the relation between the latent variable and the binary variable as Qi(tij) =

1 if Yi(tij) > 0.3, and Qi(tij) = 0 if Yi(tij) ≤ 0.3. So, each of our 500 simulated

data sets had approximately 45% of response being 0. The predictor variable

Xi(tij) was generated from the standard normal. The error variable for the con-

tinuous response ε1i(tij) was normal with mean zero, variance 0.5+0.5 sin2(2πtij),

and corr
{
ε1i(tij), ε1i(tij′)

}
= ρ1(tij , tij′) = 0.3|tij−tij′ | for j ̸= j′. In addition,

ε2i(tij) was normal distribution with mean zero, variance 0.5+0.5 sin2(2πtij), and

corr
{
ε2i(tij), ε2i(tij′)

}
= ρ2(tij , tij′) = 0.4|tij−tij′ | for j ̸= j′. Hence, εi(tij) =

(ε1i(tij), ε2i(tij))
T was bivariate normal with corr {ε1i(tij), ε2i(tij)} = τ(tij) =

0.2 sin(πtij) and corr
{
ε1i(tij), ε2i(tij′)

}
= ρ12(tij , tij′) = 0.2

√
sin(πtij) sin(πtij′)

for j ̸= j′.

In the first stage we fit the time-varying coefficient model to the marginal

model of the continuous response (3.1). To evaluate the performance of the

estimators in this stage, we used root average squared error (RASE),

RASE =
[ 1

200

2∑
r=1

200∑
k=1

{βr(tk)− β̂r(tk)}2
]1/2

,

where {tk, k = 1, . . . , ngrid} was an equidistant set of grid points between 0 and

1 with ngrid = 200 used in our simulation.
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(a) (b)

Figure 1. Estimated varying coefficient functions (dashed) of the time-
varying coefficient model fit to the continuous response overlaying the true
coefficient functions (solid) along with the empirical (dotted) and the mean
theoretical (dashed-dotted) pointwise 95% confidence bands based on 500
Monte Carlo replications.

We were interested in examining the performance of the proposed procedure

with a range of bandwidths. Table 1 shows the sample means and the sample

standard deviations of the RASE values, based on 500 replications, computed at

bandwidths 0.10, 0.20, and 0.40. According to the mean RASE values in Table

1, we set the bandwidth to be h1 = 0.20 for the first stage.

Figures 1(a) and (b) depict the typical estimates of the parameter functions

along with the empirical and the mean theoretical pointwise 95% confidence

bands based on 500 Monte Carlo simulations at h1 = 0.20. We see that the typical

estimated coefficient functions are close to the true functions. The standard errors

for the selected bandwidth of h = 0.20 are very accurate for these parameters.

We also tested the accuracy of the proposed standard error formula (2.8).

The standard deviation of 500 β̂r(t), based on 500 simulations, denoted by SD

in Table 1, can be viewed as the true standard error. The sample average and

the sample standard deviation of the 500 estimated standard errors of β̂r(t) are

denoted by SE and SDse in Table 1, respectively. They summarize the overall

performance of the standard error formula (2.8). Table 1 presents the results at

the points t = 0.30, 0.50, and 0.70. In Table 1, our standard error formula slightly

underestimates the true standard error, but with difference less than two times

the SDse. This is typical for standard error estimation when using the sandwich

formula.
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Table 1. Summary of simulation results for the first stage.

h
RASE

t
β̂1(t) β̂2(t)

Mean(SD) SD SE (SDse) SD SE (SDse)
0.30 0.051 0.049 (0.005) 0.049 0.049 (0.005)

0.10 0.078 (0.016) 0.50 0.042 0.037 (0.003) 0.038 0.037 (0.003)
0.70 0.054 0.049 (0.004) 0.051 0.049 (0.005)
0.30 0.035 0.034 (0.002) 0.035 0.034 (0.003)

0.20 0.062 (0.014) 0.50 0.032 0.028 (0.002) 0.028 0.028 (0.002)
0.70 0.038 0.034 (0.002) 0.033 0.033 (0.003)
0.30 0.025 0.024 (0.001) 0.023 0.023 (0.002)

0.40 0.072 (0.014) 0.50 0.022 0.022 (0.001) 0.022 0.022 (0.001)
0.70 0.026 0.024 (0.001) 0.023 0.023 (0.002)

In the second stage we fit a generalized time-varying coefficient model to the

conditional model of the binary response given the continuous response.

P {Qi(tij) = 1 | Wi(tij)} = Φ {α∗
1(tij) + α∗

2(tij)Xi(tij) + α∗
3(tij)ei(tij)} ,

where ei(tij) = Wi(tij)−{β̂1(tij)+Xi(tij)β̂2(tij)} was the residual from the first

stage. At this stage we obtained α̂∗
k(t) (k = 1, 2, 3) and the kernel estimate of

σ2
1(t) at the optimal bandwidth for the first stage h1 = 0.20 using (2.12), then

we estimated τ(t) using (2.5). We evaluated the performance of the correlation

coefficient estimator using

RASE =
[ 1

200

200∑
k=1

{τ(tk)− τ̂(tk)}2
]1/2

.

Table 2 gives the sample means and the sample standard deviations of the

RASE values based on 500 replications, computed at bandwidths 0.10, 0.20, and

0.40. According to the mean RASE values in Table 2, we set the bandwidth to

h2 = 0.20.

Figure 2 depicts the typical estimate of the correlation coefficient function

along with the 2.5 and 97.5 percentiles based on 500 Monte Carlo runs at h2 =

0.20. It indicates that the typical estimated correlation coefficient function is

close to the underlying true correlation coefficient function.

To test the accuracy of our standard error formula (2.11), Table 2 presents the

SD, SE and SDse at the points t = 0.30, 0.50, and 0.70 for α̂∗
k(t) with k = 1, 2, 3.

The table suggests that our formula somewhat underestimates the true stan-

dard error but with difference within two standard deviations of the estimated

standard errors. This is typical for standard error estimation when using the

sandwich formula.
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Table 2. Summary of simulation results for the second stage.

h
RASE

t
α̂∗
1(t) α̂∗

2(t) α̂∗
3(t)

Mean(SD) SD SE (SDse) SD SE (SDse) SD SE (SDse)
0.30 0.069 0.066(0.002) 0.068 0.066(0.003) 0.071 0.071(0.005)

0.10 0.080(0.020) 0.50 0.073 0.069(0.002) 0.077 0.074(0.005) 0.100 0.095(0.007)
0.70 0.070 0.066(0.002) 0.067 0.066(0.003) 0.077 0.071(0.005)
0.30 0.048 0.046(0.001) 0.047 0.047(0.002) 0.056 0.052(0.003)

0.20 0.052(0.019) 0.50 0.048 0.048(0.001) 0.052 0.050(0.002) 0.064 0.060(0.004)
0.70 0.048 0.046(0.001) 0.046 0.046(0.002) 0.057 0.053(0.003)
0.30 0.035 0.034(0.001) 0.035 0.034(0.001) 0.043 0.041(0.002)

0.40 0.064(0.020) 0.50 0.034 0.033(0.001) 0.034 0.033(0.001) 0.041 0.037(0.002)
0.70 0.034 0.034(0.001) 0.034 0.034(0.001) 0.044 0.041(0.002)

Figure 2. Estimated correlation coefficient function (dashed) overlaying the
true correlation function (solid) along with the 2.5 and 97.5 percentiles based
on 500 Monte Carlo runs (dotted).

In practice, for methods based on kernel smoothing, selecting a suitable

bandwidth is an important issue. We suggest using the following leave-one-

subject-out cross validation score for both stages of our estimation procedure:

CV (h) =
∑
i

∥Vi − V̂−i∥2, (3.2)

where Vi denotes the observed value of the response V for subject i and V̂−i

is the fitted value of this response with subject i excluded. V stands for the

continuous and binary responses, while choosing the bandwidth for the first and

second stages, respectively. We compute this cross validation score for a range

of bandwidths and select the bandwidth that minimizes it.
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We evaluated the performance of this cross validation formula using our

simulation study. For the first stage, the mean and standard deviation of the

RASE scores corresponding to the bandwidths that minimized the RASE score

and the cross validation score were 0.084 (0.027) and 0.080 (0.027), respectively,

based on 500 replications. Similarly, for the second stage, the mean and standard

deviation of the RASE scores corresponding to the bandwidths that minimized

the RASE score and the cross validation score were 0.085 (0.028) and 0.079

(0.028), respectively. The bandwidths chosen based on cross validation are very

close to the ones that minimize the RASE.

3.2. Application to the smoking cessation study

We applied our proposed joint modeling methodology to the EMA data de-

scribed in the introduction. Shiffman et al. (1996, 2002) collected data on 304

smokers using palm-top computers that beeped at random times. At each random

assessment prompt, participants recorded their answers to a series of questions

about their current activities and setting, such as their alcohol use and the pres-

ence of other smokers. Current mood and urge to smoke were also recorded. The

data collection process is described below.

First, the participants were monitored for a two-week interval during which

they were engaged in their normal activities. During this period they were asked

to record all their smoking occasions and to respond to the random assessment

prompts. Subjects were then instructed to stop smoking on day 17, called the

target quit day. When the electronic diary records showed that the participant

had abstained for 24 hours, that day was recorded as the subject’s quit day.

Once the participants quit, they were asked to keep responding to the random

assessment prompts and to record any episodes of smoking (lapses) or strong

temptations. During this observation period, 149 subjects lapsed. Our goal was

to analyze the data for the lapsed participants. The number of observations for

each subject varies from 23 to 197.

We were mainly interested in the randomly scheduled assessment data recorded

two weeks before and after each subject’s quit day. Subjects with missing values

on target quit day or quit day were excluded from the analysis. Data alignment

was necessary because different subjects could have different quit days.

Previous research regarding smoking cessation suggests that the mood vari-

ables — affect, arousal, and attention — are important factors on smoking Shiff-

man et al. (2002). It has been shown that both positive and negative affect are

associated with smoking through urge to smoke. One question of interest is how

these predictors (the mood variables) affect urge to smoke, and how this im-

pact changes over time. However, our main interest was the association between

drinking alcohol and smoking. Alcohol and tobacco researchers are interested
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in explaining this association in order to improve the treatments and preven-

tion techniques for both smokers and drinkers. Although previous studies have

shown that the relationship between smoking and drinking alcohol is positive, it

has been a concern that this association becomes negative during smoking ces-

sation programs—increased drinking might be associated with reduced smoking.

Hence, we investigated how the association between urge to smoke and alcohol

use changed from two weeks before to two weeks after the quit day in order to

advance our knowledge about the relationship between drinking and smoking.

Urge to smoke was recorded on a scale ranging from 0 to 11.

In our analysis we use the leave-one-subject-out cross-validation score (3.2),

and the selected bandwidth was h = 5.0 for both stages of the estimation pro-

cedure. In the first stage of our estimation procedure, we answered the question

of how the relationship between urge to smoke and mood variables changed over

time. We fit the following time-varying coefficient model to urge to smoke:

Wi(tij) = β0(tij) + β1(tij)Xi1(tij) + β2(tij)Xi2(tij) + β3(tij)Xi3(tij) + ε1i(tij),

(3.3)
where

Wi(tij) : the score of urge to smoke of the ith subject at time tij ,

Xi1(tij) : the centered score of negative affect of the ith subject at time tij ,

Xi2(tij) : the centered score of arousal of the ith subject at time tij ,

Xi3(tij) : the centered score of attention of the ith subject at time tij .

The estimated time-varying regression coefficients are depicted in Figure 3.

From Figures 3 (a) and (b), we can see that before the quit day, the coefficient

functions for the intercept and negative affect are close to being time-invariant.

According to Figure 3(a) the intercept function starts to decrease at the quit day.

From Figure 3(b), we see that the coefficient for negative affect is always positive,

as negative affect increases, urge to smoke also increases. At the quit day, we

see a sudden increase in this coefficient, the effect of negative affect on urge to

smoke increases. Figure 3(c) shows that the coefficient for arousal is nearly zero

before the quit day and is negative after the quit day. Figure 3(d) shows that the

coefficient for attention is time-varying and is positive until approximately day

13 after the quit day, and so we conclude that as the difficulty in concentrating

increases, urge to smoke also increases. At day 13 after the quit day, the coeffi-

cient starts to decrease and is negative on day 15 after the quit day, indicating

that the effect of attention on urge to smoke is decreasing.

We use the second stage of our estimation procedure to determine how the

association between alcohol use and urge to smoke changes over time. With
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Figure 3. Plots of estimated coefficient functions (solid) of the time-varying
coefficient model fit to urge to smoke response along with the 95% pointwise
asymptotic confidence intervals before and after quitting smoking (dashed).
We aligned the data so that all subjects have quit day at day zero. (a)
Intercept function, (b) negative affect, (c) arousal, and (d) attention.

the residuals from the marginal model (3.3), ei(tij), we fit the generalized time-

varying coefficient model

P {Q1i(tij) = 1 | Wi(tij)} = Φ
{
α∗
0(tij) + α∗

1(tij)Xi1(tij) + α∗
2(tij)Xi2(tij)

+α∗
3(tij)Xi3(tij) + α∗

4(tij)ei(tij)
}
,

where Q1i(tij) is the alcohol use of the ith subject at time tij , and Xi1(tij),

Xi2(tij) and Xi3(tij) are defined in (3.3). As mentioned in Section 2.1, τ1(t) =

b(t)/
√
1 + b2(t) with b(t) = α∗

4(t)σ1(t), σ
2
1(t) is the variance of urge to smoke

at time t that is estimated using (2.12) at the bandwidth for the first stage
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h = 5.0, and τ1(t) shows the association between urge to smoke and alcohol

use at time t. We obtained bootstrap samples by resampling from independent

subjects, and repeating our estimation procedure 500 times. Figure 4(a) presents

the estimated association τ̂1(t) along with the 2.5 and 97.5 percentiles of 500

bootstrap samples. According to Figure 4(a) before the quit day, urge to smoke

and alcohol use have a positive relationship but after the quit day the relationship

is negative. In other words, before the quit day increased urge to smoke is

associated with alcohol usage, whereas after the quit day reduced urge to smoke

is associated with alcohol usage. Based on the relationship between τ1(t) and

α∗
4(t), we investigated the significance of the association using the confidence

intervals for α∗
4(t). Figure 4(b) depicts the estimated regression coefficient α̂∗

4(t)

along with its confidence intervals. Figure 4(b) demonstrates that the association

between alcohol use and urge to smoke is time-varying, is significant before the

quit day but insignificant after the quit day. This may be due to lack of enough

data.

Also of interest is the association between urge to smoke and the presence of

other smokers. Shiffman and Balabanis (1995), McDermut and Haaga (1998) and

Warren and McDonough (1999) observed that the sight of other smokers tends

to provoke a craving to smoke. By employing our joint modeling technique, we

studied how this association changes over time. In this analysis, the selected

bandwidth was h = 5.0 for both stages. First we fit the time-varying coefficient

model to urge to smoke; the model is the same as the one in the alcohol usage

analysis (3.3). We observed the same trends in the regression coefficients as in

Figure 3, since the only difference between these two analyses is that we removed

subjects with missing values for this binary response. The plots are omitted.

In the second stage of our estimation procedure, we used the residuals from

the marginal model (3.3) and fit the generalized time-varying coefficient model

P {Q2i(tij) = 1 | Wi(tij)} = Φ
{
γ∗0(tij) + γ∗1(tij)Xi1(tij) + γ∗2(tij)Xi2(tij)

+γ∗3(tij)Xi3(tij) + γ∗4(tij)ei(tij)
}
,

where Q2i(tij) is the response of the ith subject at time tij on presence of other

smokers, and Xi1(tij), Xi2(tij), and Xi3(tij) are defined in (3.3). Here τ2(t) =

b(t)/
√
1 + b2(t) with b(t) = γ∗4(t)σ1(t), and τ2(t) shows the association between

urge to smoke and presence of other smokers at time t. Similar to our analysis for

estimating τ1(t), we estimated σ1(t) using (2.12) at the bandwidth for the first

stage h = 5.0. Figure 4(c) demonstrates the estimated association τ̂2(t) along

with 2.5 and 97.5 percentiles of 500 bootstrap samples. Figure 4(c) indicates

that the association between the presence of other smokers and urge to smoke is

almost always positive. In other words, the presence of other smokers is always
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Figure 4. Estimated time-varying associations along with 2.5 and 97.5 per-
centiles of 500 bootstrap samples (a) alcohol versus urge to smoke and (c)
presence of other smokers versus urge to smoke. Estimated coefficient func-
tions (solid) of the generalized time-varying coefficient model fit along with
the 95% pointwise asymptotic confidence intervals (dashed) (b) alcohol use
analysis and (d) presence of other smokers analysis.

associated with an increased urge to smoke. As indicated by the relationship be-

tween τ2(t) and γ∗4(t), we can investigate the significance of the association using

the confidence intervals for γ∗4(t). Figure 4(d) shows the estimated regression

coefficient γ̂∗4(t) along with its confidence intervals. According to Figure 4(d)

the relationship between urge to smoke and presence of other smokers is time-

invariant and significant until around day 13 after the quit day. After this day,

it appears to be insignificant perhaps due to not having a sufficient number of

observations.
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4. Discussion

We have proposed a joint modeling methodology for estimating the time-

varying association between longitudinal binary and continuous responses. We

developed a two-stage estimation procedure based on local linear regression, and

derived standard error formulas for our estimators in both stages. A simulation

study showed that our procedure works well on estimating both the time-varying

relationship between longitudinal binary and continuous responses and the true

standard errors of the estimators. We applied our method to a dataset of lapsed

participants in a smoking cessation study and gained insight regarding two re-

lationships: urge to smoke and alcohol use, and urge to smoke and presence of

other smokers.

We are aware that in practice an association between the binary and con-

tinuous responses measured at different time points may exist; however, we did

not model this association and showed in Section 2.3 that it does not affect the

asymptotic behavior of the proposed estimates in either stages of the estimation

procedure.

Supplementary Materials

Supplementary materials include proofs of the theorems of Section 2.3.
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