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Supplementary Material

This document contains additional material. Generalizations of the robust, self-normalized
change point test by Betken| (2016)) for data with ties or with multiple change points are pre-
sented in Section and |51 amd The technical lemmas given in Section [S3| are needed for the
proof of Theorem 1 in Section

S1 A Modified Change Point Test for Data with Ties

If the distribution of X; = G(¢;) is not continuous, there is a positive
probability that X; = X; for some ¢ # j, so there might be ties in the

sample. We propose to use the following test statistic based on the modified

ranks Rl = Z;L:]_<1{Xj<xi} + %1{XJ:X’L})

~ ‘Zf:l Rz - % Z?:I Rz

Tn(Tl; TQ) = ke{tnfﬂaxtnmj} - - - 7
o {%Zt:l Sg(1>k)+%2?:k+l Sf(k—I-l,n)}

where
t

k
. . 1 .
St(.]ak): (Rh_—k_j+1ZRi).
. =

h=j

To be able to apply subsampling, we need T, to converge in distribution,

which we will show now:


http://dx.doi.org/10.5705/ss.202015.0435

2 ANNIKA BETKEN AND MARTIN WENDLER

Lemma 1. Let (§,)nen be a stationary sequence of centered standard Gaus-
sian variables with covariance function y(k) = k=P L. (k) for a D € (0,1)
and a slowly varying function L. Let X; = G(§;) for a function G, piece-
wise monotone on finitely many pieces. Then Tn(Tl,Tg) = T for some

random variable T'.

Proof. Let h(z,y) = l{c@)<cw) + %1{0(17):0(@,)} — % We define the modified

Wilcoxon process (W, (A))acpo,1) by

- 1
Wa(A) = — o> h&s)
" i=1 j=[nA+1

with d, = /Var(d>_ ,&). From Theorem 2.2 in Dehling, Rooch and
Wendler| (2017), we have the weak convergence of this process W, to the

limit process W with

W) = =(1 = N2 fe()dh(z) = MZ(1) = Z00) [ ( Jew)ah(z. )() ) o).

Here, 7 is a fractional Brownian motion, ¢ is the density function of the
standard normal distribution and h(z) = E[h(z,&;)]. Following the proof

of Theorem 1 in Betken (2016), we can express T,, as a function of W,,:

Tn(Tla Tz)
W (V)|

= Supﬁ <A<T1o {

T C T T —Cn 7 1/2 )
S (Wi (£) = 228V (N)2dlt+ [ (W (£) — =22, (V)21 |

Note that ¢,(\) converges to A uniformly, so we have the asymptotic equiv-

alence

T (71, 72)
o

/R sup = = 1/2°

nxsm { AW (t) = LW, (N)2dt + [1 (W (t) — =41, (V)2dt }
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By the continuous mapping theorem, we get

Tn(Tl, 7'2)
= sup 3 ; |W(/1\)| - T = T.
mxsn { AW () — LW (N)2dt + [ (W () — =L (N))2dt)
O

S2 A Test for Multiple Change Points

For testing the alternative hypothesis of two change points, we suggest to
use the test statistic T,,(71,T2,€) = SUPy, kyyeq, (r,m.e) [Gnlk1, k2)|. Some

calculations yield

G (K1, k2)
‘Wn(/\la/\2)|
p— l
A1, 5 2 Ao, o~ 2 2
/ (Wa(rAo) £ Wi (1.02) ) drt | (W (rdha)- 2255 W (M1 22) )
I (Wi (A2,A1)] .
A2 Y 2 1 2 2
S (Wa a2 Wi o A) drt [ (Wi (rA—55 Wi (Ao An)) dr
A1 A2
+ OP(1)7
where
WA\, 7) = W (W) = W (A7), WO T) = W (M A) — Wa(7, A)
with

[nA] n

1
Wn()‘77-) = Z Z (1{XiSXj} - 5) ) 0<A<7r< 1

i=1 j=|n7]+1



4 ANNIKA BETKEN AND MARTIN WENDLER

Define dj, := Var(3_7_, H,(§;)), where H, denotes the r-th order Hermite
polynomial and r designates the Hermite rank of the class of functions
{1(¢(e)<sy — F (), © € R}. It can be shown that F}ann(A, T) converges in

distribution to
{Q-=7)Z(\) = A2, (1) = Z:(7 ))} Jo(x)dF(z), 0 <A <7<,

where Z, is an r-th order Hermite process with Hurst parameter H :=

max{l — 2 1} and where J,(z) = E (H,(&)1{c)<a}) -

272

As a result, under the hypothesis the limiting distribution of T}, (7, 72, €)

is given by T'(r, 71, T2, €) = SUD,, <rcrery. +—ae Gr(A, T) With

Gr(\,T)
_ 2.0 - 22,(r)
{Of(ZT(t) —1Z,(N) dt+z(ZT - =27,(r) - ﬁZr(A))th}2
| Zr (1) =125 2- (V-T2 20 (1)

+

NI

- 1
{ {(Zr(t VT2t 2, (-2 7, (7)) det Tf(Zr(t)—ll__in(T)—f::Zr(l))zdt}

S3 Auxiliary Results

Assumption 2. X,, = G(&,) for a measurable function G and a stationary,

Gaussian process (§,)nen with covariance function
(k) = Cov(&r, &14x) = k™7 Ly ()
such that the following conditions hold:
1. D € (0,1] and L, is a slowly varying function with

~ U
i max L.,(k)—L,(k)| < K-min{L,(k),1}
ke{k+1,... k+2U'—1} k
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for a constant K < oo and alll" € {Iy, ..., k}.

2. (&n)nen has a spectral density f with f(z) = |x|P " Li(x) for a slowly
varying function Ly bounded away from 0 on [0, 7| such that

lim, o Lf(x) € (0,00] exists.

Lemma 2. Under Assumption[d, there is a constant Kp < oo, such that

for all x1,...,x; € R with Var(Zizl &) =1

l
=1

Proof. Recall that we can rewrite the covariances as
1) = [ F)ax

and that the spectral density f can be written as f(\) = L;(|A[)|AP~1.
By our assumptions Ls(x) > Cpiy for a constant Chy, > 0, so that we can

conclude that

!
1 :Var<z.9:i§i> = Z zjxpy(j — k)
i=1

1<5,k<1

= > gy [T U N AN = 3wy [T TN L(IANN P AN
1<5,k<l 1<5,k<1

2

=2 [T S aymy 0N L (WA LdN = 2 [T L(A)AP=1d)

1<j,k<l
l
2 : —igA
x]e
j=1

We rewrite the integrand as

!
} : =g
.l’]e

=1

!
e A
> Tje
=1

2
>2C i ! / .

s
0

2 l
_ A —ig\ kA 2 ‘ —i(j—k)A
= E T;Tye e = g i+ E TjTpe

j=1

1<j,k<l ik
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= Zx +Zl’gl’k W= k)’\—l—e’i(k’j”)

<k
—Zx —i-Zij:ckcos — A
i<k
Z zjxp cos((k — 7)N).

1<4,k<l

As a result, we have

T l 2
/ e A )\:/ Z z;xy cos((k — 7)N)dA
0 1= 0 1<jk<t
= Z xjxk/ cos((k — 7)A)dA
1<]k<l

:Z /COS d>\+21‘]$k/ cos((k — j)A)dA
J7#k
!

_ 2 2

j=1

All in all, this yields

l i
1= Var (Z [Ei&) > ZC’minﬂD_l/
i=1 0

Therefore, the statement of the lemma holds with Kp = 1/(2C,i,7?).

2 l
d\ = 20 Y " a?.

J=1

!
i
E Tje

J=1

]

Lemma 3. Under Assumption@ there are constants K, < oo and ly € N

such that
1

S

i=1

< KIDZD/2

for alll > 1y and x4, ...,x; € R with Var (Zizl x@) =1
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Proof. The statement of the proof is equivalent to the existence of a constant

C > 0, such that for all zq,...,7; € R with Zi:l x; = 1, we have

!
Var (Z :Ulfi) > 1P,
i=1

Let %, ..., 2F € R with Y.'_, 27 = 1 be the values that minimize
Var (Zézl xj&) Then fig(&1,...,&,) = 22:1 xf&; is the best linear unbi-
ased estimator for p:= F(&;). For a process ((,)nen with spectral density

fe(z) = 5=|1 — [P~ we have
Var (fic(Gr, -, G)) = Col™”

for a constant C; > 0 by a Corollary of Theorem 5.1 in |Adenstedt| (1974).
We rewrite the spectral density f¢ of ((,)nen with the help of the spectral

density f of (&,)nen as

2n[a[P Ly (z)
D—1

1761‘1 X
W 1S bounded, as we assumed

felw) = f(x)

Note that the function g with g(z) =

that L; is bounded away from 0. Hence, we have

Var (/15(517 s 75”)) > ﬁvar (ﬂ((clv BRI Cn)) > CliD

for all [ > Iy by Lemma 4.4 in |Adenstedt| (1974)). O

The next Lemma deals with the p-mixing coefficient, which is defined

in the following way: Let A, B be two o-fields. Then
p(A, B) :=supcorr(X,Y),

where the supremum is taken over all A-measurable random variables X
and B-measurable random variables Y. For details we recommend the book

of Bradley| (2007).
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Lemma 4. Under Assumption[d, there are constants Cy,Cy < 0o such that
p(k, 1) :=p(0(&,1 <i<l),0(&, k+1+1<j<k+2l))
< Cy (k/1)° Ly(k) + Col?k~ P~  max{L,(k),1}
for allk € N and alll € {ly, ..., k}.

Proof. Kolmogorov and Rozanov]| (1960) proved that there exist real num-

bers aq, ..., a;, by, ..., b such that
1 l
p(0(&,1<i<1),0(&,k+1+1 < j <k+2l)) = COV(ZCLifu ijfkﬂﬂ')
i=1 j=1

and Var( Eizl a;&;) = Var( 2321 bi€ki+5) = 1. The triangular inequality
yields

l

Cov ( Z ai&i, El: bj§k+z+j>

=1

< ‘ZaZZb

We will treat the two summands on the right hand side separately. For the

|+§:§:MM5H7 —y(k+1+37—19).

=1 j=1

first term, it follows by Lemma [3] that

’Zale ]—’Zaz Zb

Before we deal with the second summand7 we observe that by Holder’s

(k)| < KFIPL,(k)k™P

inequality and Lemma

Due to Assumption

sup
|k—k|<21—1
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for some constant K. Consequently, for all k € {k+1,...)k+2l -1}

(k) = 3(B)| < Ly (k) [k2 = FP| + 1L, (k) = Ly ()1~
< Ly(k) (K7 = (k + 2= 1)7P) 4 |L, (k) = Ly ()P
< Cak™PHL (k) + Kék‘D max{ L. (k), 1}
< C3k P max{L,(k),1}

for some constants Cj, Cs. Combining this with the bounds for 37%_, |as],

2;21 |b;|, we finally arrive at

v(k) = (k)

l l
> ail D 1bil (k) = v(k+1+j—i)| < Kpl_ max
i=1 j=1

ke{k+1,. k+20—1}

= KpCsk P> max{L,(k),1}.

S4 Proof of the Main Result

Before we give the proof of our main theorem, let us recall our assumptions

on the test statistic and the block length:

Assumption 1. (X,,).en s a stochastic process and (T, )nen 1S a Sequence
of statistics such that T,, = T in distribution as n — oo for a random

variable T with distribution function Fr.

Assumption 3. Let (I,)nen be a non-decreasing sequence of integers such

thatl =1, — o0 as n — oo and l,, = O(n(HD)/Q*G) for some € > 0.

Proof of Theorem 1. Let t be a point of continuity of Fr. In order to sim-

plify notation, we write N =n — 1+ 1 and T}; = T)(X;,..., X;4i—1). The
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triangular inequality yields
|En(t) = Fr, ()] < |Fya(t) = Fr(t)| + [Fr(t) = Fr, (1)].

The second term on the right-hand side of the above inequality converges
to zero because of Assumption As Lo-convergence implies stochastic
convergence, it suffices to show that E(|F,(t) — Fr(t)]?) — 0 in order to
prove that the first term converges to zero, as well. We have
B (|£in(t) - Fr(t)?)
. . 2 . . 2
=B (F20) = (EFA.0) + (Fr(1) = 280 EFiu(t) + (B Fa(t))
. . 2
= Var(Fin(t)) + | Fin(t) = Fr(t)|

Furthermore, stationarity of the process (X,), .y and Assumption (1} imply

EFln ZE<{T <t}> (ﬂ,lﬁt):FTl()H—oo>FT(>

It remains to show that Var(Fm(t)) — 0. Again, it follows by stationarity
of (X,),,cy that

Var (ﬁln(t)>

= —Var ( (1, <t}> 2 ZZZ(N — i+ 1)Cov (1{Tz,1§t}’ 1{Tz,i§t}>

9 N
=N Z ‘COV (1{Tz,1ﬁ}’ 1{Tmﬁt}>‘ '

Recall that by Assumption [3] we have I < C;n(*+2)/2¢ for some constants
C; and € > 0. For n large enough such that | < 2[n'~/2], we split the sum

of covariances into two parts:

| X
v ; ‘COV (1{Tl’1§t}’ 1{Tl,z’§t}> ‘
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L

n17€/2j

1

N Z ’COV (1{T171§t}’1{Tl,i§t}>‘
=1

1 N
¥ X !COV(1{w}’1{n,ﬁ})\

i=|nl=¢/2|4+1

nt-2] 1 . .
<t > plo(Xp1<i <), o(X; k< j<k+1-1))

k=|nl=¢/2|4+1

Lnl—e/QJ 1 Nt

N N Z p(k; 1),

k=|nl=¢/2|—]

IN

where
p(k, 1) =p(c(X;,1 <i<l),0(X;,k+14+1<j<k+2l)).

Obviously, the first summand converges to zero by Assumption [3] For the
second summand note that as a consequence of Potter’s Theorem (Theo-
rem 1.5.6 in the book of Bingham, Goldie and Teugels| (1987))), there is a
constant C, such that L. (k) < CpkP/? for all k € N. This together with
Lemma [ yields

N—-I-1

1
~ 2 kD)
k=|nl=¢/2|—|
N—-I-1

lD & Dj.De/2 l2 D—171.De/2
<CGiy Y, KPP CGs Y KT
k=Ln1*5/2J/2 k:\_nl—e/ﬂ/z

< CLCI Cll)2D(17€/2)nD(((lJFD)/Q*E)7(176/2)“1’6/2(176/2))
+ CL02Cl221+D(1—6/2)n((1+D—2e)—(D+1)(1—5/2)+(1—e/2)De/2)

< C(nfD((lfD)/2+62/4)+n_e(%—D+De/4)> neo

for some constant C' < oo. Thus, we have proved that Var(Fj,(t)) — 0 as

n — oo and that the first conjecture of Theorem 1 holds.
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The second assertion of Theorem 1 follows from Fy, (t) — Fj,(t) —
0 in probability by the usual Glivenko-Cantelli argument for the uniform
convergence of empirical distribution functions; see for example section 20

in the book of Billingsley (1995). O
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