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Abstract: We assume that repeated measurements are taken on each of several

subjects that are randomly sampled from some population. The observations on a

particular subject are expressed as the sum of an average curve for the population

and a deviation of the subject’s curve from the average plus independent errors.

Both curves are modeled nonparametrically as splines. We use roughness penalties

on the splines, which is equivalent to assuming a linear mixed model. Within

this linear mixed model, we consider likelihood ratio tests of several scientifically

relevant hypotheses about the two curves, for example, that the subject deviations

are all zero or that they are each constant. The large-sample null distributions of the

test statistics are shown to be non-standard, but we develop bootstrap techniques

that can compute the exact null distributions much more rapidly than a direct

application of the bootstrap.
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1. Introduction

Brumback and Rice (1998) study an important class of models for longitu-
dinal data. In this paper, we consider a subclass of those models where repeated
observations are taken on each of several subjects. Suppose that yij is the jth ob-
servation on the ith subject recorded at time tij, where 1 ≤ i ≤ I, 1 ≤ j ≤ J(i),
and n =

∑I
i=1 J(i) is the total number of observations. Consider the nonpara-

metric model
yij = f(tij) + fi(tij) + εij , (1)

where εij are independent N(0, σ2
ε ) errors and both the population curve f(·) and

fi(·), the deviation of the ith subject’s curve from the population average, are
modeled nonparametrically. Models similar to (1) have been studied by many
other authors, e.g., Wang (1998).

A number of simple special cases of (1) are potentially of interest as null
hypotheses. For example, we might wish to test that there are no subject effects,
that is, that fi(t) ≡ 0. Alternatively, we might wish to test that each fi(t) is
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constant, that is, fi(t) ≡ ai0 for some constants ai0 so that the subject curves
f + fi are parallel, or that each fi is a linear function.

Following Brumback and Rice, we model the population and subject curves
as splines, though we do not use smoothing splines as they do. Rather we use
penalized splines (P-splines) with a relatively small number of knots. The ad-
vantage of P-splines is that the number of parameters can be kept reasonably
small, which makes rapid computation feasible, while the accuracy is as good as
with smoothing splines (Ruppert (2002)).

Penalized splines can be viewed as BLUPs in linear mixed models (LMM’s).
The hypotheses that interest us can each be expressed as a constraint that cer-
tain variance components are zero. It is natural to test these hypotheses using
likelihood ratio tests (LRTs). LRTs in linear mixed models have already been
studied by Crainiceanu, Ruppert and Vogelsang (2002), Crainiceanu and Rup-
pert (2004), Crainiceanu, Ruppert, Claeskens and Wand (2002). However, those
papers consider simpler testing situations, for example, testing that a univariate
regression is a polynomial versus the alternative that it is a spline. One interest-
ing conclusion of these papers is that the asymptotic null distribution of LRTs
in spline mixed models is not a mixture of chi-squared distributions. This con-
clusion is surprising, since chi-squared mixtures are expected from the classical
work of Chernoff (1954) and Self and Liang (1987). As explained in Section 4,
the reason that one does not obtain standard large-sample null distributions for
spline mixed models is a lack of independence. However, Crainiceanu, Ruppert
and Vogelsang (2002) and Crainiceanu and Ruppert (2004) were able to find the
large-sample null distribution needed for testing in spline mixed models. This
paper extends their work to model (1).

2. Univariate Nonparametric Regression

Consider the regression equation

yi = f (xi) + εi ,

where εi are i.i.d. N
(
0, σ2

ε

)
. Let κ1 < · · · < κK be fixed knots in the range of x.

Let B0(x), . . . , Bp+K(x) be a basis for the space of pth degree splines with these
knots, such that B0(x), . . . , Bp(x) span the space of polynomials of degree p —
the latter requirement is for convenience when we wish to test the null hypothesis
that f(x) is a polynomial. We assume that

f(x) = f(x,θ) =
p+K∑
j=0

θjBj(x) =
p∑

j=0

βjBj(x) +
p+K∑

j=p+1

bjBj(x),

where θ = (βT , bT )T , β = (β0, . . . , βp)T are the coefficients of the polynomial
basis functions, and b = (b1, . . . , bK)T are the coefficients of the other basis
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functions. A convenient choice of basis, and the one used in our numerical work,
is the set of polynomials plus truncated power functions where

f (x,θ) = β0 + β1x + . . . + βpx
p +

K∑
k=1

bk (x − κk)
p
+ . (2)

The choice of K is discussed in Ruppert (2002) who finds that for P-splines the
exact value of K has little effect on the estimator, provided that K is at least
a certain minimum value, because the amount of smoothing is determined not
by K but rather by the penalty parameter λ that is discussed below. Berry,
Carroll and Ruppert (2002) found that P-splines and smoothing splines, which
have a knot at each unique value of the covariate, generally give very similar
answers, so one can use a large number of knots even if it is not necessary to
do so. We consider a number of knots that is large enough (typically 5–20) to
ensure the desired flexibility, and κk is the sample quantile of x’s corresponding
to probability k/(K + 1). The amount of smoothing depends on the trace of the
smoother matrix Sλ defined below in (9). This trace is also called the effective
degrees of freedom of the fit and denoted by dffit. For a pth degree spline with
K knots, dffit increases smoothly from p + 1 to K + p + 1 as λ increases from 0
to ∞, so K determines only the maximum value of dffit; see Ruppert, Wand and
Carroll (2003). For example, if dffit = 7.5 gives a good tradeoff between bias and
variance and p = 2, then roughly any value of K above 5 would be suitable.

Powell’s (1981) results on the approximation properties of splines help ex-
plain why relatively few knots are needed, why their exact locations are not
crucial, and why K depends little upon the sample size n. Let a < b be two real
numbers and consider spline approximation of the regression function f on [a, b].
Powell’s Theorem 20.3 gives the error of the best approximation of a C l[a, b]
(l times continuously differentiable) function f by an kth degree spline. For
convenience, we restate the theorem.

Theorem 1. (Powell, 1981) Let S be the set of pth degree splines on [a, b ]
with knots a < κ1 < · · · < κK < b. Define κ0 = a and κk+1 = b. Let h =
max{κj − κj−1 : j = 1, . . . ,K + 1}. Suppose that f is C l[a, b]. Then

inf
s∈S

‖f − s‖∞ ≤ (k + 1)!
(k + 1 − j)!

(h/2)j‖f (j)‖∞. (3)

for every j ∈ {1, 2, . . . ,min(l, p + 1)}, where ‖ · ‖∞ is the L∞ norm on [a, b].

This bound is independent of the specific knot locations, instead depending
only on the maximum distance between any two consecutive knots. For example,
if one uses quadratic splines and f ∈ C3[a, b], then (3) holds for j = 3. If the
covariate has a density on [a, b] that is bounded away from zero, then h will be
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proportional to 1/K for knots at sample quantiles with equal probability spacing.
Thus, the bias due to the approximation of f by a spline will be O(K−3). If
K ∝ n1/6, then the squared bias due to spline approximation will be O(1/n),
the parametric rate for the variance. For most practical purposes, K ∝ n1/6 is
essentially the same as K being independent of n. For example, if for some f using
K = 5 is sufficient with n = 100, we solve for C in 5 = C1001/6 to find that C =
2.32. Then when n = 30, 000, we might expect that K = (2.32)(30, 0001/6) = 13
would be sufficient. Since K = 13 could also be used when n = 100 and even for
a smaller sample size, say n = 50, we might use K = 13 over the entire range
50 ≤ n ≤ 30, 000.

The criterion to be minimized is a penalized sum of squares

n∑
i=1

{yi − f (xi,θ)}2 + λ−1θT Gθ , (4)

where λ is the smoothing parameter selected by some external criteria, such as
ML or REML. G is a positive semi-definite matrix which is determined by the
form of the penalty and therefore is known, as will soon be illustrated.

Let f (q)(x,θ) be the qst derivative with respect to x. The penalty

λ−1
∫
{f (q)(x,θ)}2dx, q ≤ p, (5)

used for smoothing splines, typically with q = 2, can be achieved with G equal
to the matrix of sample second moments of the qth derivatives of the spline basis
functions; notice that in this case G is known. However, in this paper we focus
on matrices G of the form

G =

[
0p+1×p+1 0p+1×K

0K×p+1 Σ−1

]
, (6)

where Σ is a positive definite matrix and 0m×l is an m × l matrix of zeros.
When the truncated power basis (2) is used, this choice of the matrix G does
not penalize the coefficients of the polynomial basis functions and will be used in
the remainder of the paper. With this G, (4) can be viewed as minus twice the
log-likelihood of a linear mixed model with λΣ−1 being the covariance matrix of
the random effects; see Section 3. Therefore, the reason this covariance matrix is
known, at least up to the parameter λ, is that it is part of a Bayesian prior that
is equivalent to the roughness penalty having a known form since it is chosen by
the user. For example, in the smoothing spline literature, the penalty (5) was
apparently chosen because it seemed reasonable and worked well in practice, and
then later Wahba (1978) proved that smoothing splines were Bayes estimators
for a particular partially improper prior. The prior is improper because the
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coefficients of the polynomial basis functions have a prior that is uniform on
�p+1; these coefficients can be interpreted as the fixed effect parameters.

With the truncated power basis, a standard choice is Σ = IK , so that

G =

[
0p+1×p+1 0p+1×K

0K×p+1 IK

]
. (7)

This choice of Σ makes the P-spline a close approximation to a smoothing spline,
as will now be discussed. A smoothing spline uses the penalty (5), usually with
p = 1, which causes f(x, θ̂) to converge to the pth degree polynomial regression
fit as λ → ∞. The pth degree spline (2) has a pth derivative which is constant
between knots and takes a jump of size p! bk at the kth knot. Thus, the p + 1th
derivative of this spline is a generalized function (linear combination of Dirac
delta functions) and, with q = p + 1, the analogue of (5) is

λ−1(p!)2
K∑

k=1

(bk)2, (8)

which, after absorbing (p!)2 into λ−1, is the penalty in (4) if G is given by (7).
In particular, G is known. Note that the choice of G depends on the spline basis
being used, and the P-spline penalty when G is given by (7) is analogous to a
smoothing spline penalty only for the truncated power basis in (2). For another
basis, say B-splines, G is obtained from (7) using a known change of basis matrix
(Ruppert, Wand and Carroll (2003)), so that G will again be known. Penalty
matrix (7) or, equivalently, penalty (8) has the Bayesian interpretation that our
prior knowledge about the jumps of f (p) is independent between knots. Since
we typically have little prior knowledge of the fine structure of f , this prior
seems reasonable. The point is that the form of the penalty is not so much an
assumption about f but rather about our prior knowledge of f .

Let Y = (y1, y2, . . . , yn)T , and X be the design matrix having the ith row
X i = {B0(xi), . . . , Bp+K(xi)}. Then, for a fixed λ, the vector of regression coef-
ficients that minimizes (4) is θ̂(λ) = (X T X + λ−1G−1)X T Y , and the estimated
smoothed values are given by Ŷ (λ) = SλY , where

Sλ = X (X T X + λ−1G)−1X T (9)

is the smoother matrix. Decompose X as X = [X|Z] where X is formed with
the first p + 1 columns of X and corresponds to the polynomial basis functions.

3. Penalized Splines as Linear Mixed Models

Observe that when the penalized spline fitting criterion (4) is divided by σ2
ε ,

we obtain
σ−2

ε ‖Y − Xβ − Zb‖2 + (λσ2
ε )

−1bTΣ−1b.
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Define σ2
b = λσ2

ε and consider the vector β as an unknown fixed parameter
and the vector b as a random parameter with E(b) = 0 and Cov (b) = σ2

bΣ.
If (bT , εT )T is a normal random vector and b and ε are independent, then one
obtains the Linear Mixed Model (LMM) representation (Brumback, Ruppert and
Wand (1999)) of the penalized spline model:

Y = Xβ + Zb + ε, Cov

(
b

ε

)
=

[
σ2

bΣ 0
0 σ2

ε In

]
. (10)

For this model E(Y ) = Xβ and Cov (Y ) = σ2
ε V λ, where V λ = In + λZΣZT

and n is the total number of observations. The fitted spline is the best linear
unbiased predictor (BLUP) of Xβ+Zb = E(Y |b). In the penalized spline (4), λ

is a tuning parameter controlling the amount of smoothing, whereas in the LMM
model (10) the ratio of the variance components σ2

b and σ2
ε controls the amount

of shrinkage. A standard estimation criterion for model (10) is the Restricted
Likelihood

REL(β, σ2
ε , λ) = −

[
(n − p − 1) log(σ2

ε ) + log{det(V λ)}

+ log
{
det(XT V −1

λ X)
}

+
(Y − Xβ)T V −1

λ (Y − Xβ)
σ2

ε

]
. (11)

The joint maximization of this criterion over (β, σ2
ε , λ) provides the Restricted

Maximum Likelihood (REML) estimators. Restricted, or residual, maximum
likelihood was introduced in the framework of LMMs by Patterson and Thompson
(1971) to take into account the loss in degrees of freedom due to estimation of the
β parameters and thereby to obtain unbiased variance components estimators.
REML consists in maximizing the likelihood function associated with n − p −
1 linearly independent error contrasts (Harville (1977)). REML, as a method
for choosing the smoothing parameter of a smoothing spline, was studied by
Anderssen and Bloomfield (1974), Wecker and Ansley (1983) and Barry (1983);
see also Wahba (1990, p.63). A comparison between REML and GCV was made
by Wahba (1985) and Kohn, Ansley and Tharm (1991). Wahba (1985) refers to
REML as GML (generalized maximum likelihood).

Given the representation (10) of the penalized spline, testing whether the
regression function f(·) is a degree p polynomial is equivalent to testing

H0 : σ2
b = 0 vs. HA : σ2

b > 0 . (12)

Since σ2
b = λσ2

ε the null is equivalent to λ = 0 and the alternative is equivalent
to λ > 0. Because the coefficients b have mean zero and covariance matrix σ2

bΣ,
the condition that σ2

b = 0 in H0 is equivalent to the condition that all truncated
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polynomial coefficients bi are identically zero and the spline is a polynomial. If
σ2

b > 0, then any open set of truncated power function coefficients has positive
probability so f(x,θ) can be an arbitrary spline with the given knots. As ex-
plained in Section 2, for most practical purposes, assuming that f is a spline with
the given knots is the same as assuming that f is a smooth function.

The testing problem is non-standard because the parameter vector is on the
boundary of the parameter space (σ2

b = 0) under the null; however, likelihood
ratio testing with the null hypothesis on the boundary has been investigated by
Chernoff (1954), Self and Liang (1985) and others. A more serious difficulty,
which has not been investigated until recently, is that for tests that variance
components are zero in a LMM, observations Y are not independent, at least
not under the alternative and often not under the null. Nonstandard asymptotic
theory developed by Self and Liang require independence both under the null and
alternative hypotheses. Crainiceanu and Ruppert (2004) find that the asymptotic
null distribution given by the Self and Liang theory need not hold even when the
data are independent under the null hypothesis if they are not independent under
the alternative. The likelihood ratio statistic depends upon the alternative, so
its null distribution also depends on the alternative.

The same type of equivalence with standard mixed models can be obtained
more generally for penalized likelihood models. Natural extensions to semipara-
metric models are discussed in detail in Ruppert, Wand and Carroll (2003). In
Section 5 we discuss the extension to nonparametric longitudinal models.

4. RLRT Tests for Polynomial Regression

Define the (log) Restricted Likelihood Ratio Test (RLRT) statistic as

RLRT = sup
HA

REL(β, σ2
ε , λ) − sup

H0

REL(β, σ2
ε , λ) ,

where H0 and HA are given by (12). Because REML uses the likelihood of
residuals after fitting the fixed effects, it is appropriate for testing only if the
fixed effects are the same under the null and the alternative hypotheses.

Computing RLRT is very simple. Indeed, under H0 one need only compute
the REML for a polynomial regression. Under HA one need only compute the
REML for a LMM with one variance component. Available software, such as
S-PLUS (lme function) or SAS (MIXED procedure), provide excellent tools for
this type of calculations.

Finding the finite sample or asymptotic null distribution of the RLRT is a
more challenging problem. Self and Liang (1987, 1995), Stram and Lee (1994) and
Andrews (2001) assume that the data can be represented as an i.i.d. sequence,
but this assumption does not hold in general for LMM’s, at least not under
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the alternative hypothesis. Crainiceanu, Ruppert and Vogelsang (2002) show
that the asymptotic null distributions for LRT’s and RLRT’s in penalized spline
LMM’s are different from the chi-squared mixture limits derived by Self and
Liang (1987, 1995), Stram and Lee (1994) and Andrews (2001) for certain other
LMM’s. The reason one does not in general get chi-squared mixtures as the
asympotic null distribution is the violation of the i.i.d. assumption. Self and
Liang (1987, 1995) explicitly state that the data are i.i.d. for all values of the
parameter (see their introduction). Stram and Lee (1994) assume that random
effects are independent from subject to subject and they implicitly assume that
the number of subject increases to infinity. Their results would not hold for a
fixed number of subjects, even if the number of observations per subject increases
to infinity. Andrews’s (2001) results for the random coefficients model are derived
under the independence of data assumption.

The null finite sample and asymptotic distribution for RLRT are derived
by Crainiceanu and Ruppert (2004) for the case of a LMM with one variance
component, and by Crainiceanu, Ruppert, Claeskens and Wand (2002) for testing
polynomial regression against a general alternative modeled by a penalized spline.

Score tests have been proposed for testing variance components in linear
mixed models and it has been assumed that the asymptotic theory of score tests
for independent data is applicable, e.g., by Verbeke and Molenberghs (2003).
However, there seems to be have been no investigation of when this theory holds
for mixed models, and we are reluctant to use score tests for P-spline models
until the relevant asymptotic theory or, better, exact distributions have been
developed.

5. Nonparametric Models for Longitudinal Data

Consider (1) and assume that both the population curve f(·) and the ith
subject effect (deviation from the population curve) fi(·) are modeled nonpara-
metrically as degree p splines

f(t) =
p∑

k=0

βkt
k +

K1∑
k=1

bk(t − κ1,k)
p
+ , fi(t) =

p∑
k=0

aikt
k +

K2∑
k=1

uik(t − κ2,k)
p
+ .

Here, for concreteness, we are using the truncated power basis, but other bases
could be used. The knots κ1,1, . . . , κ1,K1 are for the population curve, and the
knots κ2,1 . . . , κ2,K2 are for the subject curves. The numbers of knots K1 and K2

are fixed, but large enough to ensure the desired flexibility. In some applications
one would use K1 = K2, but often using K2 < K1 would be sensible since
the individual subject curves are estimated with less data than the population
curve. To simplify the notation, we take the same spline degree, number of knots,
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and knots for f(·) and fi(·). To avoid overfitting, penalties are imposed on the
truncated spline basis coefficients.

For the population curve, β0, . . . , βp will be fixed effects and b1, . . . , bK will
be independent random coefficients distributed as N(0, σ2

1). In LMM’s, parame-
ters are usually treated as random effects because they are subject-specific and
the subjects have been sampled randomly. Here, b1, . . . , bK are treated as ran-
dom effects for an entirely different reason. Modeling them as random specifies
a Bayesian prior and allows for shrinkage that assures smoothness of the fit. For
the subject curves, the vectors of polynomial coefficients (ai0, . . . , aip) are as-
sumed independent across subjects with a N(0,Ca) distribution, where Ca is an
unknown covariance matrix. This is a typical random effects assumption since
the subjects are sampled randomly. However, some other authors, e.g., Brum-
back and Rice (1998), treat these effects as fixed, presumably because they do
not view the subjects as forming a random sample. When the polynomial coeffi-
cients aik are modeled as random, one issue is how to model the within-subject
correlations between the aij. To reduce the number of unknown parameters, it
would convenient to make the working assumption that there is no within-subject
correlation between these coefficients. However, this assumption is unlikely to
be true and even if true in one parameterization, it would not be true in others,
e.g., it would not hold if t were uncentered even if it did with t mean-centered.
In addition, uik will be treated as independent random coefficients distributed
N(0, σ2

p+3). The nonparametric model (1) can be rewritten as a LMM with p+3
variance components

Y = Xβ + Z1b +
p∑

k=0

Zk+2ak + Zp+3u + ε , (13)

where b ∼ N(0, σ2
1IK), ak = (α1k, . . . , αIk)T ∼ N(0, σ2

k+2II) for k = 0, . . . , p,
u = (u11, . . . , uIK)T ∼ N(0, σ2

p+3IIK), and ε ∼ N(0, σ2
ε In). Here Is denotes the

s× s identity matrix and 0 is a column vector of zeros matching the size for each
normal vector. For details on the matrices X and Zk, 1 ≤ k ≤ p + 3, see the
Appendix A1.

Using the equivalence between the Linear Mixed Model (13) and the non-
parametric model (1), the parameters in the latter can be estimated using avail-
able software, such as S-PLUS (lme function) or SAS (MIXED procedure). The
degree of the penalized spline is generally small, typically 1, 2, or 3 (Ruppert,
Wand and Carroll, 2003). We take p = 1 for simplicity. In this case (ai0, ai1) has
a normal distribution with mean zero and covariance matrix

Ca =

 σ2
2 ρσ2σ3

ρσ2σ3 σ2
3

 ,
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where σ2
2 and σ2

3 are the random intercept and slope variances respectively, and
ρ is the within subject correlation parameter.

Testing for simplifying assumptions, such as linear or constant individual
deviations from the population curve against a general alternative are tests for
zero variance of random effects. For example, consider testing H0 : σ2

4 = 0 vs.
HA : σ2

4 > 0. Because the uik are distributed N(0, σ2
4), under the null hypothesis

all uik = 0 and the model becomes yij = f(tij)+αi0 +αi1tij + εij, which assumes
random linear individual deviations from the population curve f(·). Testing for
random constant deviations can be achieved by testing H0 : σ2

3 = 0, σ2
4 = 0 vs.

HA : σ2
3 > 0 or σ2

4 > 0. In this case, the null hypothesis corresponds to the model
yij = f(tij) + αi0 + εij . Hence, testing for individual polynomial deviations from
the population mean is equivalent to testing for zero variance of random effects
in a particular LMM.

6. Restricted Likelihood Ratio Tests for Zero Variance in Linear Mixed
Models

Consider a LMM with S variance components

Y = Xβ +
S∑

s=1

Zsus + ε , (14)

where β captures p fixed effects, us are random effects, and ε ∼ N(0, σ2
ε In). We

assume that (u1, . . . ,uS) and ε are independent, that the us have mean zero and
covariance matrix σ2

sCs. Suppose that for some S0 ∈ {0, 1, . . . , S − 1} we want
to test

H0 : σ2
S0+1 = 0, . . . , σ2

S = 0 vs. H0 : σ2
S0+1 > 0, or . . . , or σ2

S > 0 .

Let Z = [Z1| . . . , |ZS ], u = (uT
1 , . . . , . . . ,uT

S )T , λs = σ2
s/σ

2
ε , and λ = (λ1, . . . , λS ,

ρT )T , where ρ is the vector containing all correlation parameters. Then (14) can
be written as

Y = Xβ + Zu + ε ,

with E(Y ) = Xβ and Cov (Y ) = σ2
ε Vλ, where Vλ = In + ZDλZT . Let

M =
∑S

s=1 Ms be the size of the matrix Dλ. For estimation we use (11) with
the difference that the smoothing parameter λ is replaced by the vector λ.

The Restricted Likelihood Ratio statistic for testing H0 versus HA is

RLRT = sup
HA

REL(β, σ2
ε ,λ) − sup

H0

REL(β, σ2
ε ,λ) .

Computing RLRT is easy using available software but determining the null finite
sample or asymptotic distribution is not. Standard asymptotic theory does not
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apply in this case because the response variable vector cannot be partitioned into
i.i.d. components.

Good starting points have proved to be important in our simulations. We
constructed a Latin hypercube by taking a matrix with columns corresponding
to grid points for each parameter, and then randomly permuted each column.
Thus, each row of the matrix provides one point in the parameter space, and we
chose the point that minimizes the objective function over these points as the
initial point in the nonlinear minimization algorithm. We used equally spaced
points on the log scale for the λi parameters and equally spaced points for the
correlation parameters.

For the case of LMM’s with one variance component, Crainiceanu and Rup-
pert (2004) give the finite sample and asymptotic distributions of RLRT. For
LMM with more than one variance component, Crainiceanu, Ruppert, Claeskens
and Wand (2002) give the spectral decomposition of RLRT and fast simulation
algorithms in some particular cases. Their results suggest that, in the general
case, a good strategy (which we use here) is to use parametric bootstrap.

7. RLRT Simulation

The basic idea is to estimate the model under the null hypothesis and then
use the parametric bootstrap to obtain the finite sample distribution of RLRT.
This may be computationally intensive, but the algorithm can be made more
efficient using basic matrix computation techniques.

For example, at each step, simulate Y under H0 and maximize REL(β, σ2
ε ,λ)

under H0 and HA. Maximizing under HA with respect to (β, σ2
ε ), one obtains the

profile restricted likelihood REL(λ) for any fixed λ. Using results from Harville
(1977) we obtain that, up to a constant that does not depend on the parameters,
the profile restricted likelihood is

REL(λ) = (n − p − 1) log
{
aY − bY

T Dλ (IM + CDλ)−1 bY

}
+ log {det(IM + CDλ)} , (15)

where aY = Y T P0Y , bY = ZT P0Y , C = ZT P0Z and P0 = In − X(XT X)−1

XT . For details on derivation of (15) see Appendix A2. To obtain the maximum
restricted likelihood under the alternative, one needs to maximize REL(λ) sub-
ject to λ ≥ 0. Under the null hypothesis the first S0 entries of λ are restricted
to be non-negative and the rest are set equal to zero.

The function REL(λ), its Jacobian and Hessian matrices will depend on Y ,
X and Z only through aY , bY and C. Because it does not depend on λ or
the simulated vector Y , the M × M matrix C needs to be computed only once,
before simulation begins. Moreover, because the scalar aY and the M × 1 vector
bY do not depend on λ, they need to be computed only once per simulation.
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A second advantage of (15) is that the matrices Dλ and IM + CDλ are
M × M matrices and not n × n. In general, and for penalized splines in par-
ticular, the number of random effects M is much smaller than the number of
observations n. In our experience, the implementation of the bootstrap depends
on the efficient computation of (IM + CDλ)−1 and its first and second order
derivatives. This can be done relatively easily when M is small to moderate in
size, or the eigenvalues of IM + CDλ are explicit functions of the eigenvalues of
C. For example, in the case of one variance component (S = 1) the eigenvalues
of IM +CDλ are ξs(λ) = 1+λµs, where µs are the eigenvalues of C. For a com-
plete analysis of this case see Crainiceanu and Ruppert (2004) and Crainiceanu,
Ruppert and Vogelsang (2002).

8. Example

To illustrate our methodology we consider a data set from Grizzle and Allen
(1969) and Wang (1998). Data are coronary sinus potassium concentrations
measured on 36 dogs. The measurements on each dog were taken every two
minutes, seven observations for each dog.

Wang (1998) presents four smoothing spline analysis of variance models sim-
ilar to our model (1). He shows how to use nonparametric mixed effects models
for estimating the treatment effects and population mean concentration. This
paper is concerned with testing simplifying assumptions such as random constant
or linear individual deviations from the population mean.

The 36 dogs come from 4 treatments. To illustrate our methodology we
ignore the treatments effects, these effects being subsumed within the subject
(dog) effects.

We consider (1) where both the individual and the population response
curves are modeled as piecewise linear splines with K = 3 knots. The knots
are at 3, 7, 9, and the penalty is the sum of squares of the spline coefficients. As
shown in Section 5, this model is equivalent to a Linear Mixed Model with

Dλ =



λ1IK 0K×I 0K×I 0K×KI

0I×K λ2II ρ
√

λ2λ3II 0I×KI

0I×K ρ
√

λ2λ3II λ3II 0I×KI

0KI×K 0KI×I 0KI×I λ4IKI


.

According to the parameters set to zero, we define 5 nested models corresponding
to increasing degrees of complexity. Model 1 is obtained for σ2

1 = 0, . . . , σ2
4 =
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0, ρ = 0, and corresponds to a linear population curve with no subject effects.
Model 2 is obtained for σ2

2 = 0, σ2
3 = 0, σ2

4 = 0, ρ = 0, and corresponds to a
nonparametric population curve with no subject effects. Model 3 is obtained for
σ2

3 = 0, σ2
4 = 0, ρ = 0, and corresponds to a nonparametric population curve and

subject random intercepts. Model 4 is obtained for σ2
4 = 0, and corresponds to a

nonparametric population curve with random subject linear deviations. Model 5
is the full model where none of the parameters is set to zero and corresponds to
a nonparametric population curve with nonparametric subject deviations. Note
that σ2

i = 0 is equivalent to λi = 0.
Table 1 reports the values of the Restricted Likelihood Ratio statistics cor-

responding to adding successively one variance component:

RLRT = sup
Mi+1

REL(β, σ2
ε ,λ) − sup

Mi

REL(β, σ2
ε ,λ) .

Here σ2
1 is the variance of random coefficients for the population spline coeffi-

cients, σ2
2 and σ2

3 are the variances of individual random intercepts and slopes,
and σ2

4 is the variance random coefficients for the individual spline coefficients.
The p-values were obtained by bootstrapping the null distribution of the RLRT.
We used 2,000 simulations for each distribution. The p-value is 0.05 for testing
M1 versus M2 (RLRT = 1.72). In all other cases, the p-value is much smaller.

Table 1. Longitudinal data nonparametric analysis of variance using re-
stricted likelihood.

Model Hypothesis RLRT(Mi/Mi+1) p-value∗ (Mi/M5)

M1 σ2
1 = 0, . . . , σ2

4 = 0, ρ = 0 1.72 0

M2 σ2
2 = 0, . . . , σ2

4 = 0, ρ = 0 182.71 0

M3 σ2
3 = 0, σ2

4 = 0, ρ = 0 48.52 0

M4 σ2
4 = 0 12.4 0

M5 no restrictions – –

The RLRT values for testing Mi versus M5 can be obtained by simply adding
the values of RLRT between model Mi and M5. Table 1 also shows the p-
values for testing all models Mi versus the full model M5. Simulation of the null
distribution of RLRT statistic in this case is computationally intensive due to
the large number of random effects under the full model (M = 183), which is
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also the dimension of the matrix IM + CDλ discussed in Section 7. Moreover,
the complexity of the simulation algorithm increases linearly with the number of
subjects monitored because five additional random effects (αi0, αi1, uik, 1 ≤ k ≤
3) are needed to model each new subject.

As we have discussed, the null distribution theory is complex because the
parameter is on the boundary under the null, and the data cannot be partitioned
into i.i.d. subvectors. If the data could be so partitioned, then the asymptotic
null distribution for testing that a single variance component is zero would be
a 0.5χ2

0 + 0.5χ2
1 mixture. To illustrate deviations from this distribution, Ta-

ble 2 presents the probability mass at zero (p0) and representative quantiles of
the RLRT null distributions for testing M1 versus M2 (no subject effects and
testing a linear versus a nonparametric population curve) and M4 versus M5

(linear versus nonparametric subject curve). In both situations we are testing
whether one variance component is zero, so we compare these distributions with
the 0.5χ2

0 + 0.5χ2
1 mixture distribution obtained for independent data. Such an

approximation cannot be justified by asymptotic theory because of a lack of in-
dependence, but the approximation may be satisfactory, e.g., for testing M4/M5

but not for testing M1/M2.

Table 2. Longitudinal data nonparametric analysis of variance using re-
stricted likelihood. Here p0 is the null probability the log-likelihood ratio
statistic is 0 and qα is the null αth quantile of the log-likelihood ratio statis-
tic. Mi/Mj uses the exact null distribution for testing Mi versus Mj and
0.5χ2

0 + 0.5χ2
1 is an approximation using a chi-squared mixture.

Distribution p0 q0.70 q0.80 q0.85 q0.90 q0.95

M1/M2 0.68 0.00 0.19 0.40 0.84 1.70

M4/M5 0.52 0.22 0.59 0.86 1.34 2.22

0.5χ2
0 + 0.5χ2

1 0.50 0.28 0.71 1.07 1.64 2.71

The 0.5χ2
0 + 0.5χ2

1 distribution is a conservative approximation for the fi-
nite sample distribution of RLRT for both cases. This is not surprising given
the results in Crainiceanu and Ruppert (2004) and Crainiceanu, Ruppert and
Vogelsang (2002). However, 0.5χ2

0 + 0.5χ2
1 is a better approximation of the null

distribution when testing M4 versus M5. This is somewhat surprising because the
asymptotic theory developed by Stram and Lee (1994) and Self and Liang (1987,
1995) does not directly apply to this case, given the dependence introduced by
the population curve model.
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There are two possible reasons why 0.5χ2
0 + 0.5χ2

1 is a better approximation
when testing M4 versus M5. The first could be that because, conditional on the
population curve, the subjects are independent, a result similar to the one derived
by Self and Liang (1987) for independent observations still holds for conditional
independence. The second reason could be that, under M5, the nonparametric
population curve f(·) is close to being statistically indistinguishable from its
linear component. This is suggested by the small value of RLRT = 1.72 (p-
value=0.05) when testing M1 versus M2 and by the small value of λ1 = 0.04
of the estimated smoothing parameter under M5. If f(·) were replaced by a
linear deterministic function, then the data Y would be partitioned into i.i.d.
subvectors corresponding to each subject and standard asymptotic distribution
would apply. These are interesting research problems that we intend to address
in the future.

Appendix A1

We describe the design matrices from the Linear Mixed Model in (13). For
concreteness, we use the truncated power basis, but other bases could be used
instead. The n× (p+1) matrix X has the (i, j)th row (the row corresponding to
the jth observation on the ith subject) Xij = (1, tij , . . . , t

p
ij) . The n×K matrix

Z1 has the (i, j)th row Z1
ij =

[
(tij − κ1)

p
+, . . . , (tij − κK)p+

]
. For 2 ≤ k ≤ p + 3

the n × I matrix Zk has the form

Zk =



Z1k 0 . . . 0

0 Z2 k . . . 0
...

...
. . .

...

0 0 . . . ZIk


,

where for 2 ≤ k ≤ p+2, Zi k is a J(i)×1 column vector Zi k = (tk−2
i1 , . . . , tk−2

iJ(i))
T

and

Zi p+3 =


(ti1 − κ1)

p
+ . . . (ti1 − κK)p+

...
. . .

...

(ti J(i) − κ1)
p
+ . . . (ti J(i) − κK)p+

 .

Appendix A2

Let Pλ = Vλ
−1 − Vλ

−1X(XT Vλ
−1X)−1XT Vλ

−1 and note that the profile
restricted likelihood is, up to a constant that does not depend on the parameters,

REL(λ) = −{(n − p − 1) log(Y T PλY ) + log(detVλ) + log(det XT Vλ
−1X)} .
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The result in (15) can be obtained by using the following results from Harville
(1977): Pλ = P0−P0ZDλ(IM +ZT P0ZDλ)−1ZT P0 and det(Vλ) det(XT Vλ

−1

X) det(XT X) det(IM + ZT P0ZDλ).
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