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Abstract: In this paper, we develop a pseudo empirical likelihood approach to in-

corporating auxiliary information into estimates from complex surveys. In simple

random sampling without replacement, the method reduces to the empirical likeli-

hood approach of Chen and Qin (1993). We show that the method is asymptotically

equivalent to a generalized regression estimator in the case of estimating a mean

or population distribution function with known population means for a vector of

auxiliary variables. We go on to investigate, in a simple case, the incorporation

of more complex auxiliary information, and demonstrate the resulting increase in

efficiency using the proposed approach both theoretically and through a limited

simulation.
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1. Introduction

In sample surveys, auxiliary information on the finite population is regularly
used to increase the precision of estimators, most commonly estimators of the
population mean or total. Ratio and regression estimators incorporate known
finite population means of auxiliary variables. Calibration estimators adjust ba-
sic survey weights so the sample sum of a weighted auxiliary variable equals its
known population total. Deville and Sarndal (1992) propose a general calibra-
tion method which minimizes a chosen distance measure between the adjusted
survey weights, called calibration weights, and the basic survey weights subject
to consistency constraints, called calibration equations. They show that a “chi-
square distance” leads to the generalized regression estimators (GREG) (Sarndal
(1980), Bethlehem and Keller (1987)). For a good overview and recent related
developments, in particular consideration of the population distribution function,
see Rao (1994).

Chen and Qin (1993) propose an empirical likelihood approach to the use of
auxiliary information in simple random sampling without replacement (srswor).
Their theoretical and simulation results suggest the approach has desirable prop-
erties when estimating means, totals and population distribution functions, as
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well as quantiles. This holds when the auxiliary information is in the form of
a known population mean or total of some auxiliary variable, and when it is in
the form of a known population quantile. Unfortunately, their formulation of the
method does not extend to more complex survey designs.

In this paper, we develop a pseudo empirical likelihood approach for com-
plex surveys which reduces to Chen and Qin’s method in the case of simple
random sampling. In Section 4, we show that, in some situations, the method
is asymptotically equivalent to a GREG in the case of estimating a mean or
population distribution function with known population means for a vector of
auxiliary variables. We consider stratified sampling and incorporation of known
strata size information, and demonstrate the resulting increase in efficiency both
theoretically, in Section 5, and through a limited simulation, in Section 7.

2. Empirical Likelihood Estimation in Finite Populations

Suppose a finite population, S, consists of N distinct units with measure-
ments zi, i = 1, . . . , N , which themselves are a random sample from a super-
population. The simplest case is when the zi are assumed to be independent
and identically distributed with population distribution F (z). If the entire fi-
nite population was available, the corresponding likelihood function would be
L(F ) =

∏N
i=1 pi with log–likelihood function

l(p) =
N∑

i=1

log(pi), (1)

where pi = p(zi) is the density at observation zi.
This density function could be modelled parametrically as p(zi, θ). In this

case θ is an unknown superpopulation parameter. Let θN be an estimator of
θ based upon (z1, . . . , zN ). In this context, the purpose may be to estimate the
superpopulation parameter, θ, or to estimate θN with θn based on a sample s ⊂ S

of size n. The argument for the latter, as described in Godambe and Thompson
(1986), is that, since N is typically large, θN will be very close to θ, while if
the true superpopulation departs from the model, θN may still be of interest as a
finite population characteristic (see also Binder (1983), Godambe and Thompson
(1996)).

Now consider FN(z) = N−1∑N
i=1 I[zi≤z], where I[Z≤z] is the componentwise

indicator function. One could view FN(z) as the nonparametric maximum likeli-
hood estimate of F (z), based on (z1, . . . , zN ). A nonparametric analogue of the
above rationale is then available, with F or θ(F ) and FN or θ(FN) analogous to θ

and θN . If we proceed further and assume nothing is known about pi = p(zi) and
require

∑
pi ≤ 1, then (1) is the empirical log-likelihood (see Owen (1990), Chen
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and Qin (1993)). If the entire finite population were available, we could then
maximize (1), possibly subject to additional constraints based on some auxiliary
information. In practice, we have only a sample, s, of size n of the entire finite
population. For the purpose of illustration, let us first consider srswor and sup-
pose we have obtained the sample (zi, i ∈ s) with zi = (yi, xi)T a two dimensional
vector. Let the superpopulation parameter of interest be F (y) or θ(F ) for some
θ (eg., Ȳ =

∫
ydF (y)) with corresponding finite population parameter FN(y) or

θ(FN) (eg., ȲN =
∫

ydFN(y)). To overcome the difficulty of not knowing zi for
the entire finite population, we view the log–likelihood function in (1) as a finite
population total. Then we have available a design unbiased estimate of l(p),
namely

l̂(p) =
N

n

∑
i∈s

log(pi). (2)

If we require 0 <
∑

i∈s pi ≤ 1, this is the empirical log-likelihood function for
srswor as defined in Chen and Qin (1993). When no auxiliary information is
available, maximizing (2) yields pi = 1/n for all i ∈ s; the “maximum empirical
likelihood estimator” of the finite population distribution function, FN(y), is
the usual empirical distribution function, Fn(y) = (1/n)

∑
i∈s I[yi≤y], and the

estimate of θN (eg., Ȳ ) is θn = θ(Fn) (eg., the sample mean, ȳn =
∫

ydFn(y)).
In the spirit of Godambe and Thompson (1986), note that if the entire finite
population is known, Fn(y) and θn become FN(y) and θN , respectively, and can
be viewed as estimates of the corresponding superpopulation parameters, F (y),
and θ = θ(F ).

One can now incorporate auxiliary information by placing additional con-
straints on the maximization as in Chen and Qin (1993). For example, sup-
pose X̄N =

∫
xdFN(x) is known. Then one could maximize (2) subject to

0 <
∑

i∈s pi ≤ 1 and ∑
i∈s

pi(xi − X̄N) = 0. (3)

If p̂i results,
∑

i∈s p̂iI[yi≤y] is the empirical likelihood estimate of FN (y), and, for
example, θn =

∑
i∈s p̂iyi is the empirical likelihood estimate of θN = ȲN . Note

that if the entire finite population is known, constraint (3) is satisfied.
Chen and Qin (1993) show that the empirical likelihood approach indeed

has some desirable properties in this context. In simple situations, this approach
coincides with commonly used approaches such as the poststratification method,
and the raking method. Also, the maximum empirical likelihood estimate is
asymptotically normal for smooth functions of the mean, and its asymptotic
variance is the same as the regression estimator. A Bahadur-type representation
for quantiles was also established. Simulations indicate that it has favorable finite
sample properties as well.
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Chen and Qin (1993), however, motivates the use of (2) in two entirely differ-
ent ways: (i) by noting that the model-based likelihood for any non-informative
sample s is

∏
pi (see Jagers (1986) and Cassel, Sarndal and Wretman (1977),

p. 109); and (ii) by noting that, if we assume the values yi can take only a finite
number of values, under simple random sampling the design based-likelihood is a
multi-dimensional hypergeometric distribution. Hartley and Rao’s (1968) use of
this approach (what they termed the scale load approach) in estimating ȲN with
X̄N known is likely the first application of the concepts behind empirical like-
lihood. These motivations do not, unfortunately, extend well to more complex
sampling designs.

3. Pseudo Empirical Likelihood Estimation in Finite Populations

Consider a finite population, S, of N distinct units with measurements zi

as in the previous section. But now suppose the sample, s, is drawn using some
sampling design, p(·). That is, the sample s ⊂ S is drawn with probability p(s).
It now becomes very difficult to extend to this more general setup either of the
motivations for empirical likelihood of Chen and Qin (1993). The development
of the previous section, however, extends quite naturally. We have available a
design unbiased estimate of l(p), namely

l̂(p) =
∑
i∈s

di(s) log pi, (4)

where the di(s) are the design weights, with E(
∑

i∈s di(s) log pi) =
∑N

i=1 log pi.
Here, E refers to expectation under the sampling design. We term (4) the
“pseudo-empirical likelihood”. For auxiliary information of the form E{u(Z)} =∑N

i=1 u(zi)/N = 0, the problem then reduces to maximizing (4) subject to∑
i∈s

pi = 1,
∑
i∈s

piu(zi) = 0 (0 ≤ pi ≤ 1). (5)

For example in (3), u(zi) = (xi − X̄N). Using the Lagrange multiplier method
it is easily shown that, for any finite population parameters that can be written
as θN = θ(FN), the resulting pseudo empirical maximum likelihood estimator
(PEMLE) is θ̂n = θ(F̂n), F̂n =

∑
i∈s p̂iδzi , where δzi is the point measure at

zi, the p̂i = wi(s)/[1 + λu(zi)] for i ∈ s, and the Lagrange multiplier, λ, is the
solution to ∑

i∈s

wi(s)u(zi)
{1 + λu(zi)} = 0, (6)

where wi(s) = di(s)/
∑

i∈s di(s). If u(·) is vector valued, this extends naturally
using a vector valued λ.
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Note that if there is no auxiliary information, i.e. u(zi) = 0, this approach
yields p̂i = di(s)/

∑
i∈s di(s). This is a very attractive property. For example,

if the characteristic of interest is the population mean, ȲN , and one uses the
Horwitz-Thompson estimator l̂(p) =

∑
i∈s(1/πi) log pi of l(p), where πi is the

inclusion probability of the ith unit, then with no auxiliary information one gets
ˆ̄Y N =

∑
i∈s(1/πi)yi/

∑
i∈s(1/πi) and not

∑
i∈s(1/πi)yi/N . It was illustrated in

Rao (1966), and later in the more well known Basu (1971) elephant example,
that even though the first estimator estimates the the population size N and the
second uses its known quantity, the first has better properties.

Also note, this is not equivalent to the suggested approach in Chen and Qin
(1993) for unequal probability sampling. For example, in the case of no auxiliary
information, u(zi) = 0, their method yields pi = 1/n and the resulting estimator
of FN is not design unbiased.

4. PEMLE’s and GREG’s

For the remainder of the paper, we consider the situation where z = (y, x),
u(z) = h(x) − H̄N and θN =

∫
g(y)dFN (y) in the setting of Section 3. Note that

x and h(x) may be vector valued. Here H̄N =
∑N

i=1 h(xi)/N for some function
h. The choice g(y) = y and h(x) = x corresponds to estimating the population
mean ȲN when X̄N is known, while g(y) = ∆(t−y) and h(x) = x, where ∆(a) = 1
when a ≥ 0 and ∆(a) = 0 otherwise, corresponds to estimating the population
distribution function at t when X̄N is known.

Hartley and Rao (1968) consider the problem of estimating the population
mean ȲN when X̄N is a known scalar in the case of srswor, and in essence showed
that maximizing the empirical likelihood is asymptotically equivalent to a regres-
sion estimator. In this more general setting a similar result holds. For simplicity,
we state results for a scalar h(x) = x and g(y) = y, though they hold generally.

Theorem 1. Under conditions 1 and 2 (below), the PEMLE of ȲN , when
X̄N is known, is asymptotically equivalent to a generalized regression estimator
(GREG). That is,

λ
.= (x̄w − X̄N)/

∑
i∈s

wi(s)(xi − x̄w)2 + op(n−1/2)

and thus ˆ̄Y N = ȳGREG + op(n−1/2), where ȳGREG =
∑

i∈s w̃i(s)yi, w̃i(s) =
wi(s)[1 − (xi − x̄w)(x̄w − X̄N)/

∑
i∈s wi(s)(xi − x̄w)2], ȳw =

∑
i∈s wi(s)yi, x̄w =∑

i∈s wi(s)xi and wi(s) = di(s)/
∑

j∈s dj(s).

The proof is given in Appendix 1. Defining ui = xi − X̄N , the conditions needed
are:
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1) u∗ = maxi∈s |ui| = op(n1/2);
2)
∑

i∈s di(s)ui/
∑

i∈s di(s)u2
i = Op(n−1/2).

We have stated these necessary conditions in a general form which is com-
pact but not very enlightening. Many commonly used sampling designs satisfy
these conditions under some moderate assumptions. Appendix 2 gives such for
three common designs, namely pps sampling with replacement, the Rao-Hartley-
Cochran method, and cluster sampling.

Note that the above three designs do not involve stratification. It turns out
that stratified designs offer an excellent opportunity to explore the pseudo empir-
ical likelihood approach relative to possible competitors. This we do theoretically
in Section 5, and through simulation in Section 7.

5. PEMLE, GREG and ORE in Stratified Sampling

In this section, we consider the PEMLE for stratified single-stage, and strat-
ified multi-stage sampling, and demonstrate how the method is well-suited to
incorporating different types of auxiliary information to advantage. We point out
that the pseudo empirical likelihood approach provides both method and motiva-
tion for efficiently using information on the stratum population sizes, which is left
out by the GREG and the optimal regression estimator (ORE) proposed by Rao
(1994). Under stratified sampling, the ORE has been shown to be more efficient
than the GREG. This is because the ORE explicitly makes use of the correlation
structure between y and x. In the case of stratified srswor, the sampling weights
are constant within each stratum and including the stratum size information is
equivalent to including the correlation structure information. Thus the PEMLE
and ORE are equivalent, and both are better than the GREG. When other sam-
pling plans are used within each stratum, for example pps sampling, the stratum
sizes contain important information that is not provided by the sampling weights
nor the correlation structure. In this case, direct theoretical comparisons are diffi-
cult. However in Section 7 we demonstrate, via simulation, that the improvement
of the pseudo empirical likelihood approach over the optimal regression approach
can be substantial.

5.1. Stratified single-stage sampling

In stratified sampling the population of N units is first partitioned into non-
overlapping sub-populations called strata, of size N1, . . . , NL units, respectively.
Independent samples of size nh are drawn from each stratum h.

If we assume that stratum h consists of Nh distinct Zhi, themselves indepen-
dently distributed from Fh, independent for h = 1, . . . , L, then the log–likelihood
function is l(p) =

∑L
h=1

∑Nh
j=1 log(phj). Viewing l(p) as a population total, the
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most commonly used design unbiased estimate of the population empirical log–
likelihood would be

l̂(p) =
L∑

h=1

∑
j∈sh

dhi(s) log(phj), (7)

as in Section 3. In the case of stratified srswor, dhj(s) = Nh/nh.
Suppose we naively apply the method in Section 3 (with hi replacing i

throughout) to obtain the PEMLE of ȲN when X̄N is known, without considering
the fact that we have the additional information contained in the knowledge of
N1, . . . , NL. Then from Theorem 1,

ˆ̄Y N = ȳw −
∑

h

∑
i∈sh

whi(s)(xhi − x̄w)yhi∑
h

∑
i∈sh

whi(s)(xhi − x̄w)2
(x̄w − X̄N) + op(n−1/2), (8)

where n =
∑

h nh, ȳw =
∑

h

∑
i whi(s)yhi and x̄w =

∑
h

∑
i whi(s)xhi and whi(s) =

dhi(s)/
∑

h

∑
i dhi.

Consider stratified srswor, i.e. dhi(s) = Nh/nh. In this case, (8) reduces to

ˆ̄Y N = ȳst −
∑

h

∑
i∈sh

Wh(xhi − x̄st)yhi/nh∑
h

∑
i∈sh

Wh(xhi − x̄st)2/nh
(x̄st − X̄N) + op(n−1/2)

= ȳGERG + op(n−1/2),

where ȳst =
∑

h Whȳh and x̄st =
∑

h Whx̄h. This, of course, cannot be the best
possible approach. The optimal regression estimator, which is known to be more
efficient than the above one, replaces x̄st by x̄h in the ratio of summations.

To see why we call this application of Theorem 1 naive, note that FN (z) =∑
h WhFNh

(z), Z̄N =
∫

zdFN (z) =
∑

h Wh

∫
zdFNh

(z) and
∫

u(z)dFN (z) = 0
can be written

∑
h Wh

∫
u(z)dFNh

(z) = 0. This knowledge of the form of FN

contained in Wh should be incorporated in constructing the PEMLE. The em-
pirical likelihood approach is well-suited to incorporate auxiliary information
and can accommodate this information contained in the population size for
each stratum quite naturally. To see this, let zi = (yi, U

T
i )T for i = 1, . . . , N ,

where Ui = (xi, v1i, . . . , vLi)T and vhi = 1 if i ∈ h and 0 otherwise. Then
ŪN = (X̄N ,W1, . . . ,WL)T is known. Letting u(zi) = Ui − ŪN and applying The-
orem 1 amounts to maximizing the pseudo empirical log-likelihood function (7)
subject to ∑

i∈sh

phi = Wh for h = 1, . . . , L and
∑
h

∑
i∈sh

phixhi = 0,

and using the resulting p̂hi to get F̂N(z) =
∑

h

∑
i∈sh

p̂hiδyhi
and thus θ̂ = θ(F̂N),

a PEMLE of θN = θ(FN).
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Remark. Constructing the pseudo empirical likelihood for each stratum will re-
sult in the same combined pseudo empirical likelihood with the same constraints.

When yi is a scalar quantity, and no auxiliary information beyond the stra-
tum sizes is available, the resulting PEMLE of the population mean is the usual
unbiased estimator of the mean, i.e. under stratified srswor it is the usual strat-
ified mean, ȳst. Suppose, instead, that X̄N =

∑
h

∑
j xhj/N is also known. Then

the pseudo empirical likelihood should be maximized with restriction

L∑
h=1

∑
j∈sh

phjxhj =
L∑

h=1

Whx̃h = X̄N , (9)

with Whx̃h =
∑

j∈sh
phjxhj. Viewing this maximization problem, two questions

arise: (a) when does a unique solution exist? and (b) how do we solve it numer-
ically?

In Appendix 3, we develop the following simple numerical method. The
method involves finding t such that

∑L
h=1 Whx̃h = X̄N , where, for a given t, x̃h

for h = 1, . . . , L are the solutions to

∑
i∈sh

dhi(xhi − x̃h)
dh + tWh(xhi − x̃h)

= 0, (10)

where dh =
∑

i∈sh
dhi. Since the x̃h are functions of t through (10) and one can

show that
∑

h Whx̃h is monotonic in t, we need only increase or decrease the size
of t to determine the existence of the solution, while the uniqueness is a simple
consequence of the monotonicity. Once we obtain the correct t and thus x̃h for
h = 1, . . . , L, p̂hi = Whdhi/[dh + tWh(xhi − x̃h)].

Large sample results can be obtained in the same way as in Theorem 1 by
including stratum indicators as part of zi as above, or plainly speaking, by mak-
ing the auxiliary variable vector-valued by adding stratum indicator variables.
This also indicates that both the GREG and the ORE might be improved in the
light of this pseudo empirical likelihood approach, by including stratum indicator
variables in their respective derivations. The potential usefulness of this usually
ignored information, and how to incorporate it, becomes obvious when the prob-
lem is viewed in an empirical likelihood framework. This is not the case for the
other two methods. There has been no discussion in the literature on utilizing
the stratum size information in this way.

To offer some insight in comparing the pseudo empirical likelihood approach
and the optimal regression approach, we offer the following result for stratified
srswor. Assume that there is a sequence of finite populations indexed by ν such
that when ν → ∞: (i) 0 ≤ c1 ≤ ∑L

h=1 Whσ2
h ≤ c2 ≤ ∞; (ii) max{n−1

h Wh} =
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O(n−1); (iii) N−1∑L
h=1

∑Nh
i=1 |xhi|3 = O(1); and (iv) N−1∑L

h=1

∑Nh
i=1 |yhi|3 =

O(1). See Rao and Wu (1985) for discussion of the first two assumptions. Note
that the second assumption allows for the two most common situations: nh

bounded with L → ∞; and L bounded with nh → ∞ for each h. Assumption
(iv) is used to control the size of the remainder in the next theorem. It is not
needed for the expansion.

Corollary 1. Under stratified srswor and conditions (i)-(iv) above, the PEMLE
of ȲN , when X̄N is known and the stratum size information is incorporated, is
asymptotically equivalent to

ˆ̄Y N = ȳst −
∑L

h=1 Wh
∑

i∈sh
(xhi − x̃h)yhi/nh∑L

h=1 Wh
∑

i∈sh
(xhi − x̃h)2/nh

(x̄st − X̄N ) + op(n−1/2), (11)

where x̃h for h = 1, . . . , L are defined in equation (A.3) of Appendix 3.

The proof is given in Appendix 4.
From the discussion in Appendix 4, it is known that, when L remains finite,

x̃h − x̄h = Op(n−1/2). Hence, in that case, the above estimator is asymptotically
equivalent to the optimal linear estimator given by Rao (1994). Zhong and Rao
(1996) extend the scale-load approach of Hartley and Rao (1968) to stratified
srswor and thus derives an empirical likelihood estimator for this situation which
is of similar form to (11) and is also asymptotically equivalent to the ORE.

When other sampling designs are used inside each stratum, closed-form com-
parison between the two approaches becomes tedious. The comparison will be
done by simulation in Section 7.

5.2. Stratified multi-stage sampling

Many large scale surveys use a stratified multistage design. The population
is stratified into L strata with the hth stratum consisting of Nh clusters. A sam-
ple of nh ≥ 2 clusters is drawn from stratum h, independently across strata. A
subsample is then drawn from each obtained cluster. We assume that subsam-
pling within cluster is performed to ensure unbiased estimation of cluster totals,
Yhi. The usual unbiased estimator of the population total YN is of the form
ŶN =

∑
hij∈s dhij(s)yhij, where s is the sample and yhij refers to the value of

interest of the jth unit in the ith cluster within the hth stratum. If there is no
auxiliary information, the PEMLE of ȲN would be ŶN/

∑
dhij, a ratio estimator.

This follows directly from the result in Section 3 with the subscript i replaced
by hij.

As before, if the uhij = xhij − X̄N are known, the pseudo empirical likeli-
hood can be maximized with an additional restriction

∑
hij∈s phijuhij = 0. If the
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conditions in Theorem 1 are satisfied, the PEMLE of ȲN will be

ˆ̄Y N =
∑
hij

w̃hij(s)yhij + op(n−1/2) = ȳGREG + op(n−1/2), (12)

where w̃hij(s) = whij(s)[1 − (uhij − ūw)ūw/
∑

hij whij(s)(uhij − ūw)2] and ūw =∑
hij∈s whij(s)uhij.

The conditions of Theorem 1, unfortunately, have to be verified case by case.
However, as in the general PPS case, if we consider the outcome of u as a random
variable with finite or “not so large” fourth moment, we can use a Chebyshev
type inequality to show u∗ = op(n1/2). The second condition of Theorem 1 is
usually satisfied and is often required by other methods as well.

If the number of psu’s within each stratum of the population is known, it
is possible to incorporate this additional information in exactly the same way
as in the previous section. The numerical algorithm for solving the resulting
maximization problem is the same as that discussed for single-stage sampling
with the hi subscript replaced by hij throughout and dh =

∑
i

∑
j dhij.

6. Variance Estimation and Central Limit Theorem

For the purposes of variance estimation, it is clear from Theorem 1 that
any consistent variance estimator, σ̂2, for ȳGREG will remain consistent for the
PEMLE, ˆ̄Y N . This includes the stratified cases if one uses a vector-valued auxil-
iary variate which includes the strata indicators. Consider, for example, stratified
multistage sampling as described in Section 5.2. In this case, many such variance
estimators are available if we treat the sample as if the clusters were sampled
with replacement. This is common practice for the purpose of variance estima-
tion. The approximation leads to overestimation of the variance but the relative
bias is likely to be small if the first stage sampling fractions are small. For ex-
ample, the linearization-substitution method (Rao (1988)) for ȳGREG could be
used.

Though asymptotically valid, it is not attractive to use a variance estimator
of a GREG to estimate the variance of the PEMLE. Instead, one might apply
resampling variance estimators such as the jackknife, bootstrap and balanced
repeated replications (see Shao and Wu (1989) and (1992), Chen and Qin (1993),
Shao (1994)) directly to ˆ̄Y N , recalculating the p̂hij for each resample. These may
perform better for finite samples since they are applied directly to ˆ̄Y N and not to
the GREG which approximates it. As an example, we consider the jackknife for
stratified srswor. Let θ̂ = ˆ̄Y N (PEMLE) with vector valued auxiliary variable and
define vJ =

∑L
k=1(1−fk)n−1

k (nk−1)
∑

j∈sk
(θ̂−θ̂−kj)2, where fk = nk/Nk and θ̂−kj

is θ̂ recalculated with the jth sample unit from stratum k removed, i.e., the usual
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delete-1 jackknife variance estimator (note that the results hold for sufficiently
smooth functions of ˆ̄Y N ). Using similar arguments to Chen and Qin (1993),
Appendix 5 proves the consistency. This will extend quite naturally to stratified
multi-stage sampling, if we treat the clusters as being sampled with replacement.
It is also clear from Theorem 1 that any central limit results available for GREG’s
apply to the PEMLE.

7. Simulation

To study the properties of the proposed PEMLE relative to the GREG and
the ORE, we conducted a limited simulation study. For this purpose, we created
various stratified finite populations. Each population consisted of L = 4 strata
with stratum sizes Nh = 8000 − 300h and stratum sample sizes nh = 100 − 9h
for h = 1, 2, 3, 4. For the ith unit within the hth stratum, the characteristics xhi

were generated by adding h/2 to a χ2
2h variate and the yhi were generated using

the model
yhi = αh + βhxhi + γhx2

hi + ξhxa
hiεhi (13)

for specific values of αh, βh, γh, a and ξh, where εhi are random variables, inde-
pendent and identically distributed over i, from either a chi-square distribution
with bh degrees of freedom, χ2

bh
, or a standard normal distribution, N(0, 1).

For each parameter combination, we first generated the stratified finite pop-
ulation of values {xhi, yhi} using model (13). The six parameter combinations
used to generate six finite populations are given in Table 1. For each of 1-6
in Table 1, the stratified finite population was created and B = 1000 inde-
pendent stratified srswor samples were drawn as were B = 1000 stratified pps
with replacement (ppswr) samples with probabilities proportional to x. The
simulation mean square errors of the three estimators were then calculated as

MSEj =
∑B

b=1{ ˆ̄Y
(b)

Nj − ȲN}2/B, where ˆ̄Y
(b)

Nj is the value of ˆ̄Y Nj for the bth
simulation run and j = 1, 2, 3 refer to the PEMLE, the GREG and the ORE,
respectively. The random generations were done using the NAG fortran library
functions.

The choice of model and parameter settings was somewhat artificial but
some factors were taken into consideration when selecting them. The theoretical
development in Section 5 suggests the PEMLE and the ORE should be more
efficient than the GREG under stratified srswor because they make better use of
the strata size information. The strata size information is most useful when the
between strata variation is larger than the within stratum variation. (Note, in the
extreme case of zero within stratum variation, the PEMLE and ORE have zero
mean square error. This is not true for the GREG.) Populations 1-6 were chosen
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to have this property with Population 6 having the smallest ratio of between to
within strata variation.

Table 1. Parameter settings for generated finite populations

h αh βh γh ξh a εhi

Population 1
1 2 0 0 0.2 -0.5 χ2

3

2 6 0 0 0.2 -0.5 χ2
4

3 10 0 0 0.2 -0.5 χ2
5

4 14 0 0 0.2 -0.5 χ2
6

Population 2
1 2 0.5 0 0.2 -0.5 χ2

3

2 6 1.0 0 0.2 -0.5 χ2
4

3 10 -0.5 0 0.2 -0.5 χ2
5

4 14 -1.0 0 0.2 -0.5 χ2
6

Population 3
1 2 0.5 0 0.1 0.5 χ2

1

2 6 1.0 0 0.1 0.5 χ2
2

3 10 -0.5 0 0.2 0.5 χ2
3

4 14 -1.0 0 0.1 0.5 χ2
4

Population 4
1 2 0.5 0 0.1 0.5 N(0, 1)
2 6 1.0 0 0.2 0.5 N(0, 1)
3 10 -0.5 0 0.2 0.5 N(0, 1)
4 14 -1.0 0 0.2 0.5 N(0, 1)

Population 5
1 2 0.5 0.05 0.1 0.5 N(0, 1)
2 6 1.0 -0.05 0.2 0.5 N(0, 1)
3 10 -0.5 0.05 0.2 0.5 N(0, 1)
4 14 -1.0 -0.05 0.2 0.5 N(0, 1)

Population 6
1 4 0.5 0.05 0.1 0.5 N(0, 1)
2 6 1.0 -0.05 0.2 0.5 N(0, 1)
3 8 -0.5 0.05 0.2 0.5 N(0, 1)
4 10 -1.0 -0.05 0.2 0.5 N(0, 1)

Another consideration in selecting the parameter settings was the strength
and form of the resulting dependence of y on x. In Population 1, y depends
mildly on x and only through the variance. In Populations 2, 3 and 4, y and
x are linearly related, while in Populations 5 and 6 a quadratic term is added
to create departures from linearity. We also considered different error structures
using both chi-square (skewed) and normal (symmetric) errors and variances
proportional to x and x−1.
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Table 2. Comparing MSE’s of the PEMLE, GREG and ORE under Strati-
fied SRSWOR

Population MSE(PEMLE)/MSE(GREG) MSE(PEMLE)/MSE(ORE)
1 0.01 1.00
2 0.53 1.01
3 0.52 1.01
4 0.52 1.01
5 0.66 1.07
6 0.89 1.02

Table 3. Comparing MSE’s of the PEMLE, GREG and ORE under Strati-
fied PPSWR

Population MSE(PEMLE)/MSE(GREG) MSE(PEMLE)/MSE(ORE)
1 0.03 0.05
2 0.40 0.41
3 0.37 0.38
4 0.40 0.41
5 0.50 0.56
6 1.19 1.18

Tables 2 and 3 report the ratios of MSE(PEMLE) to MSE(GREG) and
MSE(ORE) for the six populations under stratified srswor and under stratified
ppswr sampling with probability proportional to x, respectively. For stratified
srswor, in all six populations the PEMLE and the ORE perform similarly and
significantly outperform the GREG in terms of MSE. For stratified pps, the
PEMLE significantly outperforms both the GREG and the ORE in populations
1-5 while performing slightly worse in population 6.

As was discussed earlier, the probability that there is no solution for the
empirical likelihood method converges to zero as sample size goes to infinity. In
our simulation, we did not find any cases when the solutions did not exist. If
this does occur, the practitioner may want to use the ORE or the GREG. The
above simulation may then shed some light on how to make such a choice.

8. Some Concluding Remarks

A pseudo empirical likelihood approach to the use of auxiliary information
in complex surveys was introduced and shown to be asymptotically equivalent to
a GREG when making use of known population mean of some auxiliary variables
in estimating the population mean of a characteristic of interest. The method
allows the inclusion of more complex auxiliary information to advantage, as was
demonstrated in the simple case of stratified sampling. In principle, one could
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include very complex auxiliary information into the estimation through the use
of this method. A simple example is when the median of the x’s is known.

A more fundamental question (raised by one referee) is what one should
do when all the x-values in the population are known. Most commonly used
methods, though appearing to incorporate the individual xi’s from the entire
population, result in estimators which essentially adjust to the population mean
of the x’s. An exception is the method proposed by Pfeffermann and Krieger
(1991). Though their context is slightly more complicated, their estimator essen-
tially incorporates the x information by partitioning the population units into
groups and adjusting to the population group means of the x’s. The pseudo
empirical likelihood could be extended in a similar fashion. Of course, this raises
many interesting theoretical and practical questions for future investigation.

Appendix 1. Proof of Theorem 1

We will assume that the solution to the pseudo empirical likelihood exists in
probability. Under the conditions of Theorem 1, its proof is very simple. From

0 =
∑
i∈s

wiui/(1 + λui) =
∑
i∈s

wiui − λ
∑
i∈s

wiu
2
i /(1 + λui),

we conclude that λ > 0 when
∑

i∈s wiui > 0. In this case,

λ

1 + λu∗ ≤
∑

i∈s wiui∑
i∈s wiu2

i

= Op(n−1/2),

where u∗ = max{|ui| : i ∈ s} = op(n1/2) and the last equality is from the second
assumption. Hence, we must have

λ =
∑

i∈s wiui∑
i∈s wiu2

i

+ op(n−1/2).

The case when
∑

i∈s wiui < 0 can be proved in a similar fashion. The expansion
for ˆ̄Y N is then straightforward.

Appendix 2. Verifying Conditions for Theorem 1 in Three Common
Designs

A2.1. PPS sampling with replacement

Let ai be some known measure of size attached to the units and which is
positively correlated with yi. Suppose we sample n units with replacement with
the probability of selecting the ith unit equal to αi = ai/A, where A =

∑N
i=1 ai.

Letting di = 1/(nαi) and wi(s) = di/
∑

i∈s di, we can apply the pseudo empirical
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likelihood method of Section 3. With no auxiliary information the PEMLE of
ȲN will be Ŷppz/

∑
i∈s di, a ratio estimator, where Ŷppz =

∑
i∈s diyi (see Cochran

(1977), p.252).
If ui = xi − X̄N is known, to apply Theorem 1 we need Conditions 1 and 2.

If we assume some conditions on the moments of the ui’s like
∑N

i=1 αiu
4
i = O(1),

we have EU4 =
∑N

i=1 αiu
4
i = O(1) where U denotes the u-values of the first

sampled unit. So

P [U ≥ n1/2(log n)−1/2] ≤ (log n)2n−2EU4 = O((log n)2n−2).

Therefore,

P (u∗ ≥ n1/2(log n)−1/2) ≤ nP (U ≥ n1/2(log n)−1/2) = O((log n)2n−1),

and u∗ = op(n1/2). That is, the first condition of Theorem 1 is satisfied.
Routine calculations (see Cochran (1977), Theorem 9A.3), the conditions

αi ≥ cN−1 for all i (i.e. none of the selection probabilities are too small), and
N−1∑N

i=1 u2
i ≥ c > 0 clearly imply the second condition of Theorem 1.

A2.2. The Rao-Hartley-Cochran method of PPS sampling without
replacement

Suppose we have some known measure of size, ai, i = 1, . . . , N , and we wish
to sample n units without replacement with the probability of selecting the ith
unit approximately proportional to ai. The Rao, Hartley and Cochran (1962)
method (see Cochran (1977)) first partitions the population into n random groups
of units with sizes N1, . . . , Nn. Then one unit is selected from each group. If Ag

is the total measure of size of group g, the ith unit in group g is given selection
probability ai/Ag. The estimate of the population total of characteristic y used
is then ŶRHC =

∑n
g=1

Ag

ag
yg, where yg and ag refer to the unit drawn from group

g.
Let dg(s) = Ag/ag and wg(s) = dg(s)/

∑
g∈s dg(s). Without auxiliary in-

formation, the pseudo empirical likelihood methodology of Section 3 gives the
PEMLE for ȲN as ˆ̄Y N =

∑
g∈s wg(s)yg =

∑
g∈s dg(s)yg/

∑
g∈s dg(s), a ratio esti-

mator of ȲN .
To apply Theorem 1 when the ui = xi−X̄N are known, assume N−1∑N

i=1 u4
i

= O(1), N−1∑N
i=1 u2

i ≥ c and max{ai/aj} ≤ cn1/2, for some absolute constant
c. Let U1 be the u-value of the sampled unit from the first random group A1.
Then for any i,

P (U1 = ui) = E[
aiI(i ∈ A1)∑

i∈A1
aj

] ≤ cn1/2N−1.
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Hence E(U4
1 ) = O(n1/2). From the symmetry of sampled units, we get

P (u∗ ≥ n1/2(log n)−1) ≤ nP (U ≥ n1/2(log n)−1) ≤ n−1(log n)4EU4
1 = o(1).

That is, u∗ = op(n1/2) and the first condition of Theorem 1 holds.
As before, the second condition of Theorem 1 can be verified by routine

calculations.

A2.3. Cluster sampling

Suppose we have N clusters and Mi is the number of elements in the ith
cluster, where the clusters are sampled with probability proportional to size
and with replacement. Suppose we take the sample, denoted s, of n clusters
and completely enumerate them. If we assume that cluster i consists of Mi

distinct Zij , themselves independently distributed from superpopulations Fi, in-
dependent for i = 1, . . . , N , then the pseudo empirical log-likelihood will be∑n

i∈s

∑Mi
j=1 dij log(pij), where dij = di = 1/(nαi), αi = Mi/M0 and M0 =

∑
i Mi.

That is, the pseudo empirical likelihood method of Section 3 can be applied
by replacing i with ij throughout and letting wij(s) = wi(s) = di/(

∑n
i=1 diMi)

since
∑n

i=1

∑Mi
j=1 dij =

∑n
i=1 diMi. In this case, θ = θ(FN) is estimated by its

PEMLE θ̂ = θ(F̂n), where F̂n =
∑n

i∈s

∑Mi
j=1 p̂ijδyij in obvious notation. Note

that, if there is no auxiliary information, the PEMLE of ȲN will be ˆ̄Y N =∑
i∈s diYi/

∑
i∈s diMi. In the common situation when all Mi’s are bounded as

n → ∞, Condition 1 of Theorem 1 holds if we assume

N−1
N∑

i=1

Mi∑
j=1

u4(xij) = O(1); N−1
N∑

i=1

Mi∑
j=1

u2(xij) ≥ c > 0.

To see this, let u∗
i = maxj{|u(xij)|} and I be the cluster index obtained in the

first draw. Clearly, P (I = i) = αi. Thus,

E(u∗
I)

4 =
N∑

i=1

αiu
∗
i ≤

N∑
i=1

Mi∑
j=1

αiu
4(xij) ≤ max{Mi}

N

N∑
i=1

Mi∑
j=1

u4(xij) = O(1).

Obviously, u∗ given in Condition 1 of Theorem 1 is the largest observation of n

independent and identically distributed uI . Therefore,

P (u∗ > n1/2(log n)−1) ≤ nP (u∗
I > n1/2(log n)−1) ≤ n−1(log n)4E(u∗

I)
4 = o(1).

That is, u∗ = op(n1/2).
Again, Condition 2 of Theorem 1 can be verified through straightforward

calculations.
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Appendix 3. Numerical Method for Stratified Sampling

Let x̃h be a group of numbers such that
∑

Whx̃h = X̄N . Hence, the maximum
of

L∑
h=1

∑
i∈sh

dhi log phi (A.1)

subject to restrictions
∑

i∈sh
phi = Wh,

∑
i∈sh

phixhi = Whx̃h, h = 1, . . . , L, is
no larger than the original maximum of (7) under restriction (9). However, the
maximum with these new restrictions equals the original maximum of (7) under
restriction (9) for a specific group of x̃h values.

The maximum of (A.1) with the new restrictions can be obtained by using
the ordinary Lagrange multiplier method. The solution is phi = Whdhi/{dh +
λh(xhi − x̃h)}, with λh satisfying

∑
i∈sh

dhi(xhi − x̃h)
dh + λh(xhi − x̃h)

= 0. (A.2)

Clearly, the maximum of the original likelihood (7) equals

−
∑∑

i

dhi log[dh + λh(xhi − x̃h)] +
∑
h

∑
i

dhi[log(dhi) + log(Wh)]

with the best choice of feasible values of x̃h. Hence, the problem reduces to
maximizing

−
∑∑

i

dhi log[dh + λh(xhi − x̃h)]

with respect to x̃h under the restriction
∑L

h=1 Whx̃h = X̄N . Note that, in this
problem, λh is a function of x̃h defined by (A.2).

Using the Lagrange multiplier method, we get the function

l(x̃1, . . . , x̃L, t) = −
∑∑

i

log dhi[dh + λh(xhi − x̃h)] − t(
L∑

h=1

Whx̃h − X̄N).

Taking derivatives with respect to x̃h and setting to zero, we get

−
∑
i∈sh

dhi[λ′
h(xhi − x̃h) − λh]

dh + λh(xhi − x̃h)
− tWh = −λh − tWh = 0,

where λ′
h = ∂λh/∂x̃h. Hence, we obtain λh = tWh and

∑
i∈sh

dhi(xhi − x̃h)
dh + tWh(xhi − x̃h)

= 0 (A.3)
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for h = 1, . . . , L. The other equation is
∑L

h=1 Whx̃h = X̄N . For each given t, x̃h

takes a different value and thus we denote it as x̃h(t). It can be obtained from
(A.3) easily. In addition, it is simple to show that

∑L
h=1 Whx̃h(t) is a monotone

function of t. Hence, numerically, we need only increase or decrease the size
of t to determine the existence of the solution and the uniqueness is a simple
consequence of the monotonicity.

Appendix 4. Proof of Corollary 1

Before we prove Corollary 1, we first state and prove the following lemma.

Lemma 1. Under the conditions of Corollary 1, a solution to the pseudo empir-
ical likelihood equations exists with probability tending to one as the sample size
goes to infinity.

Proof of Lemma 1. First, assume max{Wh} → 0. Let xh1 ≤ xh2 be any two
randomly selected observations in stratum h. Note that a solution exists if

L∑
h=1

Whxh2 ≥ X̄N and
L∑

h=1

Whxh1 ≤ X̄N .

This ensures that X̄N falls in the convex hull of x values in the sample. From
the moment conditions in Corollary 1, it can be shown E[

∑L
h=1 Whxh2] − X̄N ≥

c > 0 for some c independent of the index ν (Chen and Sitter (1996)). Hence,∑L
h=1 Whxh2 > X̄N with probability tending to 1 since its variance goes to zero

as a result of Var (xh2) ≤ 2σ2
h. Similarly,

∑L
h=1 Whxh1 < X̄N with probability

tending to 1. That is, the solution of the pseudo empirical likelihood equations
exists with probability approaching one when max{Wh} → 0.

Next, assume m = minh{nh} goes to infinity. Let xhi, i = 1, . . . ,m, be the
first m observations from the hth stratum. The moment conditions will then
imply

P (
L∑

h=1

Whxhi > X̄N ) ≥ c > 0

for some c for all i = 1, . . . ,m. Therefore, if x+
h is the largest observation from

the hth stratum, we have

P (
L∑

h=1

Whx+
h ≤ X̄N ) ≤ (1 − c)m

which goes to zero as m → ∞. Similarly for the smallest observation x−
h from

the hth stratum

P (
L∑

h=1

Whx−
h ≥ X̄N ) → 0.
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Together, these imply the existence of a solution with probability approaching 1.
For any other case, let L1 = {h : Wh ≤ n−1/2} and L2 be its complement.

Strata in L1 satisfy the condition max{Wh} → 0 and strata in L2 satisfy the con-
dition min{nh} → ∞, by condition (ii) of the theorem. However, the moment
conditions have to be revised. Note that under the moment conditions of the the-
orem N−1∑

h∈Lj

∑
i |xhi|3 = O(1) for both j = 1, 2, and 0 < c1/2 ≤∑

h∈Lj
Whσ2

h

is true for either j = 1 or j = 2 (possibly both). If it is true for j = 1, we can
show

∑
h∈L1

Whxh2 +
∑

h∈L2
Whx̄h − X̄N has a mean which is larger than some

c > 0 and a variance which goes to zero. Therefore, it is larger than X̄N with
probability approaching one. Similarly,

∑
h∈L1

Whxh1 +
∑

h∈L2
Whx̄h − X̄N has

a mean which is smaller than some −c < 0 and a variance which goes to zero.
Therefore, it is smaller than X̄N with probability approaching one. If it is true
for j = 2, we can show

∑
h∈L1

Whx̄h +
∑

h∈L2
Whx+

h is larger than X̄N with
probability approaching one. Similarly replacing x+

h by x−
h , we can show it is

smaller than X̄N with probability approaching one. Hence, a solution exists with
probability approaching one in general.

Proof of Corollary 1. When the solution exists, note that for any h = 1, . . . , L,
we have ∑

i∈sh

(xhi − x̃h) = t
∑
i∈sh

(xhi − x̃h)2

1 + t(xhi − x̃h)
,

and hence

L∑
h=1

Wh

nh

∑
i∈sh

(xhi − x̃h) = t
L∑

h=1

Wh

nh

∑
i∈sh

(xhi − x̃h)2

1 + t(xhi − x̃h)
.

Similar to the proof of Theorem 1, we have

|t| ≤ (1 + |t|u∗)
|∑L

h=1
Wh
nh

∑
i∈sh

(xhi − x̃h)|∑L
h=1

Wh
nh

∑
i∈sh

(xhi − x̃h)2
,

where u∗ = max{xhi : i ∈ sh}, since

0 =
L∑

h=1

Whx̃h − X̄N = [
L∑

h=1

Wh(x̃h − x̄h)] +
L∑

h=1

Wh(x̄h − X̄N ).

Note that the second term has mean zero and variance
∑L

h=1 n−1W 2
hσ2

h = O(max
{n−1

h Wh}) = O(n−1) by assumption. Thus the second term is of order n−1/2 and,
consequently, the first term is of the same order. Applying this to the inequality
for |t|, we find t = Op(n−1/2). Now, with the simple random sampling plan,
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the third moment condition implies u∗ = op(n1/2). Hence, t(xhi − x̃h) = op(1)
uniformly over sampled units. We therefore get

t =
∑L

h=1 Wh(x̄h − x̃h)∑L
h=1 Whn−1

h

∑
i∈sh

(xhi − x̃h)2
+ op(n−1/2).

With this expansion for t and the relation p̂hi = {nh[1 + t(xhi − x̃h)]}−1, it is
straightforward to expand ˆ̄Y N =

∑L
h=1 Wh

∑
i∈sh

p̂hiyhi to obtain the required
result.

Appendix 5. Proof of Consistency of the Jackknife Variance Estimator

The Lagrange multiplier with the jth unit from the kth strata removed,
λ−kj, solves

L∑
h=1

Wh

nh

∑
i∈sh

uhi

1+λT
−kjuhi

+
Wk

nk(nk−1)

∑
i∈sk

uki

1+λT
−kjuki

−
( Wk

nk−1

)( ukj

1+λT
−kjukj

)
=0,

and so
L∑

h=1

Wh

nh

∑
i∈sh

uhiu
T
hi

(1 + λT
−kjuhi)(1 + λT uhi)

(λ−kj − λ)

=
Wk

nk(nk − 1)

∑
i∈sk

uki

1 + λT
−kjuki

−
(

Wk

nk − 1

)(
ukj

1 + λT
−kjukj

)
. (A.4)

Similarly,

θ̂ − θ̂−kj =
L∑

h=1

Wh

nh

∑
i∈sh

yhiu
T
hi

(1 + λT
−kjuhi)(1 + λT uhi)

(λ−kj − λ)

− Wk

nk(nk − 1)

∑
i∈sk

yki

1 + λT
−kjuki

+
(

Wk

nk − 1

)(
ykj

1 + λT
−kjukj

)
. (A.5)

Note that λ = Op(n−1/2) by condition 1 of Theorem 1, and similarly it can be
shown that λ−kj = Op(n−1/2) uniformly (see the proof of Theorem 1 in Appendix
1).

Letting Auu =
∑L

h=1Wh
∑

i∈sh
uhiu

T
hi/nh and Auy =

∑L
h=1Wh

∑
i∈sh

yhiu
T
hi/nh,

we get
L∑

h=1

Wh

nh

∑
i∈sh

uhiu
T
hi

(1 + λT
−kjuhi)(1 + λT uhi)

= Auu(1 + op(1)) (A.6)

and
L∑

h=1

Wh

nh

∑
i∈sh

yhiu
T
hi

(1 + λT
−kjuhi)(1 + λT uhi)

= Auy(1 + op(1)) (A.7)
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uniformly in kj. It is not difficult to show that replacing
∑

i∈sk
yki/(1+λT

−kjukj)
by

∑
i∈sk

yhi and ykj/(1 + λT
−kjukj) by ykj in the expression of θ̂ − θ̂−kj has

negligible effect on the jackknife variance estimator.
By ignoring these higher order terms and using (A.4) and (A.6) we get

Auu(λ−kj − λ) .= −(nk − 1)−1Wk(ukj − ūk), where ūk =
∑

i∈sk
uki/nk, and thus

by (A.5) and (A.7), θ̂ − θ̂−kj
.= (nk − 1)−1Wk[(ykj − ȳk) − AuyA

−1
uu (ukj − ūk)],

where ȳk =
∑

j∈sk
ykj/nk.

Thus

vJ
.=

L∑
k=1

(1 − fk)2
W 2

k

nk(nk − 1)

∑
j∈sk

[(ykj − ȳk) − AuyA
−1
uu (ukj − ūk)]2

which implies the desired result.
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