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Abstract: In this paper, we study three different types of estimates for the noise-to-

signal ratios in a general stochastic regression setup. The locally linear and locally

quadratic regression estimators serve as the building blocks in our approach. Under

the assumption that the observations are strictly stationary and absolutely regu-

lar, we establish the asymptotic normality of the estimates, which indicates that

the residual-based estimates are to be preferred. Further, the locally quadratic

regression reduces the bias when compared with the locally linear (or locally con-

stant) regression without the concomitant increase in the asymptotic variance, if

the same bandwidth is used. The asymptotic theory also paves the way for a fully

data-driven undersmoothing scheme to reduce the biases in estimation. Numerical

examples with both simulated and real data sets are used as illustration.
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1. Introduction

It is often instructive to think of a stochastic dynamical system as consisting
of two parts: the drift term and the diffusion term. The former is ordinarily
endowed with substantial structure dominated by observable variables, and may
be interpreted as the signal. By contrast, the latter is typically featureless and
unobservable, and may be interpreted as the noise. An important problem of
common interest to many different areas (examples will be given later) is the
estimation of the noise-to-signal ratio. In this paper, we consider two (global)
measures of the noise-to-signal ratio in a general setup.

We assume that {(Yi,Xi)} is a strictly stationary process having the same
marginal distribution as (Y, X), where Y is a scalar and X is a d-dimensional
vector. Let m(x) = E{Y |X = x} and σ2(x) = Var (Y |X = x) > 0. We write a
regression model of Yi on Xi as

Yi = m(Xi) + σ(Xi)εi. (1.1)

Then E{εi|Xi} = 0, and Var (εi|Xi) = 1, although the conditional distribution
of εi given Xi = x may still depend on x. For Xi = (Yi−1, . . . , Yi−d), (1.1) is an
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autoregressive model with inhomogeneous noise. We define two measures of the
noise-to-signal ratio as follows.

ζ2 =
E{σ2(X)}

Var {m(X)} , and ξ2 =
E{σ2(X)}
E{m2(X)} . (1.2)

Formally, they are motivated by the decompositions Var (Y ) = Var {m(X)} +
E{σ2(X)} and E(Y 2) = E{m2(X)}+E{σ2(X)} respectively. A related measure
is Pearson’s correlation ratio

η2 =
Var {m(X)}

Var (Y )
. (1.3)

Obviously, η2 = 1/(1 + ζ2). Doksum and Samarov (1995) reported some inter-
esting results on estimating η2 based on independent and identically distributed
observations.

Our direct motivation to estimate noise-to-signal ratio comes from the need
to detect operational determinism studied by Yao and Tong (1998a). In fact, a
sufficiently small value of ξ2 suggests that the system may be considered opera-
tionally deterministic, and therefore all the powerful techniques for deterministic
systems, e.g. correlation dimension, Lyapunov exponents and so on, may then be
brought to bear. (See e.g. Tong (1995)). On the other hand, the potential appli-
cation of the two measures defined in (1.2) is diverse. For example, in the context
of prediction, |ζ| can be considered an average relative error in prediction and
used to guard against excessive claims in respect of any forecasting algorithm. In
channel communications, we may use both ξ2 and ζ2 to assess the information
loss in the transmission through a noisy channel if we take X as an input and
Y as an output. (See e.g. Feinstein (1958)). In nonparametric regression, the
measure ζ2 is used as an indicator of the intrinsic difficulty of the problem of es-
timation (Fan and Gijbels (1995)). Noise-to-signal ratios have also played a role
in quality control of experimental design (Box (1988)). In the vast engineering
literature of signal processing, extraction of the signal by filtering out the noise
is essentially equivalent to reducing the noise-to-signal ratio in the model. (See,
e.g. Broomhead (1995), and the references therein.)

The purpose of this paper is to develop nonparametric estimates for noise-
to-signal ratios based on locally linear and locally quadratic regression smoothers
in such a way that the results are immediately applicable in practice.

In fact, we present and develop three alternative estimates for ζ2 and ξ2.
Two simple data-driven bandwidths, derived from the extremal properties of
the ratios, are applied. Further, we provide a simple but intuitively appeal-
ing undersmooth scheme to reduce the biases of the estimates, which is entirely
data-determined. Asymptotic normality for the estimates is established at the
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convergence rate n
1
2 which shows that the estimates based on locally quadratic

smoothers are less biased than those based on locally linear smoothers without
any concomitant increase in the variance, if the same bandwidth is used. In fact,
estimates based on locally quadratic and locally linear (also locally constant)
smoothers admit the same first-order asymptotic variances. (See Remark 2 in
Section 3 below.) A close analogy to this phenomenon is the estimation of inte-
grated squared density functions where the first order asymptotic variance does
not depend on the kernel function (Hall and Marron (1987)). Both of them are
consequences of the Hadamad differentiability which facilitates the convergence
rate n

1
2 ; see Bickel and Ritov (1988) and Fan (1991).

Doksum and Samarov (1995) established the asymptotic normality for three
estimates of η2 defined in (1.3) based on the Nadaraya-Watson estimate with in-
dependent and identically distributed observations. In terms of estimation of η2,
our results could be viewed as further developments in several aspects (Remark
4 in Section 3 below). First, we have proved the asymptotic normality under
a more general setup which includes both time series data and i.i.d. observa-
tions as special cases. Second, our estimators are based on locally linear and
locally quadratic smoothers. More importantly, we have derived explicit formu-
las for asymptotic biases. These enable us to compare the different estimates
qualitatively. In fact, from the qualitative comparison, we may single out the
residual-based estimate as the best amongst the three types of estimates. (See
Remark 3 in Section 3 below.) Simulation studies lend further support to this
conclusion.

The paper is organized as follows. In Section 2, we propose estimates for ζ2

and ξ2, including procedures of bandwidth choice. In Section 3, we establish the
asymptotic properties of the estimates. To save space, we state the results for ζ2

only. In Section 4, we present a scheme for bias reduction by undersmoothing.
Simulation studies are conducted as an illustration. Applications with three real
data sets are also reported. Proofs are relegated to the Appendix.

2. Estimation of Noise-to-signal Ratios

2.1. Locally polynomial estimators of m(.)

Since estimators for m(.) are the building blocks for our approach, we de-
scribe briefly the locally linear and locally quadratic regression estimators for
m(.). For more detailed discussion on local polynomial smoothing, see Fan and
Gijbels (1996).

Given the observations {(Xi, Yi); 1 ≤ t ≤ n}, one of the conventional
nonparametric estimators of m(x) is the Nadaraya-Watson kernel regression es-
timator, which can be viewed as the minimizer of the following least squares
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problem
n∑

i=1

{Yi − a}2K

(
Xi − x

h

)
,

where K(.) is a kernel function on Rd and h > 0 is the bandwidth. However,
if the derivative of m at the point x exists, by Taylor’s expansion, we have
m(z) ≈ m(x)+ṁ(x)(z−x). This suggests the locally linear regression estimator:
m̂(x) = â, where (â, b̂) minimizes

n∑
i=1

{Yi − a − bτ (Xi − x)}2K

(
Xi − x

h

)
. (2.1)

It has been pointed out that the locally linear regression method has various
advantages over the Nadaraya-Watson method (see, for example, Fan (1992),
Hastie and Loader (1993)). Further, we consider the locally quadratic estimator:
m̂(x) = â, where (â, b̂, ĉ) minimizes

n∑
i=1

[Yi − a − bτ (Xi − x) − cτvec{(Xi − x)(Xi − x)τ}]K
(

Xi − x

h

)
. (2.2)

In the above expression, c ∈ Rd(d+1)/2 and vec(A) = (a11, a22, . . . , ad,d, a12, . . . ,

a1,d, a23, . . . , ad−1,d)τ for any d × d symmetric matrix A = (aij).

2.2. Estimates for ζ2 and ξ2

Note that Var {m(X)} = Cov{m(X), Y }. We may characterize ζ2 as follows:

ζ2 =
E{Y − m(X)}2

Var {m(X)} =
E{Y − m(X)}2

Var (Y ) − E{Y − m(X)}2

= inf
g

E{Y − g(X)}2

Var (Y ) − E{Y − g(X)}2
(2.3)

=
Var (Y ) − Cov{m(X), Y }

Cov{m(X), Y } =
1 − Corr2{g(X), Y }

Corr2{g(X), Y }
= inf

g

1 − Corr2{g(X), Y }
Corr2{g(X), Y } , (2.4)

where the infimum is taken over all real-valued functions g(X) with finite second
moments.

Let m̂(.) be an estimator of m(.) constructed as in Section 2.1. From (2.3)
and (2.4), we may define the estimates for ζ2 as follows.

ζ̂2
1 =

∑n
i=1{Yi − m̂(Xi)}2w(Xi)∑n
i=1 m̂2(Xi)w(Xi) − nm̄2

,
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ζ̂2
2 =

∑n
i=1{Yi − m̂(Xi)}2w(Xi)∑n

i=1 Y 2
i w(Xi) − nȲ 2

w −∑n
i=1{Yi − m̂(Xi)}2w(Xi)

,

ζ̂2
3 =

∑n
i=1 Y 2

i w(Xi) − nȲ 2
w − {∑n

i=1 m̂(Xi)Yiw(Xi) − nm̄Ȳw

}
∑n

i=1 m̂(Xi)Yiw(Xi) − nm̄Ȳw
,

where w(.) is a nonnegative weight function, Ȳw = n−1 ∑n
i=1 Yiw(Xi) and m̄ =

n−1 ∑n
i=1 m̂(Xi)w(Xi).

By reference to their relation with the estimator m̂(.), we call ζ̂2
1 , ζ̂2

2 and ζ̂2
3

the plug-in estimate, the residual-based estimate and the correlation estimate,
respectively.

Due to the presence of the weight function w(.) in their definitions, estimates
ζ̂2
i are not necessarily consistent estimates for ζ2. Instead they estimate

ζ2
w = E{σ2(X)w(X)}/[E{m2(X)w(X)} − E2{m(X)w(x)}] (2.5)

consistently. Note that weight functions are invariably introduced when global
measures of deviation are used in order to avoid large bias in the estimation near
the boundary of the support of the density function p(.) of X (cf. Marron and
Härdle (1986), and Doksum and Samarov (1995)). Typically, the weight function
w(.) will be chosen to be 1 in the central part of the support of p(.) and descend
to 0 near the boundary of the support of p(.).

Similar estimates for ξ2 can be defined as follows.

ξ̂2
1 =

∑n
i=1{Yi − m̂(Xi)}2w(Xi)∑n

i=1 m̂2(Xi)w(Xi)
,

ξ̂2
2 =

∑n
i=1{Yi − m̂(Xi)}2w(Xi)∑n

i=1 Y 2
i w(Xi) −∑n

i=1{Yi − m̂(Xi)}2w(Xi)
,

ξ̂2
3 =

∑n
i=1 Y 2

i w(Xi) − nȲ 2
w − {∑n

i=1 m̂(Xi)Yiw(Xi) − nm̄Ȳw
}

nȲ 2
w +

∑n
i=1 m̂(Xi)Yiw(Xi) − nm̄Ȳw

.

2.3. Bandwidth selection

As we shall see in Section 3 below, all the estimates ζ̂2
i (also ξ̂2

i ) are
√

n-
consistent and asymptotically normal. Therefore, the standard choice of the
bandwidth h which minimizes the asymptotic mean squared error cannot be
applied, unless higher-order asymptotics are entertained. Even so, plug-in esti-
mates for some unknown quantities involved must be evaluated, which could be
cumbersome. Instead, as a first attempt, we consider two simple and direct data-
driven methods for the selection of h, namely the cross-validation estimate and
the maximum correlation estimate. The latter has been used in the estimation
of Pearson’s correlation ratio by Doksum and Samarov (1995).



756 QIWEI YAO AND HOWELL TONG

Based on the extremal property in (2.3) and (2.4), we may choose h as
follows. Define

ĥ2 = arg min
h

n∑
i=1

{Yi − m̂−i(Xi)}2w(Xi), (2.6)

ĥ3 = arg max
h

{∑n
i=1 m̂−i(Xi)Yiw(Xi) − nm̄−Ȳw

}2∑n
i=1 m̂2

−i(Xi)w(Xi) − nm̄2−
, (2.7)

where m̂−i(.) is the estimator of m(.) without the observation (Xi, Yi), and
m̄− = 1

n

∑n
i=1 m̂−i(Xi)w(Xi). To prevent possible over-fitting, we use leave-one-

out estimator for m(.) in the above optimization. (It is hardly necessary to leave
more than one out since X is random; see Yao and Tong (1998b).) We suggest
using the cross validation estimate ĥ2 in estimates ζ̂2

2 and ξ̂2
2 , and the maximum

correlation bandwidth ĥ3 in estimates ζ̂2
3 and ξ̂2

3 .

3. Asymptotic Properties

For simplicity of presentation, in this section we treat only univariate X,
that is d = 1. We use p(.) to denote the marginal density function of X, and
g(.|x) the conditional density function of Y given X = x. For any f1 and f2

which are functions of Y and X, we use the notation Ew(f1) = E{f1w(X)},
Covw(f1, f2) = Ew(f1f2) − Ew(f1)Ew(f2), and Var w(f1) = Covw(f1, f1).

We start with some regularity conditions.
(C1) The fourth order derivative of m(.) is uniformly continuous on compact

sets. E(Y 4(1+δ)) < ∞, where δ ∈ [0, 1) is a constant. Further, ∂2g(y|x)
∂x2 is

uniformly continuous in x on compact sets.
(C2) The kernel function K is a symmetric density function with a bounded

support in R. Further, |K(x1)−K(x2)| ≤ c|x1 −x2| and |p(x1)− p(x2)| ≤
c|x1 − x2| for x1, x2 ∈ R.

(C3) The weight function w(·) is smooth, and has a compact support contained
in {p(x) > 0}.

(C4) The process {(Xi, Yi)} is absolutely regular, i.e.

β(j) ≡ sup
i≥1

E


 sup

A∈F∞
i+j

|P (A|F i
1) − P (A)|


 → 0, as j → ∞,

where F j
i is the σ-field generated by {(Xk, Yk) : k = i, . . . , j}, (j ≥ i).

Further,
∑∞

j=1 j2β
δ

1+δ (j) < ∞ for the δ given in (C1). (We assume that
ab = 0 when a = b = 0.)

(C5) As n → ∞, h → 0 and lim infn→∞ nh4 > 0.
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The condition on the boundedness of the support of K(·) in (C2) is imposed
for brevity of proofs, and can be removed at the cost of lengthier ones. In
particular, the Gaussian kernel is allowed. The assumption on the convergence
rates of h in (C5) is also for technical convenience. It can be weakened by applying
Collomb’s inequality and involves more technical details. The assumption of the
convergence rates of β(j) is also not the weakest possible.

Remark 1. When {(Xt, Yt)} are independent, (C4) holds with δ = 0 and the
condition in (C1) reduces to E(Y 4) < ∞. On the other hand, if (C4) holds
with δ = 0, there are at most finitely many non-zero β(j)′s. This means that
there exists an integer j0, 0 < j0 < ∞, for which (Xi, Yi) is independent of
{(Xj , Yj), j ≥ i + j0}, for all i ≥ 1.

Theorem 1. Suppose conditions (C1) — (C5) hold. Let m̂(.) be the locally
linear estimator of m(.) derived from (2.1). Then for i = 1, 2 and 3, as n → ∞,
n

1
2 (ζ̂2

i − ζ2
w − λn,i)

d−→ N (0,Var (Zζ)) , where

λn,1 =−h2ζ2
wσ2

0

Covw{Y, m̈(X)}
Var w{m(X)} +o(h2), λn,2 =

h4σ4
0

4
(1+ζ2

w)
Ew{m̈2(X)}
Var w{m(X)}+o(h4),

λn,3 = −h2σ2
0

2
(1 + ζ2

w)
Covw{Y, m̈(X)}
Var w{m(X)} + o(h2),

Zζ =
w(X)

Var w{m(X)} [σ2(X)ε2 − ζ2
w{m2(X) + 2m(X)σ(X)ε − 2Y Ew(Y )}].

In the above expressions, ε = {Y − m(X)}/σ(X), m̈(x) = d2

dx2 m(x), σ2
0 =∫

x2K(x)dx, and ζ2
w is defined as in (2.5).

Theorem 2. Suppose conditions (C1) — (C5) hold. Let m̂(.) be the locally
quadratic estimator of m(.) derived from (2.2). Then for i = 1, 2 and 3, as
n → ∞, n

1
2 (ζ̂2

i − ζ2
w − πn,i)

d−→ N (0,Var (Zζ)) , where Zζ is the same as in
Theorem 1, and

πn,1 = −2h4ζ2
wµ∗

Covw{Y,m(4)(X)}
Var w{m(X)} + o(h4),

πn,2 = h8µ2
∗(1 + ζ2

w)
Ew{m(4)(X)}2

Var w{m(X)} + o(h8),

πn,3 = −h4µ∗(1 + ζ2
w)

Covw{Y,m(4)(X)}
Var w{m(X)} + o(h4).

In the above expressions, µ∗ = µ2
4−µ2µ6

24(µ4−µ2
2)

, µi =
∫

xiK(x)dx, and ζ2
w is defined as

in (2.5).
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Remark 2. The estimate for the noise-to-signal ratios based on locally quadratic
regression appears to be of higher order infinitesimal while the variance remain
unchanged. However, a smaller bandwidth should be used in local linear estima-
tion; see Section 4.1 and also Remark 5 below.

Remark 3. The ζ̂2
i ’s have the same asymptotic variance, but the biases are of dif-

ferent order. Note that the residual-based estimate ζ̂2
2 depends on the estimator

m̂(.) through n−1 ∑n
i=1{Yi − m̂(Xi)}2 only, which estimates Ew{Y − m(X)}2 =

Ew{σ2(X)} with a bias of the order r2
n, where rn denotes the order of the bias of

m̂(.). However, the bias in estimating Ew{m2(X)} via n−1 ∑n
i=1{m̂(Xi)}2 is of

the order rn. This explains why the bias of ζ̂2
2 is of a higher order infinitesimal

than those of ζ̂2
1 and ζ̂2

3 . The same observation applies to the ξ̂2
i ’s. Similar phe-

nomenon has been observed in the estimation of conditional variance functions
by Fan and Yao (1998).

Remark 4. For Pearson’s correlation ratio (1.3), we define estimates η̂2
i =

1/(1 + ζ̂2
i ) for i = 1, 2, 3. It follows from Theorems 1 and 2 that all the η̂2

i ’s are
asymptotically normal with common asymptotic variance Var (Zη), where

Zη = −
{

Var w{m(X)}
Var w(Y )

}2

Zζ =
Ew{σ2(X)}
Var 2

w(Y )
{Y −Ew(Y )}2− 1

Var w(Y )
σ2(X)ε2+c.

The asymptotic bias of η̂2
i is −{Var w{m(X)}

Var w(Y )
}2λn,i when m̂(.) is a locally linear

smoother, and is −{Var w{m(X)}
Var w(Y )

}2πn,i when m̂(.) is a locally quadratic smoother.

The three estimates for η2 proposed by Doksum and Samarov (1995) have the
same asymptotic variance Var (Zη) (their Proposition 2.2).

4. Bias Correction and Examples

4.1. Bias correction

There are two obvious options to correct the bias in nonparametric estima-
tion: (i) estimate the bias explicitly by using the asymptotic formulas derived in
Theorems 1 and 2; (ii) undersmooth so that the bias is rendered negligible. The
first approach involves estimating some unknown functions and is not pursued in
this paper. The major difficulty in the second approach is to determine how much
to undersmooth. However, for the problems concerned in this paper, we propose
a simple and natural way of undersmoothing which is entirely determined by the
data.

Theorems 1 and 2 show that we could use a locally quadratic estimator of
m(.) as the building block, since the derived estimates for noise-to-signal ratios
have smaller biases if the same bandwidth is used. On the other hand, it is well
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known that the bandwidth used in locally quadratic regression should be greater
than that used in locally linear regression, simply because a quadratic function
can accommodate more local variation in the data. In fact, the best bandwidth
for estimating m(.) is of the order n−1/5 in the locally linear fitting, and is of the
order n−1/9 (with symmetric kernel) in the locally quadratic fitting. (See Section
3.2.3 of Fan and Gijbels (1996) and Section 4 of Hjellvik, Yao and Tjøstheim
(1998).)

Based on the above observation, we propose the following scheme for un-
dersmoothing: determine bandwidth ĥ2 or ĥ3 using either (2.6) or (2.7) with
the locally linear estimator of m(.), and estimate ξ2 and ζ2 using the locally
quadratic estimator of m(.) with either ĥ2 or ĥ3.

4.2. Simulation results

We illustrate our proposal through three numerical examples below. A Gaus-
sian kernel has been used throughout. For illustration, we calculate the estima-
tors ζ̂2

i and ξ̂2
i with both locally linear and locally quadratic estimator of m(.),

and i = 1, 2, 3. The cross validation bandwidth ĥ2 is used for the residual-based
estimates as well as the plug-in estimates, and the maximum correlation band-
width ĥ3 is used for the correlation estimates.

The results from two simulated models (Examples 1 and 2) support the
following general observations from Theorems 1 and 2.
• The bias of the residual-based estimate ζ̂2

2 (resp. ξ̂2
2) is smaller than those

of ζ̂2
1 and ζ̂2

3 (resp. ξ̂2
1 and ξ̂2

3). Therefore, the residual-based estimates are
preferable.

• The variances of all the estimators ζ̂2
i
′s are about the same, and so are the

variances of all the estimators ξ̂2
i
′s.

• The estimators based on locally quadratic smoother of m(.) are significantly
less biased than those based on the locally linear smoother.

Remark 5. As a word of caution, our comparisons are based on the fact that we
used the same bandwidth in both locally linear and locally quadratic estimates.
For applications to high-dimensional X, locally quadratic fit involves estimating
many local parameters and requires a reasonably large bandwidth in order to
include enough data points. On the other hand, locally linear fit with a smaller
bandwidth is easy to implement and will provide competitive performance in
term of bias as well.

Example 1. Consider the model

Yi = 2 − 5Xi + 5exp{−100(Xi − 1
2
)2} + τ exp{|Xi − 1

2
|}εi,
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where {Xi} and {εi} are two independent random series, Xi’s are independent
with the common distribution U(0, 1) and εi’s are independent and standard
normal. This is a generalized “bump” model considered by Härdle (1990) and
Doksum and Samarov (1995). We simulated 400 random samples of size n = 200
for each of four different values of τ : 2, 1, 1/

√
2, and 1/2. We let w(.) ≡ 1.

For each sample, we calculate the estimators ζ̂2
i and ξ̂2

i for i = 1, 2, 3. The
results are summarized in Table 1. We also calculated ξ̂2

i (i = 1, 2, 3) over a wide
range of values of bandwidth h. Figure 1 plots the median over 400 Monte Carlo
trials of estimators ξ̂2

i against h. Note that ĥ2 (with mean 0.034 and standard
deviation 0.0076) and ĥ3 (with mean 0.035 and standard deviation 0.0082) lie
in a reasonably robust area. Further, the estimators based on locally quadratic
smoother are less biased than those based on locally linear smoother over different
values of h, and ξ̂2

2 has the smallest bias.

Table 1. The average biases and standard deviations (STDV) of the esti-
mates in Example 1 based on locally linear (LL) and locally quadratic (LQ)
estimators of m(.) in Monte Carlo trials with 400 replications with sample
size n = 200.

τ2 = 1
4 τ2 = 1

2 τ2 = 1 τ2 = 4
(ξ2, ζ2) (0.094, 0.097) (0.188, 0.194) (0.375, 0.388) (1.502, 1.552)

LL LQ LL LQ LL LQ LL LQ
ζ̂2
1 (ĥ2) Bias 0.020 0.008 0.045 0.019 0.103 0.044 0.543 0.175

STDV 0.019 0.018 0.042 0.038 0.101 0.087 0.700 0.532
ζ̂2
2 (ĥ2) Bias 0.015 0.007 0.031 0.017 0.063 0.034 0.221 0.063

STDV 0.018 0.017 0.038 0.037 0.087 0.084 0.527 0.478
ζ̂2
3 (ĥ3) Bias 0.042 0.012 0.070 0.026 0.125 0.050 0.401 0.115

STDV 0.022 0.018 0.045 0.038 0.101 0.087 0.602 0.506
ξ̂2
1 (ĥ2) Bias 0.018 0.007 0.042 0.018 0.094 0.039 0.468 0.142

STDV 0.019 0.018 0.041 0.037 0.094 0.083 0.591 0.475
ξ̂2
2 (ĥ2) Bias 0.014 0.007 0.029 0.015 0.058 0.030 0.186 0.041

STDV 0.018 0.017 0.038 0.037 0.083 0.080 0.471 0.433
ξ̂2
3 (ĥ3) Bias 0.039 0.011 0.066 0.024 0.116 0.046 0.350 0.088

STDV 0.021 0.018 0.043 0.038 0.095 0.083 0.529 0.457

(For τ2 = 1
4 , 1

2 , 1 and 4, the mean and STDV of ĥ2 are (0.025, 0.004), (0.030, 0.006), (0.035, 0.008)

and (0.050, 0.015) respectively; the mean and STDV of ĥ3 are (0.026, 0.005), (0.030, 0.006),

(0.035, 0.008) and (0.048, 0.016) respectively.)

Example 2. Consider the quadratic autoregressive model

Xt+1 = 3.76Xt − 0.235X2
t + 0.3et,

where {et} are independent with the common distribution U [−√
3,
√

3]. We
consider three cases: Yt = Xt+m for m = 1, 2 and 3. Note that for m = 2



ESTIMATION OF RATIOS OF NOISE TO SIGNAL 761

or 3, the conditional variance functions are no longer constant. We evaluate
the exact values of the conditional mean functions numerically for m = 2 and
3. Based on this, the true values of ζ2

w and ξ2
w can be easily obtained. We set

w(x) = I[2.5,14.5](x) which corresponds to about 80% inner sample range of the
data. We simulated 400 random samples of size n = 300. The results from
simulation are summarized in Table 2.

0.02 0.04 0.06 0.08 0.10 0.12

0
.4

0
.6

0
.8

1
.0

h

Figure 1. The medians over 400 Monte Carlo trials of six estimates for ξ2 as
functions of the bandwidth h. The horizontal line indicates the true value
of ξ2 = 0.375. From bottom to top: ξ̂2

2 with locally quadratic regression,
ξ̂2
1 with locally quadratic regression, ξ̂2

3 with locally quadratic regression, ξ̂2
2

with locally linear regression, ξ̂2
1 with locally linear regression, and ξ̂2

3 with
locally linear regression.

Example 3. For the deterministic model

Xt+1 = 4Xt − 0.25X2
t ,

we consider the cases Yt = Xt+m for m = 1, 3 and 5. The data range from 0
to 1. It is easy to see that both ζ2 and ξ2 are 0. Let w(x) ≡ 1. We simulated
400 random samples of size n = 200. The results from simulation are summa-
rized in Table 3. Although the asymptotic results stated in Section 3.1 do not
strictly apply to purely deterministic models (i.e. with zero noise variance), the
simulation results lend some support to the general conclusions. For example,
the estimates based on locally quadratic regression are less biased than those
based on the locally linear regression (with the same h), and the residual-based
estimates are better than the other two types of estimates.
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Table 2. The average biases and standard deviations (STDV), multiplying
by 100, of the estimates in Example 2 based on locally linear (LL) and locally
quadratic (LQ) estimators of m(.) in Monte Carlo trials with 400 replications
with sample size n = 300.

m = 1 m = 2 m = 3
(100 × ξ2, 100 × ζ2) (0.077, 0.853) (0.432, 2.538) (1.439, 9.249)

LL LQ LL LQ LL LQ
ζ̂2
1 (ĥ2) Bias -0.491 -0.402 -0.928 -0.960 -1.736 -1.001

STDV 0.027 0.026 0.203 0.189 0.711 0.783
ζ̂2
2 (ĥ2) Bias -0.301 -0.291 -0.901 -0.901 -1.552 -0.865

STDV 0.026 0.026 0.190 0.192 0.708 0.530
ζ̂2
3 (ĥ3) Bias 0.419 -0.388 -1.006 0.676 -1.696 -1.299

STDV 0.032 0.042 0.195 0.239 0.717 0.621
ξ̂2
1 (ĥ2) Bias -0.016 -0.010 -0.082 -0.048 -0.206 -0.020

STDV 0.005 0.004 0.059 0.062 0.234 0.233
ξ̂2
2 (ĥ2) Bias -0.016 -0.004 -0.077 -0.045 -0.201 0.102

STDV 0.004 0.003 0.059 0.060 0.233 0.242
ξ̂2
3 (ĥ3) Bias 0.013 -0.006 0.086 -0.067 0.251 -0.138

STDV 0.006 0.009 0.077 0.057 0.358 0.237

(For m=1, 2 and 3, the mean and STDV of ĥ2 are (0.353, 0.003), (0.360, 0.004) and (0.271, 0.003)

respectively; the mean and STDV of ĥ3 are (0.491, 0.035), (0.359, 0.006) and (0.284, 0.003)

respectively.)

Table 3. The average means and standard deviations (STDV) of the esti-
mates in Example 3 based on locally linear (LL) and locally quadratic (LQ)
estimators of m(.) in Monte Carlo trials with 400 replications with sample
size n = 200. The true values of both ξ2 and ζ2 are 0.

m = 1 m = 3 m = 5
LL LQ LL LQ LL LQ

ζ̂2
1 (ĥ2) Mean 0.0000 0.0000 0.0006 0.0000 0.1265 0.0458

STDV 0.0000 0.0000 0.0006 0.0000 0.0608 0.0366
ζ̂2
2 (ĥ2) Mean 0.0000 0.0000 0.0006 0.0000 0.1088 0.0429

STDV 0.0000 0.0000 0.0006 0.0000 0.0471 0.0337
ζ̂2
3 (ĥ3) Mean 0.0000 0.0000 0.0053 0.0011 0.1390 0.0635

STDV 0.0000 0.0000 0.0048 0.0036 0.1100 0.0645
ξ̂2
1 (ĥ2) Mean 0.0000 0.0000 0.0002 0.0000 0.0344 0.0139

STDV 0.0000 0.0000 0.0002 0.0000 0.0155 0.0111
ξ̂2
2 (ĥ2) Mean 0.0000 0.0000 0.0002 0.0000 0.0328 0.0135

STDV 0.0000 0.0000 0.0002 0.0000 0.0145 0.0107
ξ̂2
3 (ĥ3) Mean 0.0000 0.0000 0.0017 0.0004 0.0402 0.0191

STDV 0.0000 0.0000 0.0016 0.0012 0.0311 0.0195

(For m=1, 3 and 5, the mean and STDV of ĥ2 are (0.097, 0.000), (0.079, 0.006) and (0.066, 0.000)

respectively; the mean and STDV of ĥ3 are (0.106, 0.004), (0.067, 0.001) and (0.051, 0.001)

respectively.)
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4.3. Applications

Finally, we apply the procedure to the following three data sets.
(i) The Great Salt Lake (GSL) data from Utah. We have fitted the bi-weekly

volume data (the first 3200 points) of the GSL with a nonlinear autoregressive
model with sampling time 12 and order 4. The order was determined by the cross-
validation method. For the information on this data set, we refer to Sangoyomi,
Lall and Abarbanel (1996).

(ii) Wolf’s annual sunspot numbers (1700-1994). We have fitted the data with
the optimal subset regression model determined by the cross-validation method,
and it consists of the lagged variables at lags 1, 2, and 4. (See Yao and Tong
(1994)).

(iii) The monthly New York measles data. In order to avoid possible outliers,
we use only the first 158 points. We have fitted the data, on the natural log base,
with the optimal subset regression model determined by the the cross-validation
method, and it consists of the lagged variables at lags 1, 4, and 7.

We divide the data by their standard deviation first for each data set. We
apply both the residual-based estimate and the plug-in estimate with the cross
validation bandwidth ĥ2, and the correlation estimate with the correlation band-
width ĥ3. We use w(.) as the indicator function of the set on which the (esti-
mated) density function of X is not smaller than 0.01. The results are reported
in Table 4. Note that the fact that the values of ξ̂2

i for the GSL data are small
lends further support to the suggestion that this data set might be treated as
operationally deterministic. (See Sangoyomi, Lall and Abarbanel (1996), Yao
and Tong (1998a)). It is also clear that the noise level in the sunspot data is
higher, comparing to, say, log measles data.

Table 4. Estimated noise-to-signal ratios for three data sets.

data set GSL Sunspot numbers Measles data
regressors Yt−12, Yt−24, Yt−36, Yt−48 Yt−1, Yt−2, Yt−4 Yt−1, Yt−4, Yt−7

n 3152 291 151

ζ̂2
1 0.655 1.172 0.100

ζ̂2
2 0.667 1.211 0.097

ζ̂2
3 0.687 1.210 0.145

ξ̂2
1 0.028 0.608 0.073

ξ̂2
2 0.029 0.627 0.072

ξ̂2
3 0.032 0.627 0.068

ĥ2 0.18 0.82 0.58

ĥ3 0.22 1.34 1.02
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Appendix

We present the proof of Theorem 1 only, the proof for Theorem 2 is similar.
We consider only the cases with δ > 0. When δ = 0, the proof is more direct and
simpler (see Remark 1).

We use the same notation as in Section 3. We say Bn(x) = B(x) + op(bn)
(resp. Op(bn)) uniformly for x∈G if supx∈G |Bn(x)−B(x)|=op(bn)(resp.Op(bn)).

Let β̂ ≡ (m̂(x), ˆ̇m(x))τ be the locally linear estimators of m(x) and its deriva-
tive ṁ(x) = d

dxm(x) derived from (2.1). In the case d = 1, the least squares
theory gives

β̂ = (XτWX)−1XτWY, (A.1)

where Y = (Y1, . . . , Yn)τ , W = diag(K(X1−x
h ), . . . ,K(Xn−x

h )), and X is an n× 2
matrix with (1,Xi − x) as the ith row. More specifically,

m̂(x) =
1
nh

n∑
i=1

Wn

(
Xi − x

h
, x

)
Yi, (A.2)

where
Wn(t, x) = (1, 0)S−1

n (x)(1, t)τ K(t), (A.3)

and Sn(x) is a 2 × 2 matrix with the (i, j)-th element si+j−2(x), and

sj(x) =
1

nh

n∑
i=1

(
Xi − x

h

)j

K

(
Xi − x

h

)
. (A.4)

Lemma 1. Assume that conditions (C2), (C4) and (C5) hold. For any bounded
subset G ⊂ R, as n → ∞, supx∈G |sj(x) − E{sj(x)}| = op(h), 0 ≤ j ≤ 4.

Proof. We prove only the case with j = 0. First we apply an exponential type
inequality (Theorem 1.3(2) in Bosq (1996)) to prove that for any ε > 0 and
x ∈ G,

P{|s0(x) − E s0(x)| ≥ hε} ≤ 4e−c1h3n + c2h
−1n−( 3

2δ
+ 5

4
) ≡ πn, (A.5)

where c1, c2 > 0 are constants independent of x.
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Let X∗
i = Kh(Xi − x) − E{Kh(Xi − x)}, where Kh(x) = h−1K(x/h). By

(C2), |X∗
i | ≤ ch−1. Using Bosq’s notation with q = [n1/4] and p = n/(2q), we

have

σ2(q)= max
0≤j≤2q−1

E{([jp] + 1 − jp)X∗
[jp]+1 + X∗

[jp]+2 + · · · + X∗
[(j+1)p]

+((j + 1)p − [(j + 1)p])X∗
[(j+1)p+1]}2

≤ max
0≤j≤2q−1




∑
[jp]<i≤[(j+1)p+1]

E(X∗
i )2+2p∗

∑
[jp]+1<i≤[(j+1)p+1]

|E(X∗
[jp]+1X

∗
i )|




≤ max
0≤j≤2q−1


cp∗h−1 + 2p∗h−(2+ 2δ

1+δ
)

p∗−1∑
j=1

β
δ

1+δ (j)


 = O(ph−1),

where p∗ = [(j + 1)p + 1] − [jp] + 1. The last inequality follows from Lemma 1
of Yoshihara (1976). Therefore, ν2(q) = 2

p2 σ2(q) + c = O(p−1h−1). By Theorem
1.3(2) of Bosq (1996), the LHS of (A.5) is not greater than

4 exp

{
− ε2h2

8ν2(q)
q

}
+ 22

(
1 +

8c
ε2h2

)1/2

qβ

([
n

2q

])

= 4e−c1h3n + 22
(

1 +
8c

ε2h2

)1/2

n
1
4 β

([
n3/4

2

])
.

It follows from (C4) that β(n) = o(n−2(1+δ)/δ). Therefore, the second term
on the RHS of the above expression is bounded above by c2h

−1n1/4n− 3(1+δ)
2δ =

c2h
−1n− 3

2δ
− 5

4 . Thus, (A.5) holds.
Now we cover G by a finite number of open intervals Bk centered at xk in

such a way that

G ⊂
ln⋃

k=1

Bk, sup
x∈Bk

|x − xk| ≤ h3+ε0 , ln ≤ ch−(3+ε0), (A.6)

where ε0 ∈ (0, 1) is a constant. Consequently, for x ∈ Bk, |Kh(Xi−x)−Kh(Xi−
xk)| ≤ ch1+ε0 for all Xi, where c is independent of k. Therefore, supx∈Bk

|s0(x)−
s0(xk)−Es0(xk) + Es0(xk)| ≤ ch1+ε0 . It follows from the above arguments that

P{sup
x∈G

|s0(x) − E s0(x)| ≥ hε}
≤P{ max

1≤k≤ln
|s0(xk)−E s0(xk)|+ max

1≤k≤ln
sup
x∈Bk

|s0(x)−E s0(x)−s0(xk)+E s0(xk)|≥hε}

≤P{ max
1≤k≤ln

|s0(xk)−E s0(xk)|+ch1+ε0 ≥ hε} ≤ lnπn,

which converges to 0 (see condition (C5)). The proof is complete.
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Lemma 2. Assume that conditions (C2), (C4) and (C5) hold, and G ⊂ {p(x) >

0} is a compact set on which m̈(x) is uniformly continuous. As n → ∞, uniformly
for x ∈ G,

m̂(x) − m(x)

=
1

nhp(x)

n∑
i=1

K

(
Xi − x

h

)
{Yi − m(x) − ṁ(x)(Xi − x)} + Op{Rn(x)} (A.7)

=
1

nhp(x)

n∑
i=1

σ(Xi)εiK

(
Xi − x

h

)
+

h2σ2
0

2
m̈(x) + Op{Rn(x)}, (A.8)

where

Rn(x) =
1

np(x)

{∣∣∣∣∣
n∑

i=1

K

(
Xi − x

h

)
{Yi − m(x) − ṁ(x)(Xi − x)}

∣∣∣∣∣
+

∣∣∣∣∣
n∑

i=1

Xi − x

h
K

(
Xi − x

h

)
{Yi − m(x) − ṁ(x)(Xi − x)}

∣∣∣∣∣
}

=
1

np(x)

{∣∣∣∣∣
n∑

i=1

K

(
Xi − x

h

)
σ(Xi)εi

∣∣∣∣∣ +
∣∣∣∣∣

n∑
i=1

Xi − x

h
K

(
Xi − x

h

)
σ(Xi)εi

∣∣∣∣∣
}

+O(h3).

Proof. Let β = (m(x), ṁ(x))τ . It follows from (A.1) that (β̂ − β) =
(XτWX)−1XWτ (Y − Xβ). Similar to (A.2), we have

m̂(x) − m(x) =
1

nh

n∑
i=1

Wn

(
Xi − x

h
, x

)
{Yi − m(x) − ṁ(x)(Xi − x)}, (A.9)

where Wn is defined in (A.3). Let S(x) be the 2×2 diagonal matrix with p(x) and
p(x)σ2

0 as its two diagonal elements. It is easy to see that ESn(x) = S(x)+O(h)
uniformly on compact sets. It follows from Lemma 1 that the following limits
hold uniformly on compact sets:

Sn(x) = S(x) + Op(h), det{Sn(x)} = p2(x)σ2
0 + Op(h). (A.10)

Therefore,
S−1

n (x) = S−1(x) + Op(h) (A.11)

uniformly for x ∈ G ⊂ {p(x) > 0}. Let Y ∗
i = Yi − m(x) − ṁ(x)(Xi − x). It is

easy to see from (A.3) that∣∣∣∣∣
n∑

i=1

{
Wn

(
Xi − x

h
, x

)
− p−1(x)K

(
Xi − x

h

)}
Y ∗

i

∣∣∣∣∣
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=

∣∣∣∣∣(1, 0){S−1
n (x) − S−1(x)}

n∑
i=1

(
1,

Xi − x

h

)τ

K

(
Xi − x

h

)
Y ∗

i

∣∣∣∣∣
≤ 1

p(x)

[
(1, 0){S−1

n (x) − S−1(x)}2(1, 1)τ
]1/2

×


∣∣∣∣∣

n∑
i=1

K

(
Xi − x

h

)
Y ∗

i

∣∣∣∣∣
2

+

∣∣∣∣∣
n∑

i=1

Xi − x

h
K

(
Xi − x

h

)
Y ∗

i

∣∣∣∣∣
2



1/2

≤ 2
p(x)

[
(1, 0){S−1

n (x) − S−1(x)}2(1, 1)τ
]1/2

×
{∣∣∣∣∣

n∑
i=1

K

(
Xi − x

h

)
Y ∗

i

∣∣∣∣∣ +
∣∣∣∣∣

n∑
i=1

Xi − x

h
K

(
Xi − x

h

)
Y ∗

i

∣∣∣∣∣
}

. (A.12)

It follows from (A.11) that supx∈G

[
(1, 0){S−1

n (x) − S−1(x)}2(1, 1)τ
]1/2 = Op(h).

Since K(.) has a bounded support, Y ∗
i on the RHS of (A.12) can be re-

placed by σ(Xi)εi + 1
2m̈(x)(Xi − x)2 + o(h2). It follows from (A.10) that

1
nh3p(x)

∑n
i=1 K

(
Xi−x

h

)
(Xi − x)2 = σ2

0 + Op(h) uniformly for x ∈ G. Now (A.7)
follows from (A.9) and (A.12), and (A.8) follows from (A.7) consequently.

Lemma 3. Let conditions (C1) – (C5) hold.
(i) Let f(x, y) be a measurable function which is continuous in x. Further,

E{|f(X,Y )|2(1+δ) + |f(X,Y )Y |2(1+δ)} < ∞, where δ ∈ [0,∞) is a constant
given in (C4). Then, as n → ∞,

n∑
i=1

f(Xi, Yi){m̂(Xi)−m(Xi)}w(Xi)=
n∑

i=1

σ(Xi)εiw(Xi)
∫

f(Xi, y)g(y|Xi)dy

+
nh2σ2

0

2
Ew{f(X,Y )m̈(X)} + op(nh2 + h−1), (A.13)

where g(.|x) denotes the conditional density function of Y given X = x.
(ii) As n → ∞,

n∑
i=1

{m̂(Xi) − m(Xi)}2w(Xi)

= nh4σ4
0Ew{m̈2(X)}/4 + h2σ2

0

n∑
i=1

σ(Xi)εim̈(Xi)w(Xi) + op(nh4 + h−1).

Proof. We only prove (i) and note that (ii) can be proved in a similar manner.

First, assume
∫

f(X, y)g(y|X)dy �= 0 almost surely. It follows from (A.8)
that

n∑
i=1

f(Xi, Yi){m̂(Xi) − m(Xi)}w(Xi) = (I1 + I2){1 + op(1)}, (A.14)
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where

I1 =
h2σ2

0

2

n∑
i=1

f(Xi, Yi)m̈(Xi)w(Xi)=
nh2σ2

0

2
Ew{f(X,Y )m̈(X)}+Op(

√
nh2),

(A.15)

I2 =
1
nh

n∑
i,j=1

f(Xj, Yj)w(Xj)K
(

Xi − Xj

h

)
σ(Xi)εi/p(Xj)

=
K(0)
nh

n∑
i=1

f(Xi, Yi)σ(Xi)εiw(Xi)/p(Xi) +
1

nh

∑
1≤i<j≤n

K

(
Xi − Xj

h

)

×
{

f(Xj , Yj)σ(Xi)εi
w(Xj)
p(Xj)

+f(Xi, Yi)σ(Xj)εj
w(Xi)
p(Xi)

}

≡ I21 + I22, say.

The limit in (A.15) follows from the ergodicity of the process {Xi, Yi} and The-
orem 1.7 of Peligrad (1986). It is also easy to see that I21 = Op( 1√

nh
).

We denote the summand in I22 on the RHS of (A.16) by ϕij , and write I22

as

I22 =
1

nh

∑
1≤i<j≤n

(ϕij − ϕi − ϕj) +
1
h

n∑
i=1

ϕi. (A.16)

This is Hoeffding’s projection decomposition of a U -statistic. Note that K(.) has
a compact support. Therefore in the above expression,

ϕi = σ(Xi)εi

∫
K

(
Xi − x

h

)
f(x, y)w(x)g(y|x)dxdy

= hσ(Xi)εiw(Xi)
∫

f(Xi, y)g(y|Xi)dy{1 + o(h)}.

It follows from Lemma A(ii) of Hjellvik et al.(1998) that

P


 1

nh( 1
1+δ

−ε0)/2

∣∣∣∣∣∣
∑

1≤i<j≤n

(ϕij − ϕi − ϕj)

∣∣∣∣∣∣ > ε




≤ chε0

n2
E


 1

h
1

2(1+δ)

∑
1≤i<j≤n

(ϕij − ϕi − ϕj)




2

= o(hε0).

Therefore, the first term in (A.16) is of the order op(h
− 1+2δ+ε0

2(1+δ) ) = op
(
h−1

)
, pro-

vided ε0 < (1 + δ)−1. Therefore, overall we have that I2 =
∑n

i=1 σ(Xi)εiw(Xi)
∫

f(Xi, y)g(y|Xi)dy + op(
√

nh + h−1). Together with (A.14) and (A.15), (i) holds.
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In the case that
∫

f(X, y)g(y|X)dy = 0 almost surely, it is easy to see that
I1 = op(nh2), I21 = Op(n−1/2h−1) and I22 = op(h−1). Therefore, (A.13) still
holds with the first two terms on its RHS being 0. The proof is complete.

Proof of Theorem 1. We proceed with the proof for i = 3 only, since the cases
i = 1 and 2 are much simpler. Write ζ̂2

3 = D2/D1, where

D1 =
1
n

n∑
i=1

Yim̂(Xi)w(Xi) − Ȳwm̄

=
1
n

n∑
i=1

Yi{m̂(Xi) − m(Xi)}w(Xi) − Ȳw
1
n

n∑
i=1

{m̂(Xi) − m(Xi)}w(Xi)

+
1
n

n∑
i=1

m2(Xi)w(Xi) +
1
n

n∑
i=1

{m(Xi) − m̄}σ(Xi)εiw(Xi)

−
{

1
n

n∑
i=1

m(Xi)w(Xi)

}2

, (A.17)

D2 =
1
n

n∑
i=1

Y 2
i w(Xi) − Ȳ 2

w − 1
n

n∑
i=1

Yim̂(Xi)w(Xi) + Ȳwm̄

= Ȳw
1
n

n∑
i=1

{m̂(Xi) − m(Xi)}w(Xi) − 1
n

n∑
i=1

Yi{m̂(Xi) − m(Xi)}w(Xi)

+
1
n

n∑
i=1

m(Xi)σ(Xi)εiw(Xi) − Ȳw
1
n

n∑
i=1

σ(Xi)εiw(Xi)

+
1
n

n∑
i=1

σ2(Xi)ε2
i w(Xi). (A.18)

Note that

√
n(ξ̂2

3 − ξ2
w) =

√
nD2

Var w{m2(X)}D1
[Var w{m2(X)} − D1]

+
√

n

Var w{m2(X)} [D2 − Var w{σ2(X)}].

Substituting D1 and D2 from (A.17) and (A.18), the conclusion follows from
Lemma 3, the Ergodic Theorem, and the Central Limit Theorem, which is implied
by Theorem 1.7 of Peligrad (1986).
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