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Abstract: Recent biomedical studies often measure two distinct sets of risk factors:

low-dimensional clinical and environmental measurements, and high-dimensional

gene expression measurements. For prognosis studies with right censored response

variables, we propose a semiparametric regression model whose covariate effects

have two parts: a nonparametric part for low-dimensional covariates, and a para-

metric part for high-dimensional covariates. A penalized variable selection approach

is developed. The selection of parametric covariate effects is achieved using an it-

erated Lasso approach, for which we prove the selection consistency property. The

nonparametric component is estimated using a sieve approach. An empirical model

selection tool for the nonparametric component is derived based on the Kullback-

Leibler geometry. Numerical studies show that the proposed approach has satis-

factory performance. Application to a lymphoma study illustrates the proposed

method.

Key words and phrases: Semiparametric regression, variable selection, right cen-

sored data, iterated Lasso.

1. Introduction

Consider regression models for right censored data. Let Ξ be the quantity

of interest that is at risk of being censored from the right by a random vari-

able Γ. One observes min(Ξ,Γ) or, often more conveniently, Y = min(T,C) ≡
min(g0(Ξ), g0(Γ)) for some known monotone transformation g0 and indicator

function δ = I[T≤C]. Let X ∈ Rp and Z ∈ Rq be two sets of covariates related to

T . Here the dimension p of X is often high and can even be allowed to diverge

faster than the sample size n, whereas the dimension q of Z is usually low and

can be considered as fixed. Given iid observations {(Yi, δi, Xi, Zi), i = 1, . . . , n},
we assume that the data can be described using the semiparametric regression

model

Ti = α+XT
i β + η(Zi) + ϵi, i = 1, . . . , n, (1.1)

where α is the unknown intercept, β is an unknown coefficient vector, η is an

unknown multivariate smooth function, and the ϵi’s are iid random errors with
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an unknown distribution having mean 0 and unspecified finite variance σ2. Since

η is identifiable up to a constant, we adopt the constraint
∫
η = 0. Note that

(1.1) includes the well-known accelerated failure time (AFT) model in survival

analysis as a special case when g0 is the logarithm function.

The data and model settings have been partly motivated by recent cancer

prognosis studies. It is now commonly accepted that clinical and environmental

risk factors do not have sufficient predictive power for cancer prognosis. Thus,

in recent studies, two distinct sets of covariates are measured. The first set

X represents high-dimensional genomic measurements such as microarray gene

expressions or SNPs. The second set Z represents low-dimensional clinical and

environmental risk factors. We refer to Ma and Huang (2007) for examples of

such studies. With the high-dimensional X, it is of interest to identify a small

subset that is associated with prognosis. For better interpretability and because

of computational and theoretical limitations, the effect of X is usually modeled

in a parametric way. With the low-dimensional Z, we adopt a more flexible

nonparametric model, as many biological processes are nonlinear.

Variable selection for high-dimensional censored data has drawn much atten-

tion in the past decade. Various penalization procedures have been proposed as-

suming the Cox proportional hazards (PH) model. Examples include the LASSO

in Tibshirani (1997), the SCAD in Cai et al. (2005), the adaptive LASSO in

Zhang and Lu (2007) and Zou (2008), and the SIS in Fan, Feng, and Wu (2010).

However, those models all assume a linear form of covariate effects in the relative

risk. As an alternative to the PH model, the AFT model, as noted by Sir David

R. Cox, is “in many ways more appealing because of its quite direct physical in-

terpretation” (Reid (1994)). Under this direction, Johnson (2008) extended the

SCAD procedures for selecting variables in an AFT model, but their model is a

simplified parametric version of (1.1) with η ≡ 0. Zhang, Lu, and Wang (2010)

further generalized these results to semiparametric transformation models with

an unknown transformation function and linear covariate effects. In summary,

the aforementioned variable selection procedures share the common limitation of

assuming parametric covariate effects that may not be flexible enough in prac-

tice. Xie and Huang (2009) proposed the SCAD procedure for partially linear

regression models with parametric covariates of diverging dimensions, but their

model has limitations: it is for uncensored data, its nonparametric component

is of one dimension, and the dimension of parametric covariates diverges in the

order of o(n1/2) which may not be appropriate for (e.g) gene expression studies

with p > n. A recent work by Du, Ma, and Liang (2010) considered penalized

variable selection procedures for PH models with semiparametric relative risk.

Their approach allows more general nonparametric components but is limited to

covariates of fixed dimensions. Johnson (2009) and Long et al. (2011) proposed
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regularized extensions to the rank estimation for partly linear AFT models that

require a pre-specified stratification of nonparametric covariates. Johnson (2009)

did not provide an estimate for the nonparametric component and focused on

the case with fixed-dimension parametric covariates. Long et al. (2011) consid-

ered high-dimensional parametric covariates with p > n but did not investigate

the theoretical properties. Further, the simulations and data analysis in Long

et al. (2011) only dealt with a one-dimensional nonparametric covariate effect,

although the extension to additive nonparametric covariate effects was discussed.

Our work may be innovative in that our model integrates the following: (i) It is a

regression model for censored data that is semiparametric in two aspects: the er-

ror distribution is unspecified except for its zero mean which is the assumption of

most existing semiparametric censored regression models, and our model allows

flexible semiparametric covariate effects whose nonparametric part can contain

multiple additive components. (ii) The dimensionality of parametric component

can diverge in an exponential order of n, making it more appropriate for data

with, for example, genomic measurements. (iii) Our approach provides a model

selection tool for the nonparametric components.

There are several options for estimating censored regression models. Popu-

lar examples include the Buckley-James estimator (Buckley and James (1979))

and the rank-based estimator (Tsiatis (1990); Ying (1993); Wei, Ying, and Lin

(1990)). However, the computational cost of these approaches can be too high

for high-dimensional data. A more computationally feasible alternative is the

weighted least squares approach (Stute (1993)), which is equivalent to inverse

probability weighting. It involves the minimization of a weighted least squares

objective function and has been used in AFT models with high-dimensional co-

variates by Huang, Ma, and Xie (2006).

We adopt LASSO-type penalties for variable selection with the paramet-

ric component. Compared with alternatives such as SCAD, bridge, and others,

LASSO-type penalties are computationally easier. The selection properties of

LASSO-type penalties with uncensored data have been established (Zhang and

Huang (2008); Meinshausen and Buhlmann (2006)). The main conclusion is

that LASSO is not selection consistent except under strong orthogonality condi-

tions. A remedy for the inconsistent selection of LASSO is the adaptive LASSO

(Zou (2006)) that requires a consistent initial estimate to compute the adaptive

weights. When the dimensionality of covariates is low, the initial estimate can

be easily constructed through simple linear regression. This is not feasible when

the dimensionality of covariates is high. Motivated by this, we propose an it-

erated Lasso approach for semiparametric regression model with right censored

data. Our approach uses the LASSO estimate as the initial estimate, which is

l2-estimation consistent even in the high-dimensional setting. Using the LASSO
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estimate as the initial estimate has also been suggested by Meinshausen and

Buhlmann (2006), Meinshausen (2007), and Meier and Buhlmann (2008). We

then use the initial estimate to construct weights and conduct a weighted LASSO

estimation that has the selection consistency property. The nonparametric com-

ponent η is estimated through a sieve approach (Schumaker (1981)). We also

propose an empirical model selection approach for η derived from the Kullback-

Leibler geometry (Gu (2004)).

The rest of the article is organized as follows. The estimation and variable

selection procedure is described in Section 2. The selection consistency property

is established. Numerical study, including simulation and analysis of a lymphoma

prognosis study, is presented in Section 3. The article concludes with discussion

in Section 4. Some technical details are provided in the Appendix.

2. Penalized Estimation and Variable Selection

2.1. Weighted least squares estimation

Let Y(1) ≤ · · · ≤ Y(n) be the order statistics of Yi, δ(1), . . . , δ(n) be the as-

sociated censoring indicators, and (X(1), Z(1)), . . . , (X(n), Z(n)) be the associated

covariates. Let F be the distribution function of T and F̂n be its Kaplan-Meier

estimator F̂n(t) =
∑n

i=1wiI[Y(i)≤t], where

w1 =
δ(1)

n
and wi =

δ(i)

n− i+ 1

i−1∏
j=1

( n− j

n− j + 1

)δ(j) , i = 2, . . . , n, (2.1)

are the Kaplan-Meier weights (Stute (1993)). An equivalent set of weights, as

shown in Huang, Ma, and Xie (2007), are the inverse probability weights w̃i =

δ(i)/Ĝ(Y(i)−), where Ĝ is the Kaplan-Meier estimator of the survival function G

of censoring time C and Ĝ(t−) is the left-hand limit of the function Ĝ at t. The

weighted least squares loss function is

Qn(β, η) =
1

2

n∑
i=1

wi(Y(i) − α−XT
(i)β − η(Z(i)))

2. (2.2)

In this article, we make the reasonable assumption that η is continuously

differentiable as most biological processes are smooth. We estimate η using a sieve

approach. Let J be a roughness penalty and H = {η : J(η) < ∞}. When η is of

one dimension, an appropriate choice of J is J(η) =
∫
(η′′(z))2dz which yields the

well-known reproducing kernel (RK) Hilbert space H defining cubic smoothing

splines. Let NJ = {η : J(η) = 0}, HJ = H ⊖ NJ , and RJ be the reproducing

kernel in HJ . Consider the sieve Hn = NJ ⊕span{RJ(zj , ·), j = 1, . . . , rn}, where
rn is a constant possibly increasing with n and {zj : j = 1, . . . , rn} is a random
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subset of {Zi : i = 1, . . . , n}. We choose Hn as our sieve since it can naturally

incorporate multivariate functions through tensor product spline spaces.

Here we briefly describe an example of tensor product cubic spline space

that is used in our numerical study. Consider the case of a bivariate continuous

covariate Z = (Z(1), Z(2)). For simplicity, assume that the domains for Z(1) and

Z(2) are both [0, 1]. Consider H(1) = H(2) = W 2
2 [0, 1], where

W 2
2 [0, 1] =

{
f : f and f ′ are absolutely continuous,

∫ 1

0
(f ′′)2dz < ∞

}
(2.3)

is the cubic smoothing spline model space. W 2
2 [0, 1] can be decomposed as

W 2
2 [0, 1] = H0 ⊕H1, (2.4)

where H0 = span{1, k1(z)}, H1 = {f :
∫ 1
0 fdz =

∫ 1
0 f ′dz = 0,

∫ 1
0 (f

′′)2dz < ∞},
and kν(z) = Bν(z)/ν! are the scaled Bernoulli polynomials. The RK for sub-

space H1 is R1(z1, z2) = k2(z1)k2(z2)− k4(|z1 − z2|). Denote the decompositions

corresponding to (2.4) for marginal spaces H(j) as H(j) = H(j)
0 ⊕ H(j)

1 , j = 1, 2.

Taking the tensor product, one obtains the space H = H(1) ⊗H(2) with

J(f) =

∫ 1

0

{∫ 1

0
f22(Z

(1), Z(2))dZ(1)
}2

dZ(2)+

∫ 1

0

{∫ 1

0
f11(Z

(1), Z(2))dZ(2)
}2

dZ(1)

+

∫ 1

0

{∫ 1

0
f122(Z

(1), Z(2))dZ(1)
}2
dZ(2)+

∫ 1

0

{∫ 1

0
f112(Z

(1), Z(2))dZ(2)
}2
dZ(1)

+

∫ 1

0

∫ 1

0

{
f1122(Z

(1), Z(2))
}2
dZ(1)dZ(2),

where fij =
∂2f

∂Z(i)∂Z(j) , fijk = ∂3f
∂Z(i)∂Z(j)∂Z(k) , and fijkl =

∂4f
∂Z(i)∂Z(j)∂Z(k)∂Z(l) .

Accordingly, NJ = span{1, k1(Z(1)), k1(Z
(2)), k1(Z

(1))k1(Z
(2))} and

RJ(Z1, Z2) = R1(Z
(1)
1 , Z

(2)
1 ) +R1(Z

(1)
2 , Z

(2)
2 ) +R1(Z

(1)
1 , Z

(2)
1 )k1(Z

(1)
2 )k1(Z

(2)
2 )

+ k1(Z
(1)
1 )k1(Z

(2)
1 )R1(Z

(1)
2 , Z

(2)
2 ) +R1(Z

(1)
1 , Z

(2)
1 )R1(Z

(1)
2 , Z

(2)
2 ).

A RK Hilbert space can also be constructed for functions on a discrete domain.

We refer to Chapter 2 of Gu (2002) for more details.

Suppose {ϕ1, . . . , ϕm} is a basis of NJ . Then any function η ∈ Hn can be

written as η(·) =
∑m

ν=1 dνϕν(·)+
∑n

j=1RJ(zj , ·) ≡ ψT (·)b. We rewrite the objec-

tive function in (2.2) asQn(β,b) = (1/2)
∑n

i=1wi(Y(i)−α−XT
(i)β−ψ

T
(i)b)

2, where

ψ(i) ≡ ψ(Z(i)). We make the transformations Y ∗
(i) =

√
wi

(
Y(i) −

∑
wiY(i)/

∑
wi

)
,

X∗
(i) =

√
wi

(
X(i) −

∑
wiX(i)/

∑
wi

)
and ψ∗

(i) =
√
wi

(
ψ(i) −

∑
wiψ(i)/

∑
wi

)
.
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The objective function can then be rewritten as

Qn(β,b) =
1

2

n∑
i=1

(Y ∗
(i) −X∗T

(i) β −ψ∗T
(i)b)

2. (2.5)

2.2. Penalized variable selection

The proposed variable selection procedure consists of the following steps.

(S1) Initialize (β̂, b̂) = argminβ,bQn(β,b) + λn
∑

j |βj |, where βj is the jth

component of β;

(S2) Compute vj = |β̂j |−γ for a fixed γ > 0. Compute the adaptive Lasso

estimate

(β̂, b̂) = argmin
β,b

Qn(β,b) + λn

∑
j

vj |βj |; (2.6)

(S3) Repeat Step (S2) until convergence.

We adopt a sieve approach for the nonparametric covariate effects. Thus

there is no need for additional constraints on b as smoothing spline estimation

generally does. We borrow the basis functions of reproducing kernel Hilbert

spaces, and the number of basis functions is taken to be much smaller than the

sample size. With the Lasso penalty in (S1), the objective function is convex and

can easily be minimized. In Section 2.4, we show that the Lasso can select all

important covariates plus some false positives. This result justifies the validity of

Lasso estimate as the initial estimate. In Steps (S2) and (S3), if β̂j = 0, then the

corresponding covariate is taken out of penalized estimation. Section 2.4 shows

that the one-step estimate after one iteration is selection consistent. However,

our numerical study suggests that iterating until convergence may improve the

finite sample property. Our experience shows that convergence can usually be

achieved within a few iterations. The idea of improving consistency via iterated

penalization is similar to that in Zou and Zhang (2009). The present study may

be more complicated due to the presence of censoring and the nonparametric

component η.

The proposed procedure involves computation of the (weighted) Lasso esti-

mate that is implemented using the coordinate descent algorithm (Wu and Lange

(2007)). The tuning parameter λn balances sparsity and goodness-of-fit, and can

be chosen using V-fold cross validation. In Section 2.4, we provide conditions on

λn under which the selection consistency holds.
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2.3. Variable selection for nonparametric component

Even though the dimensionality of Z is low, it may still be of interest to

identify components of η(Z) that are not associated with the response variable.

In this section, we derive a model selection procedure for the nonparametric

component based on Kullback-Leibler geometry. For two estimates η1 and η2 of

the true function η0, their Kullback-Leibler distance reduces to

KL(η1, η2) =
1

2n

n∑
i=1

(η1(Zi)− η2(Zi))
2. (2.7)

Suppose that the estimation of η0 has been done in a space H1, but in fact

η0 ∈ H2 ⊂ H1. Let η̂ be the estimate of η0 in H1. Let η̃ be the Kullback-Leibler

projection of η̂ in H2, that is, the minimizer of KL(η̂, η) for η ∈ H2, and let ηc
be the estimate from the constant model. Set η = η̃ + ρ(η̃ − ηc) for ρ real and

K(ρ) ≡ KL(η̂, η) = (1/2n)
∑n

i=1(η̂(Zi) − (η̃ + ρ(η̃ − ηc))(Zi))
2. Differentiating

K(ρ) with respect to ρ and evaluating at ρ = 0, one has (1/n)
∑n

i=1(η̂(Zi) −
η̃(Zi))(η̃(Zi)− ηc(Zi)) = 0. Straightforward calculation then yields

KL(η̂, ηc) = KL(η̂, η̃) + KL(η̃, ηc).

Hence the ratio KL(η̂, η̃)/KL(η̂, ηc) can be used to diagnose the feasibility of a

reduced model η ∈ H2: the smaller the ratio, the more feasible the reduced

model.

2.4. Asymptotic properties

For fixed β, b̂ satisfies
∑n

i=1ψ
∗
(i)(Y

∗
(i) −X∗T

(i) β −ψ∗T
(i) b̂) = 0. That is,

b̂ =

(
n∑

i=1

ψ∗
(i)ψ

∗T
(i)

)−1( n∑
i=1

ψ∗
(i)(Y

∗
(i) −X∗T

(i) β)

)
.

Let Pi = ψ∗T
(i)

(∑n
i=1ψ

∗
(i)ψ

∗T
(i)

)−1
ψ∗

(i) be the projection. The objective function

(2.5) can be rewritten as

Qn(β) =
1

2

n∑
i=1

((I − Pi)(Y
∗
(i) −X∗T

(i) β))
2 =

1

2

n∑
i=1

(Ỹ ∗
(i) − X̃∗T

(i) β)
2. (2.8)

Let Ỹ = (Ỹ ∗
(1), . . . , Ỹ

∗
(n))

T and X̃ be the n × p matrix consisting of row

vectors X̃∗T
(1), . . . , X̃

∗T
(n). Let X̃1, . . . , X̃p be the p columns of X̃. Let W =

diag(nw1, . . . , nwn) be a n×n diagonal matrix. For A ⊂ {1, . . . , p}, let X̃A = (X̃ :

j ∈ A) be the matrix with columns X̃js for j ∈ A. Write ΣA = X̃T
AWX̃A/n and
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denote the cardinality of A by |A|. Let β0 = (β01, . . . , β0p)
T be the unknown true

regression coefficients. Let A1 = {j : β0j ̸= 0} be the set of nonzero regression

coefficients and |A1| = p1. For i = 1, . . . , n, let τi = wiϵ(i) ≡ wi(Ỹ
∗
(i) − X̃∗T

(i) β0)

and ξj =
∑n

i=1 X̃
∗
ijτi, 1 ≤ j ≤ p. We assume the following.

(A1) p1 is finite.

(A2) (a) {(Yi, δi, Xi, Zi), i = 1 . . . n} are iid. (b) The random errors ϵ1, . . . , ϵn are

iid with mean 0 and finite variance σ2, and there exist K1,K2 > 0 such that

P (|ϵi| > u) ≤ K2 exp(−K1u
2) for all u > 0.

(A3) (a) The distributions of ξj ’s are subgaussian. (b) There exists M > 0 such

that |Xij |, |Zij | ≤ M .

(A4) Matrix X̃ satisfies the sparse Riesz condition (SRC) with rank p∗1: there exist

constants 0 < c∗ < c∗ < ∞ such that, for C = c∗/c∗ and p∗1 = (3 + 4C)p1,

with probability converging to 1, c∗ ≤ νTΣAν/||ν||2 ≤ c∗, for any A with

|A| = p∗1 and ν ∈ Rp∗1 . Here || · || is the ordinary l2 norm.

The model is sparse under (A1), reasonable in genomic studies where the

number of genes profiled can be large, but only a very small number of genes

are associated with the response variables. The subgaussian assumption (A2) is

commonly made in high dimensional data analysis but can be weakened at the

price of a smaller p. The subgaussian property in (A3) is required for Theorem

1; It can be ensured by the boundedness of covariates X and Z plus certain

other conditions. For example, a sufficient condition can be boundedness of

random errors. Another sufficient condition that leads to subgaussian ξj ’s is that

wi ≤ c/n for some constant c > 1. This happens, for example, when δ(j) = 1 for

all j > n/(kc) with kc = c/(c− 1). The latter can be achieved when C ≤ τ0 for a

constant τ0 and P{(X,Z) : P (T > τ0|X,Z) = 1} > 0. In Huang and Ma (2010)

with parametric AFT models, to achieve the subgaussian property of ξj , it is

assumed that the errors (ϵ1, . . . , ϵn) are independent of the weights (w1, . . . , wn).

Although reasonable arguments have been provided in Huang and Ma (2010), it is

worth noting that the weights are estimates generated from data. Other sufficient

conditions for (A3) are certainly possible. The SRC condition is proposed in

Zhang and Huang (2008). It guarantees that all eigenvalues of any d×d submatrix

of X̃TWX̃/n with d ≤ p∗1 lie between c∗ and c∗. That is, any model with

dimensionality no greater than p∗1 is identifiable. In this study, conditions on the

basis functions of η are built in the conditions on X̃. The presence of censoring

brings considerable difficulty, which makes it hard to “separate” conditions on

η as in Xie and Huang (2009). With a fixed dimensionality and correlation
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structure for X, the SRC condition in (A4) needs to be checked following Zhang

and Huang (2008).

2.4.1. The initial estimate

We first investigate the Lasso estimate computed in (S1) of the proposed

procedure. The estimate is β̃ = argminQn(β) + λn
∑

j |βj |. Define Ã1 = {j :

β̃j ̸= 0} as the set of nonzero Lasso estimate coefficients.

Theorem 1. Suppose that (A1)−(A4) hold and λn/
√

n log(p) is bounded away

from zero. Then

(a) with probability converging to 1, |Ã1| ≤ (2 + 4C)p1;

(b) if λn/n → 0 and log(p)/n → 0, then with probability converging to 1, all

components of X with nonzero coefficients are selected;

(c) ||β̃−β||2 ≤ 16λ2
np1/(n

2c2∗)+O
(
|Ã1| log(p)/(nc2∗)

)
, and if λn = O(

√
n log(p)),

then ||β̃ − β||2 = O(log(p)/n).

Theorem 1 suggests that, with a high probability, all true positives are se-

lected. Thus, the Lasso estimate serves well as the initial estimate. In addition,

the Lasso estimate is estimation consistent, a desired property for the initial

estimate of the adaptive Lasso.

2.4.2. The iterated estimate

We now investigate properties of β̂ = argminQn(β) + λn
∑

j vj |βj |, the

adaptive Lasso estimate defined in (S2). For a vector u = (u1, . . . , up), let

sign(u) = (sign(u1), . . . , sign(up)), where sign(ui) = 1, 0,−1 if ui > 0,= 0, < 0.

Theorem 2. Suppose that (A1)−(A4) hold, that log(p)/n → 0 and λn =

O(
√

n log(p)). Then P (sign(β̂) = sign(β0)) → 1.

Theorem 2 suggests that the one-step adaptive Lasso estimate computed

in (S2) is selection consistent. Following a similar strategy, it can be proved

that any finite-step estimate is selection consistent. Under conditions described

above, Theorems 1 and 2 hold if log(p)/n → 0. Thus, the proposed approach

can accommodate p = exp(o(n)), that is, very high-dimensional data.

3. Numerical Study

3.1. Simulation

We simulated data from the AFT model such that g0 = log(·). Let W(a, b)

denote the Weibull distribution with shape parameter a and scale parameter b.

The failure time Ξ was generated from W(4, exp(µ0(x, z))) where µ0(x, z) =
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xTβ + η(z). The censoring time Γ was generated from an exponential dis-

tribution whose parameter was adjusted to yield a censoring rate about 30%.

The dimensionality p of covariate X was either 200 or 500. Xi’s were inde-

pendently generated from the multivariate normal distribution with zero mean

and cov(Xi, Xj) = 0.112 · 0.5|i−j|. The first 15 entries of the coefficient vec-

tor β were (1.0, 0.5, 0.9, 0.7, 1.0, 0.7, 0.9, 0.5, 0.6, 0.7, 0.6, 0.9, 1.0, 1.0, 0.6), and the

rest of the entries were zero. The covariate Z = (Z1, Z2, Z3) had three di-

mensions, and each component was simulated from the uniform distribution on

[0, 1]. We took η(z) = η1(z1) + η2(z2) + η3(z3), with η1(z) = 0.5 sin(2πz − π/2),

η2(z) = 2(z − 0.4)2 + 2.28e−z − 1.628, and η3(z) = z − 0.5. Note that all ηjs

integrate to zero to make model identifiable.

For a prediction procedure M and the estimator (β̂M, η̂M) obtained from

the procedure, an appropriate measure of prediction performance is the empirical

prediction error PE(β̂M, η̂M) = (1/N)
∑N

i=1wi,0(Y(i),0−XT
(i),0β̂M− η̂M(Z(i),0))

2.

Here wi,0 and (Y(i),0, X(i),0, Z(i),0) are, respectively, the Kaplan-Meier weights and

ordered statistics for a test data set {(Yi,0, δi,0, Xi,0, Zi,0) : i = 1, . . . , N} indepen-

dently generated from the true model. The relative model error (RPE) of M1

versus M2 is defined as the ratio PE(β̂M1 , η̂M1) /PE(β̂M2 , η̂M2). The procedure

M0 with complete oracle is used as a benchmark. InM0, (X1, . . . , X15, Z1, Z2, Z3)

are known to be the only contributing covariates, the exact form of η0 is known,

and the only parameters to be estimated are the coefficients of X1, . . . , X15. Note

that M0 can be implemented only in simulation and is unrealistic in practice.

We compared performance of the following procedures through their RPEs versus

M0.

MA: The procedure with partial oracle and estimated η0. That is, (X1, . . . , X15,

Z1, Z2, Z3) are known to be the only contributing covariates, but the form of

η0 is unknown. η0 is estimated together with the coefficients for (X1, . . . , X15)

using the penalized weighted least squares approach defined in (2.6), with

β = (β1, . . . , β15)
T .

MB: The procedure with partial oracle and misspecified η0. Here, (X1, . . . , X15,

Z1, Z2, Z3) are known to be the only contributing covariates, but η0 is mis-

specified to be of the parametric form η0(W ) = ZTβZ and βZ is estimated

together with the coefficients for (X1, . . . , X15).

MC : The procedure with all the covariate effects assumed to be of linear form,

and an iterated Lasso procedure is applied to all coefficients.

MD: The procedure ignoring nonparametric covariates (Z1, Z2, Z3). That is, η ≡
0, and one applies the iterated Lasso procedure to β.
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ME : The proposed iterated Lasso procedure with a nonparametric additive model

assumed for η.

Procedures MA and MB have a partial oracle property and are unrealistic in

practice. Procedure MB has a misspecified covariate effect. This procedure is

of interest as some studies model effects of low-dimensional covariates linearly.

Procedures MC and MD misspecify the effects of (Z1, Z2, Z3), one to be linear

and the other to be zero. We intend to show that it is important to properly

specify the effects of low-dimensional covariates. In procedures MC , MD and

ME , five-fold cross validation was used to select the λn that minimizes the mean

sum of squared prediction errors on a common grid of log(λn) = −3 to 3 by 0.1.

The tensor product cubic spline basis functions described in Section 2.1, with

rn = 5, were used in the estimation of nonparametric effects in ME .

We used n = 100, 200 and p = 200, 500. In studies with microarray measure-

ments, a large number of covariates are measured. But it is commonly accepted

that only a small number of covariates are associated with the response variables.

Recent studies on marginal screening show that it is possible to reduce the num-

ber of covariates to a few hundred via screening. Thus the scenario considered

here for simulation is reasonable. For each combination, we simulated 500 data

replicates and computed the following: the mean and standard deviation of the

500 RPEs of the complete oracle procedure M0 versus procedures MA to ME ,

the proportion of being selected for each of the 15 nonzero coefficients, and the

average number of noise variables selected. The prediction and variable selection

results are summarized, respectively, in Tables 1 and 2. From Table 1, we can

see that although the proposed procedure ME , as expected, did not predict as

well as the two partial oracle procedures MA and MB, it had significantly bet-

ter prediction performance than did procedures MC and MD where Z-covariate

effects were misspecified. For variable selection performance, only procedures

MC to ME are relevant. Table 2 shows competitive performance of the three

procedures in selecting the signal variables. This competitiveness suggests that

misspecifying nonlinear effects that are independent of linear effects may not

have a dramatic impact on variable selection of linear covariates. The proposed

procedure slightly outperformed the others by consistently including fewer noise

variables. Both prediction and variable selection clearly improved as n increased

or p decreased.

To evaluate estimation of the nonparametric part, Figure 1 shows the top

10%, 50%, and 90% function estimates against their corresponding true func-

tions. Here the estimates were ranked according to mean integrated square error

(MISE) of the estimate η̂ against the true nonparametric function. We can see

that the proposed approach provides reasonable estimates of the nonparametric
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Table 1. Prediction performance comparison by the means and standard
deviations (in the brackets) of the RPEs computed from 500 replicates.

n p MA MB MC MD ME

100 200 0.576(0.117) 0.367(0.050) 0.167(0.040) 0.158(0.033) 0.206(0.057)
500 0.536(0.117) 0.366(0.045) 0.128(0.031) 0.125(0.029) 0.167(0.052)

200 200 0.735(0.083) 0.374(0.033) 0.200(0.037) 0.181(0.026) 0.264(0.054)
500 0.725(0.102) 0.373(0.031) 0.157(0.030) 0.147(0.022) 0.222(0.050)

Table 2. Variable selection frequencies for parametric components. Values
are the average numbers of selection for signal variables and average total
numbers of selected noise variables computed from 500 replicates.

Signal Variables (with values of βjs)

1.0 0.5 0.9 0.7 1.0 0.7 0.9 0.5 0.6 0.7 0.6 0.9 1.0 1.0 0.6 Noise

n = 100, p = 200

MC 0.68 0.43 0.69 0.49 0.74 0.49 0.71 0.37 0.48 0.54 0.52 0.66 0.74 0.74 0.34 2.76

MD 0.65 0.43 0.67 0.49 0.73 0.51 0.68 0.37 0.47 0.51 0.50 0.63 0.72 0.71 0.34 3.00

ME 0.67 0.41 0.69 0.49 0.74 0.52 0.69 0.37 0.48 0.51 0.53 0.63 0.74 0.73 0.34 2.37

n = 100, p = 500

MC 0.61 0.37 0.65 0.51 0.70 0.49 0.63 0.39 0.39 0.46 0.47 0.65 0.68 0.71 0.28 3.57

MD 0.58 0.38 0.64 0.54 0.70 0.47 0.63 0.41 0.39 0.49 0.46 0.65 0.70 0.68 0.28 3.62

ME 0.61 0.37 0.64 0.54 0.72 0.48 0.64 0.36 0.40 0.47 0.47 0.64 0.71 0.71 0.28 3.12

n = 200, p = 200

MC 0.93 0.33 0.89 0.60 0.94 0.60 0.86 0.43 0.53 0.76 0.49 0.87 0.89 0.92 0.41 1.27

MD 0.90 0.36 0.83 0.62 0.91 0.57 0.83 0.44 0.50 0.71 0.48 0.84 0.87 0.89 0.39 0.31

ME 0.92 0.33 0.85 0.62 0.92 0.58 0.84 0.42 0.51 0.72 0.49 0.85 0.89 0.91 0.38 0.22

n = 200, p = 500

MC 0.86 0.36 0.83 0.60 0.88 0.57 0.86 0.38 0.57 0.63 0.50 0.80 0.85 0.86 0.36 1.25

MD 0.85 0.38 0.81 0.57 0.85 0.54 0.83 0.40 0.56 0.61 0.49 0.78 0.83 0.85 0.37 0.88

ME 0.86 0.37 0.82 0.58 0.87 0.53 0.83 0.39 0.57 0.60 0.50 0.80 0.83 0.87 0.36 0.70

covariate effects. In some plots, we see a shrinkage towards zero; this is reason-

able considering the connection between β̂ and b̂, and the shrinkage nature of

penalized estimates.

We also conducted simulations to evaluate the model selection procedure

for the nonparametric part. Z1, Z2, and Z3 were independent Uniform(0,1).

We considered two scenarios for the true nonparametric part: (i) a nonpara-

metric bivariate additive model η(z) = η1(z1) + η2(z2), or (z1, z2) using short-

hand notation, and (ii) a nonparametric additive model with three covariates

η(z) = η1(z1)+η2(z2)+η3(z3), or (z1, z2, z3). In both scenarios, the fitted models

were the nonparametric additive model with all three covariates, and the ratios

KL(η̂, η̃)/KL(η̂, ηc) for the projections to the bivariate models (z2, z3), (z1, z3),

and (z1, z2) were computed. We claim that a reduced model is feasible when the

ratio KL(η̂, η̃)/KL(η̂, ηc) < 0.05. Note that each of these three reduced models
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Figure 1. Estimates for nonparametric components. From top to bottom:
(n, p) = (100, 200), (100, 500), (200, 200), (200, 500). Solid lines are true func-
tions, and dashed, dotted and dot-dashed lines are, respectively, the top 10%,
50%, 90% estimates ranked by MISE.

drops one covariate from the full additive model. If none of these reduced models

is feasible, then the full additive model is kept as the final model. The results

are summarized in Table 3. The procedure was very successful in keeping the

signal variables in all the simulations. This resulted in very low percentages of

under-fitted final models, defined as models missing any signal variable. On the

other hand, the procedure seemed to be conservative in that it included the noise

variable at times. The selection performance clearly improved as the sample

size increased, but seemed to be less affected by the total number of parametric

covariates in the model.

3.2. Analysis of mantle cell lymphoma data

Rosenwald et al. (2003) reported a gene expression profiling study of mantle

cell lymphoma (MCL) prognosis. Among 101 untreated patients with no history

of previously diagnosed lymphoma, 92 were classified as having MCL based on
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Table 3. Performance of model selection for the nonparametric part (500
replicates). Under-fit means missing at least one signal Zj , correct-fit means
a match of selected Zj ’s to true signal Zj ’s, and over-fit in the (Z1, Z2) true
model case means that all three Zj ’s are selected.

Proportion of Selecting Proportion of
n p Z1 Z2 Z3 Under-fit Correct-fit Over-fit

True model: η(z) = η1(z1) + η2(z2)
100 200 0.996 0.992 0.712 0.012 0.284 0.704

500 0.990 1.000 0.727 0.010 0.273 0.717
200 200 1.000 1.000 0.396 0.000 0.604 0.396

500 1.000 1.000 0.374 0.012 0.626 0.374

True model: η(z) = η1(z1) + η2(z2) + η3(z3)
100 200 0.988 0.994 0.964 0.054 0.946 -

500 0.980 0.994 0.960 0.066 0.934 -
200 200 1.000 1.000 0.996 0.004 0.996 -

500 1.000 1.000 0.994 0.006 0.994 -

established morphologic and immunophenotypic criteria. During the followup,

64 patients died of MCL, and the other 28 patients were censored. The median

survival time was 2.8 years. This dataset contains two distinct sets of covariates.

The first contains five clinical covariates: BMI expression (Z1), cyclinD-1 taqman

result (Z2), indicator of INK/ARF deletion (Z3), indicator of ATM deletion (Z4),

and indicator of P-53 deletion (Z5). The second set contains the expressions

of 8810 genes. Lymphochip DNA microarrays were used to quantify mRNA

expression in the lymphoma samples from the 92 patients. After removing 7

subjects with missing values for Z3 to Z5, we were left with 85 subjects.

With gene expressions, we first conducted unsupervised screening. We com-

puted the interquartile ranges of all gene expressions and removed genes with

interquartile ranges smaller than their first quartiles. Furthermore, since genes

with higher variations are usually of higher interest, we selected 200 and 500

genes with the highest variations. We then rescaled gene expressions to have

mean zero and variance one.

In our analysis, we started with the model with all gene expression covariate

effects linear and all clinical covariate effects nonlinear. An additive model with

all five clinical covariates was used for the nonparametric part. A backward

application of the model selection procedure described in Section 2.3 reduced

to the same additive model with Z1 and Z2 in the analysis with 200 and 500

genes. The clinical covariates were removed in the order Z3, Z4, and Z5, with

the corresponding ratios KL(η̂, η̃)/KL(η̂, ηc) of 0.002, 0.040, and 0.048 for the

estimation with 500 genes, and 0.010, 0.017, and 0.046 for the estimation with

200 genes.
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Figure 2. Estimates of nonparametric covariate effects for MCL data. Solid
lines are estimates with 500 genes, and dashed lines are estimates with 200
genes.

After fitting the semiparametric models with the effects of Z1 and Z2 non-

parametric, the analysis with 500 genes selected two genes (with estimated coef-

ficients −0.765 and −0.022), and the analysis with 200 genes selected five genes

(with estimated coefficients −0.139, 0.516, −0.312, −0.046, and −0.027). The

two sets of identified genes have no overlap, not surprising considering that multi-

ple sets of genes may have equal predictive power and the extremely noisy nature

of gene expression data. The estimates of the nonparametric part are plotted in

Figure 2. Overall the effect of BMI expression has a bell shape. The effect of

cyclin D-1 has an overall decreasing trend, but the effect is not monotone. Pre-

vious studies, such as Rosenwald et al. (2003), have analyzed this dataset, but

we may be the first to observe nonlinear trends that may provide further insights

into the biological mechanisms.

The same dataset is also analyzed in Huang and Ma (2010) with the clinical

covariates ignored. Comparing the two studies shows that our approach, which

accommodates the nonlinear effects of clinical covariates, identifies fewer genes.

This is reasonable; with the clinical covariates explaining part of the variation

in response, fewer genes are needed. Compared with gene expressions, clinical

covariates can be easier to measure and have more lucid interpretations. Thus,

a model with fewer gene expressions may be preferred in practice.

4. Discussion

In this study, we consider variable selection for semiparametric high-dimensional

censored regression model which includes the AFT model as a special case. In for

example cancer prognosis studies, both the low-dimensional clinical/environmental

covariates and the high-dimensional genomic covariates have been shown to have



1018 SHUANGGE MA AND PANG DU

predictive power. The semiparametric model we propose provides a useful tool

for analyzing such data.

We propose an iterated LASSO approach for variable selection with the

parametric component. It is possible to extend the iterated approach with other

types of penalties, for example the SCAD and elastic net. The LASSO penalty

is preferred here because of its computational simplicity. We establish that using

the LASSO initial estimate will not miss any important covariates. In practice

if there is concern over missing important covariates at the first step, a tuning

parameter slightly smaller than the one selected by cross validation may be used.

When there exist extremely high correlations among covariates, the SRC condi-

tion may be violated and the LASSO approach may miss important covariates.

We conjecture that an iterated Elastic Net procedure, extending Zou and Zhang

(2009), may ameliorate the problem, but such an extension is beyond the scope

of this paper.

The nonparametric component is estimated using a sieve approach. As a

limitation of this study, because of the complexity introduced by censoring, we

are unable to “separate” the conditions on the basis functions. Rather, they are

built in the SRC condition. This condition needs to be checked on a case-by-case

basis, following Zhang and Huang (2008), if different basis functions are adopted.

There are many publications on choosing the basis functions. Because of the high

dimensionality of X, we recommend that a small number of basis functions be

used for the nonparametric part.

We also propose a Kullback-Leibler geometry-based approach for model se-

lection in the nonparametric component. It was motivated by similar concepts in

simple linear regression models. This procedure essentially resembles a hypothe-

sis testing where both reduced and complete models belong to infinite dimensional

model spaces. Theoretical investigation of such a testing problem in nonparamet-

ric function estimation is notoriously challenging. To the best of our knowledge,

there is still no satisfactory solution. We leave the theoretical investigation of

this procedure as an open problem.
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