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Abstract: We consider the problem of invariant estimation of a discrete distribution

function F under the Cramer-von Mises loss. It is proved that the best invariant

estimator is admissible. This extends a result of Brown (1988) and settles an open

question (Brown (1988)). The idea used in the proof of admissibility is a new

refinement of the standard Bayes argument, which is different from the step-wise

Bayes approach and Blyth’s (1951) Lemma.
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1. Introduction

We study the admissibility of the best invariant estimator of a distribution
function in the discrete set-up formulated by Brown (1988).

Let �X = (X1, . . . ,Xn) be a sample of size n from an unknown distribution
function F . The action space is the set of all nondecreasing functions a(t) from
(−∞,∞) into [0,1]. We consider two types of parameter spaces Θ. One is the
family of all distribution functions, denoted by Θ0. The other is the family of
all discrete distribution functions, denoted by Θd. The family of all continuous
distribution functions is denoted by Θc. The loss function is

L(F, a) =
∫ +∞

−∞
|F (t)−a(t)|2h(F (t))dF (t), with h(t)= tα(1−t)β and α, β ≥ −1.

(1.1)
The risk of an estimator, d (also written as d = d( �X) = d(t) = d( �X, t)), is
R(F, d) = EL(F, d( �X)). Under the above formulation, decision problems of
estimating F are invariant under monotone transformations (from R1 onto R1).

When Θ = Θc, Aggarwal (1955) showed that the best invariant estimator is

dα,β(t) =
α + 1 +

∑n
i=1 1[t ≥ Xi]

n + 2 + α + β
, (1.2)

where 1[A] is the indicator function of a set A. A special case of the loss (1.1) is
α = β = −1. In this case, dα,β(t) is the empirical distribution function (EDF)
F̂ (t) (Aggarwal (1955)). This estimator is minimax (Yu and Chow (1991)). It
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is admissible if the sample size n is 1 or 2 and is inadmissible if n ≥ 3 (Yu
(1989a,b,c)).

When the unknown distribution is discrete, Yu (1992) demonstrated that F̂

is minimax under the loss (1.1) with α = β = −1, and Brown (1988) and Yu
(1993) showed that F̂ is admissible under the loss (1.1) with α ∈ [−1, 0] and
β ∈ [−1, 1).

Another special case of the loss (1.1) is α = β = 0, that is

L1(F, a) =
∫ +∞

−∞
|F (t) − a(t)|2dF (t). (1.3)

The best invariant estimator is

d0,0(t) =
1

n + 2
+

1
n + 2

n∑
i=1

1[t ≥ Xi]. (1.4)

When Θ = Θc, Brown proved that d0,0(t) is inadmissible under the loss (1.3).
When Θ is the family of discrete distributions with support on the interval [0, 1],
denoted by Θd[0,1], he showed that d0,0(t) is inadmissible under the loss (1.3),
and d0,0(t) is improved by db(t) = d0,0(t) if t < 1; 1 otherwise. Under the loss
(1.3) and the family of distributions Θd[0,1], db(t) is admissible. If Θ = Θd and
the loss is as in (1.3), admissibility of d0,0(t) is an interesting open question. The
major difficulty in this problem is that the standard step-wise Bayes procedure
does not work. The step-wise procedure converts the problem to a multinomial
distribution problem, where for each given observation �x, the estimate of interest
is a posterior Bayes action (Berger (1985)). Unfortunately, in this problem,
the estimate d0,0(�x, t) may not be a posterior Bayes action for each observation
�x(= (x1, . . . , xn)).

In this paper, we settle the open question in a more general setting. Denote

dL(t) =
s

n + s + r
+

1
n + s + r

n∑
i=1

1[t ≥ Xi], where s, r ≥ 0. (1.5)

We show in Theorem 1 that if Θ = Θd or Θ0, then any dL of the form (1.5)
(s, r ≥ 0) is admissible under any loss function in the whole class of loss functions
(1.1). Note that dα,β(t) as in (1.2) is associated with the specific α and β in the
loss (1.1) (but dL is not). It follows that when Θ = Θd the best invariant
estimator dα,β(t), as in (1.2), is admissible under the loss (1.1). Furthermore,
when Θ = Θd both the EDF and d0,0(t) are admissible under the loss (1.1) for any
α, β ≥ −1. We use a new approach to attack the admissibility issue. The idea
used in the proof of Theorem 1 can be summarized as the following proposition.

Proposition 1. Suppose that X is the sample space, the m-dimensional param-
eter space Θ is open and that the risk R(θ, δ) of any decision rule δ is continuous
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in θ ∈ Θ. Suppose that {τi} is a sequence of prior density functions on the pa-
rameter space Θ such that limi→∞ τi = τ almost everywhere. Here τ is a positive
prior density function. Suppose that δ0 is a decision rule such that its Bayes risk
r(τi, δ0) with respect to τi is finite for all i and for any other decision rule δ there
exists a measurable partition {Bk; k ∈ K} of the set {�x; δ(�x) �= δ0(�x)} such that

lim
j→∞

E[1[ �X ∈ Bk]Eτj (L(θ, δ0( �X))| �X)]

E[1[ �X ∈ Bk]Eτj (L(θ, δ( �X))| �X)]
< 1 uniformly for all k ∈ K. (1.6)

Then δ0 is admissible.

The proof of this statement is postponed to Section 5.
The differences between the new approach proposed in the proposition and

the stepwise Bayes approach will be discussed in the end of the paper. A special
case (when Bk’s are singletons) of the approach mentioned in the proposition
was used in Yu and Kuo (1995) to study admissibility issues for non-invariant
loss functions.

If the family of distribution functions is replaced by Θd[0,1] considered in
Brown (1988) and if β > 0, dL(t) is still admissible. The idea of the proof is
similar. However, if β ≤ 0, dL is improved by dB(t) = dL(t) if t < 1; 1 otherwise.
Furthermore, it can be shown that dB(t) is admissible under the loss (1.1) with
α, β ≥ −1 if Θ = Θd[0,1].

Since we consider the problem of discrete invariant estimation, the integrand,
H(F, a) = (F − a)2h(F ), in the loss function (1.1) needs to be properly modified
when indeterminecy 0

0 occurs (i.e., when β < 0 and F = a = 1). We define 0
0 to

be 0.
There are five sections in this paper. The main results are introduced in

Section 2. The proofs of the main theorem are partitioned into two parts and are
given in Sections 3 and 4, respectively. The significance of the approach proposed
in Proposition 1 is discussed in Section 5.

2. Main Results

Our main result is stated as follows.

Theorem 1. Suppose that the loss is as in (1.1), Θ = Θd or Θ0. Then the
estimator dL(t) in (1.5) is admissible. Furthermore, if an estimator d is such
that R(F, d) ≤ R(F, dL) for all F ∈ Θd, then d = dL.

We first outline the proof of Theorem 1. Given a discrete distribution func-
tion,

F (t) =
∑
j

pj1[t ≥ sj], where pj’s are weights and sj’s are real numbers, (2.1)
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and given arbitrary estimator d(t), the loss function (1.1) can be written as∫ +∞

−∞
(F (t) − d(t))2h(F (t))dF (t) =

∑
j

pj[F (sj) − d(sj)]2(F (sj))α(1 − F (sj))β .

If β > 0, then the risk of d(t) does not depend on the value of d at t0 =
supj{sj} and is finite; on the other hand, if β < 0 and if F gives a positive weight
to t0, then the risk of d(t) does depend on the value of d at t0 and equals +∞,
unless d(t0) = 1. Finally, if β = 0, then the risk of d(t) depends on the value of d
at t0, but the risk is always finite. Moreover, it turns out that the proof for the
case r = 0 is almost identical to that for the case β > 0. Thus the proof of the
theorem is divided into three cases: (1) β > 0 or r = 0; (2) β = 0 and r > 0; (3)
β < 0 and r > 0.

To prove the theorem for case (1), we apply the idea described in Proposition
1 directly, in which {τj}j≥1 is a sequence of modified multivariate Beta priors on
the family of distribution functions F of the form (2.1) which have at most n+1
different sj’s (the support of F ), and Bk’s are all singleton sets {(�x, t)} such that
d(�x, t) �= dL(�x, t).

The proof for case (2) is the most interesting one, since it settles an open
question raised by Brown (1988). We first prove that it suffices to show that any
estimator d which takes finitely many values cannot improve on dL (see Lemma
2), and then prove the statement using the approach in Proposition 1. The priors
{τj}j≥1 are similar to case (1), but the Bk’s are not all singleton sets.

In case (3), in order to have a finite risk, we have to consider priors for the
family of distribution functions F of form (2.1), for which t0 does not belong to
{s1, s2, . . .}. Then we use the approximation and mimic the proof for case (2).
Since this proof is very similar to that for β = 0, for an easier presentation, we
only prove Theorem 1 for cases (1) and (2). Readers who are interested in the
proof for case (3) can find it in a technical report (Yu (1994)).

3. Proof of Theorem 1 for Case (1)

The proof of this section is similar to that in Yu and Kuo (1995). Hereafter,
we denote the (n + 1)-product set of {ξ1, . . . , ξm} by {ξ1, . . . , ξm}n+1 = {(�x, t) :
x1, . . . , xn, t ∈ {ξ1, . . . , ξm}}.

We assume that d1 is an estimator such that d1(�x, t) �= dL(�x, t) for (�x, t) =
(�x∗, t∗), where �x∗=(x∗1, . . . , x∗n) is a fixed point in Rn, and R(F, dL)−R(F, d1) ≥
0 for all F ∈ Θd; and reach a contradiction.

Denote ξ1 < · · · < ξm−1 the distinct points in the set {x∗1, . . . , x∗n, t∗} and
take ξm > ξm−1, say, ξm = ξm−1 + 1. Denote

V =

{
{(�x, t) : (�x, t) ∈ {ξ1, . . . , ξm}n+1, d1(�x, t) �= dL(�x, t), t �= ξm} if β > 0;
{(�x, t) : (�x, t) ∈ {ξ1, . . . , ξm}n+1, d1(�x, t) �= dL(�x, t)} if β ≤ 0.

(3.1)
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Then V is not empty (by the assumption about d1). Hereafter in the proof, let

F (t) =
m∑

i=1

pi1[t ≥ ξi] (3.2)

be a discrete distribution function, where p = (p1, . . . , pm) is a probability vector;
denote

dτ∗(p) = ps−2−α
1 p−1

2 · · · p−1
m−1p

r−1−β
m dp1 · · · dpm−1;

dτ∗
ε = dτ∗(p)1[p ∈ Pε], where ε > 0 and Pε =

{
p : pi ≥ ε/m,

m∑
i=1

pi = 1
}
. (3.3)

For each possible �x, let ηk = ηk(�x) = #{i : xi = ξk} and η = (η1, . . . , ηm), where
#A is the cardinality of a set A. Let d1(η, t) = d1(�x, t) for η(�x) = η and similarly
for dL(η, t). Write

∫ · · · ∫Pε
=

∫
Pε

and dp1 · · · dpm−1 = dp. For any estimate d

and for any ε > 0, integrating R(F, d) over the prior dτ∗
ε yields a finite value.

It can be shown that the integral is
∫
Pε

R(F, d)dτ∗
ε (p) =

∑
�x

∑m
j=1 I(d(�x, ξj), ε),

where

I(d(�x, ξj), ε) =
∫

Pε

pj(
j∑

i=1

pi − d(�x, ξj))2
m∏

k=1

pηk−1
k h(

j∑
i=1

pi)ps−1−α
1 pr−β

m dp. (3.4)

In view of (3.4) and R(F, dL)−R(F, d1) ≥ 0, integrating R(F, dL)−R(F, d1) over
the prior dτ∗

ε yields

0 ≤
∑

(�x,ξj)∈V

I(dL(�x, ξj), ε) −
∑

(�x,ξj)∈V

I(d1(�x, ξj), ε) for any ε > 0, (3.5)

(since I(dL(�x, ξj), ε) = I(d1(�x, ξj), ε) if (�x, ξj) /∈ V ). That is
∑

(�x,ξj)∈V I(dL(�x, ξj), ε)∑
(�x,ξj)∈V I(d1(�x, ξj), ε)

≥ 1 for any ε > 0. (3.6)

To get a contradiction, we show that dL(t) is a limit of a sequence of gen-
eralized Bayes estimators with respect to {τεj}, where εj → 0. In this regard, it
would be more convenient to use the prior τ∗ instead of the sequence of priors, as
was done in Brown (1988) and Yu (1993). However, in general, replacing τ∗ for
τ∗
ε in (3.4) may not yield a finite value, since the exponent of p1, η1 + s− 2− α,

in (3.4) may be < −1 (e.g., η1 = n, s = 0, α = 3n).
It is worth noting that the multiple integral in (3.4) can be evaluated for

each (�x, ξj) (see, for example, Ferguson (1967)). Let σj = σj(η) =
∑j

i=1 ηi,
j = 1, . . . ,m − 1. Making the substitution uj =

∑j
i=1 pi, j = 1, . . . ,m − 1,
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qk = uk
uk+1

, for k < j and rk = pk
1−uk−1

, for k > j, the multiple integral in (3.4) for
each (�x, ξj) becomes

I(d(�x, ξj), ε) =
[ j−2∏

k=1

∫ 1−[(m−k)/m]ε
1−[(m−k−1)/m]ε

(k/m)ε
1−[(m−k−1)/m]ε

qσk+s−α−2
k (1 − qk)ηk+1−1dqk

]

×
∫ 1−[(m−j+1)/m]ε

1−[(m−j)/m]ε

[(j−1)/m]ε
1−[(m−j)/m]ε

q
σj−1+s−α−2
j−1 (1 − qj−1)ηj dqj−1

(note pj = (1 − qj−1)uj)

×
∫ 1− (m−j)

m
ε

j
m

ε
(uj − d(�x, ξj))2u

σj+s−1
j (1 − uj)n−σj+r−1duj

×
[ m−1∏

k=j+1

∫ 1−[(m−1)/m]ε
1−[(k−1)/m]ε

ε/m
1−[(k−1)/m]ε

(1 − rk)n−σk+r−β−1rηk−1
k drk

]
, (3.7)

where we define
∏j−2

k=1 ak = 1 for j = 1 or 2 and for any real number ak. Also
define

∫
f(qj)dqj = 1 for j < 1 and for any function f . Note we can replace d by

dL or d1 in (3.7). Since d1 or dL only occurs in one of the four factors in (3.7),
this formula yields

I(dL(�x, ξj), ε)
I(d1(�x, ξj), ε)

=

∫ 1−[(m−j)/m]ε
(j/m)ε (uj − dL(�x, ξj))2u

s+σj−1
j (1 − uj)n−σj+r−1duj∫ 1−[(m−j)/m]ε

(j/m)ε (uj − d1(�x, ξj))2u
s+σj−1
j (1 − uj)n−σj+r−1duj

<

∫ 1
0 (uj − dL(�x, ξj))2u

s+σj−1
j (1 − uj)n−σj+r−1duj∫ 1−ε

ε (uj − d1(�x, ξj))2u
s+σj−1
j (1 − uj)n−σj+r−1duj

→
∫ 1
0 (uj − dL(�x, ξj))2u

s+σj−1
j (1 − uj)n−σj+r−1duj∫ 1

0 (uj − d1(�x, ξj))2u
s+σj−1
j (1 − uj)n−σj+r−1duj

as ε ↓ 0. (3.8)

It is important to note that the last ratio is less than 1, since d1(�x, ξj) �= dL(�x, ξj)
and

d = dL(�x, ξj) =
s + σj

n + s + r
minimizes

∫ 1

0
(uj − d)2us+σj−1

j (1 − uj)n−σj+r−1duj .

(3.9)
Furthermore, since #V is finite, it follows from (3.1) and (3.8) that for β > 0

lim
ε→0

I(dL(�x, ξj), ε)
I(d1(�x, ξj), ε)

< 1 uniformly in m and for all (�x, ξj) ∈ V. (3.10)

If β ≤ 0 then the value of any estimator at the point (�x, ξm) would affect its
risk. Furthermore, if β ≤ 0 and (�x, ξm) ∈ V , then (3.8) may not hold and thus
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(3.10) may fail. However, if r = 0, (3.10) holds. To prove it, it is important to
note that if r = 0, then dL(�x, ξm) = 1 for all possible �x under F (defined as in
(3.2)), and

I(dL(�x, ξm), ε)
I(d1(�x, ξm), ε)

=
(
∑m

i=1 pi − dL(�x, ξm))2

(
∑m

i=1 pi − d1(�x, ξm))2
=

(1 − 1)2

(1 − d1(�x, ξm))2
(3.11)

< 1 uniformly in m and for all (�x, ξm) ∈ V.

Thus (3.10), remains true, and it implies that there exists ε > 0 such that

I(dL(�x, ξi), ε)
I(d1(�x, ξi), ε)

< 1 uniformly in m and for all (�x, ξi) ∈ V. (3.12)

There are only finitely many elements in V , so that∑
(�x,ξi)∈V I(dL(�x, ξi), ε)∑
(�x,ξi)∈V I(d1(�x, ξi), ε)

< 1 for some ε > 0, (3.13)

which contradicts (3.6). This concludes the proof of the theorem.

Remark 1. Note that the most interesting case α = β = 0 is not included in
case (1). The proof of Theorem 1 in the latter case is more difficult than the
proof for the case β > 0 since (3.10) does not hold for (�x, ξm) ∈ V . In fact, using
the notation as in (3.11), we have

I(dL(�x, ξm), ε)
I(d1(�x, ξm), ε)

< 1 if and only if |1 − dL(�x, ξm)| < |1 − d1(�x, ξm)|. (3.14)

Thus, (3.10) fails if d1(�x, ξm) = 1, β ≤ 0 and r > 0, since dL(�x, ξm) = n+s
n+s+r < 1.

Note that I(dL(�x,ξm),ε)
I(d1(�x,ξm),ε) < 1 in (3.14) is a necessary condition that dL(�x, ξm) be a

posterior Bayes action or a pointwise limit of posterior Bayes actions w.r.t the
multivariate Beta prior τ∗ or its modification τ∗

ε . In other words, if β ≤ 0 and
r > 0, then dL(�x, ξm) cannot be a posterior Bayes action or a pointwise limit of
posterior Bayes actions w.r.t the multivariate Beta prior or its modification.

4. The Proof of Theorem 1 Under the Loss (1.1) with β = 0 (case 2)

Both the proofs for case (1) and for case (2) are applications of Proposition
1. In the proof for case (1), the Bk’s (see (1.6)) are all singletons, whereas in
the proof for case (2), this is not true. A major reason for the difference in Bk’s
is that dL cannot be a posterior Bayes action or a pointwise limit of posterior
Bayes actions w.r.t. τ∗ in case (2) (see Remark 1), as it is in case (1). Other
than that, these two proofs are very similar.

To simplify our proof, without loss of generality (WLOG), we can assume
that all the estimators are functions of the order statistics, since these form an
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essentially complete class. Furthermore, given a dL of form (1.5), since we study
the admissibility of dL, WLOG, we can assume that all estimators d considered
belong to the class

U = {d : R(F, d) ≤ R(F, dL) for all discrete F}.
We outline the proof of the theorem for case (2).

Lemma 1. (Yu and Phadia, Theorem 4. (1993)) Suppose that n ≥ 1 and
d(�x, t) ∈ U , but d �= dL on a positive Lebesgue-measure set. Then one can find
an estimator dn which takes on finitely many values, dn �= dL such that ∀ε, δ > 0,
there is a subset I, of positive measure, satisfying:

µn+1({(x1, . . . , xn, t) : x1, . . . , xn, t ∈ I, |d(�x, t) − dn(�x, t)| > ε}) < δ(µ(I))n+1,

where µn+1 is the (n + 1)-dimensional (product) Lebesgue measure.

It follows from Lemma 1 that any estimator d can be approximated by an
estimator dn which takes on finitely many values. Thus it suffices to show that
the estimator dn which takes on finitely many values cannot improve on dL.
Hereafter, given �x = (x1, . . . , xn), we assume that x1 ≤ · · · ≤ xn since we restrict
our attention to functions of the order statistics only.

Lemma 2. Assume the case (2). Suppose that d1 is another estimator which
takes on finitely many values on the product set ({ξi}i≥1)n+1. If R(F, dL) −
R(F, d1) ≥ 0 for any F (t) with support on {ξi}i≥1, then d1 = dL on ({ξi}i≥1)n+1.

Proof. We assume that d1 �= dL at (�x, t) ∈ {ξ1, . . . , ξJ}n+1, d1 ∈ U , and reach
the contradiction.

Since d1(�x, ξj) takes on finitely many values, by choosing a subsequence of
ξJ , ξJ+1, . . . , WLOG, we can assume that d1(�x, ξj) is constant for ξj > ξJ , say
d1(�x, ξj) = ln(x1, . . . , xn) if ξj > ξJ .

Treating ln(x1, . . . , xn) as a function of xn (xn ≥ xn−1, since x1 ≤ · · · ≤
xn) for each x1, . . . , xn−1, by assumption, there are finitely many values of
ln(x1, . . . , xn). Thus, by taking subsequences of {ξJ+1, ξJ+2, . . .}, WLOG, we can
assume that ln(x1, . . . , xn−1, xn) = ln−1(x1, . . . , xn−1) if xn ∈ {ξJ+1, ξJ+2, . . .}.
By taking further subsequences inductively, WLOG, we can assume that

ln(x1, . . . , xn−1, xn) = li(x1, . . . , xi) if xi+1, . . . , xn ∈ {ξJ+1, ξJ+2, . . .},
i = 0, 1, . . . , n.

In other words, we can assume that

d1(�x, t)=li(x1, . . . , xi) if x1, . . . , xi≤ξJ andxi+1, . . . , xn, t∈{ξJ+1, ξJ+2, . . .}, (4.1)
i = 1, . . . , n, and if x1 ≤ · · · ≤ xn < t.

d1(�x, t)=l0 if x1, . . . , xn, t ∈ {ξJ+1, ξJ+2, . . .} and if x1 ≤ · · · ≤ xn < t. (4.2)
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Furthermore, treating d1(�x, xn) as a function of (x1, . . . , xn−1), in the same
manner as in deriving (4.1) and (4.2), WLOG, we can assume that

d1(�x, xn) = l′i(x1, . . . , xi) if x1, . . . , xi≤ξJ and xi+1, . . . , xn∈{ξJ+1, ξJ+2, . . .} (4.3)

i = 1, . . . , n − 1;

d1(�x, xn) = l′0 if x1, . . . , xn ∈ {ξJ+1, ξJ+2, . . .}. (4.4)

In view of case (1), WLOG, we can assume that r > 0. By assumption,
d1 �= dL and dL improves on d1. Therefore the same arguments in the proof for
case (1) yield (3.6) for any m > J and for any F as in (3.2). Partition the set V

into three subsets:

Vm = {(�x, t) ∈ V : t = ξm} (4.5)

V1 = {(�x, t) ∈ V : ξJ < x1 ≤ xn ≤ t ≤ ξm−1}
V0 = V \ (Vm ∪ V1).

We first show that

d1 = dL for (�x, t) ∈ ({ξj}j>J)n+1, (4.6)

and then we conclude the proof of the lemma by showing

d1 = dL for (�x, t) ∈ ({ξj}j≥1)n+1. (4.7)

Indeed (4.7) contradicts the assumption d1 �= dL.
To show (4.6), by defining a distribution with support in {ξJ+1, ξJ+2, . . .},

WLOG, we can assume that J = 0, i.e.,
(1) d1(�x, t) = l0 if x1, . . . , xn, t ∈ {ξ1, ξ2, . . .} and t > xn;
(2) d1(�x, xn) = l′0 if x1, . . . , xn ∈ {ξ1, ξ2, . . .}.

Recall that when β > 0, (3.12) holds for (�x, t) ∈ V . Thus (3.13) holds and we
conclude the proof since (3.13) contradicts (3.6). When β = 0, with V replaced
by V0 ∪ V1, (3.12) holds, i.e., there exists an ε > 0 such that

I(dL(�x, t), ε)/I(d1(�x, t), ε) < 1 for all (�x, t) ∈ V0 ∪ V1 and for all m. (4.8)

If Vm is empty, we are done, so that we can assume that Vm is not empty. Then
(4.8) or (3.12) does not hold for (�x, t) ∈ Vm and for all ε > 0. It can be shown
(see Lemma 3) that a variant of (4.8) or (3.12) holds, namely, for any ε > 0 such
that (4.8) holds, we can choose m large enough so that∑

(�x,ξj)∈V1∪Vm
I(dL(�x, ξj), ε)∑

(�x,ξj)∈V1∪Vm
I(d1(�x, ξj), ε)

< 1. (4.9)
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Since V = V0 ∪ (V1 ∪ Vm), (4.8) and (4.9) imply (3.13), which contradicts
(3.6). This completes the proof of (4.6).

We now give the proof of (4.7). It follows from (4.6) that V1 is empty,
V = V0 ∪ Vm (see (4.5)) and Vm = {(�x, ξm) ∈ V : x1 ∈ {ξ1, . . . , ξJ}}. Note that
there exists an ε > 0 such that (4.8) holds for all (�x, t) ∈ V0. It follows from
Lemma 4 below that for any ε > 0 such that (4.8) holds, there exists m such that
for all �x for which (�x, ξm) ∈ Vm and x1 ≤ ξJ ,∑m

j>J I(dL(�x, ξj), ε)∑m
j>J I(d1(�x, ξj), ε)

< 1. (4.10)

Then (4.8) and (4.10) yield (3.13), which contradicts (3.6). The contradiction
shows that (4.7) holds, which completes the proof of the lemma.

In the above proof, the set {(�x, ξj) ∈ V1∪Vm} is the B1 in Proposition 1 and
the remaining Bi are singleton sets {(�x, ξj)}, which are subsets of V0.

Lemma 3. Inequality (4.9) holds.

Proof. Inequality (4.9) is equivalent to

−∑
(�x,t)∈V1

[I(dL(�x, t), ε) − I(d1(�x, t), ε)]∑
(�x,t)∈Vm

[I(dL(�x, t), ε) − I(d1(�x, t), ε)]
> 1. (4.11)

Thus, it suffices to show that for any ε > 0 such that (4.8) holds for (�x, ξj) ∈ V1,
we can choose m so that

−∑
(�x,t)∈V1

[I(dL(�x, t), ε)−I(d1(�x, t), ε)]∑
(�x,t)∈Vm

[I(dL(�x, t), ε)−I(d1(�x, t), ε)]
>1 if l0 = l′0 and Vm is not empty; (4.12)




−
∑

(�x,xn)∈V1
[I(dL(�x,xn),ε)−I(d1(�x,xn),ε)]∑

(�x,xn)∈Vm
[I(dL(�x,xn),ε)−I(d1(�x,xn),ε)]

> 1 if l0 �= l′0 and l′0 �= n+s
n+r+s ;

−
∑

(�x,t)∈V1,t>xn
[I(dL(�x,t),ε)−I(d1(�x,t),ε)]∑

(�x,t)∈Vm,t>xn
[I(dL(�x,t),ε)−I(d1(�x,t),ε)]

> 1 if l0 �= l′0 and l0 �= n+s
n+r+s .

(4.13)

For simplicity, we only prove (4.12). The idea of proving (4.13) is the same.
By assumption, V is not empty, (4.3) and (4.4) hold, J = 0 and l0 = l′0, i.e., d1

is constant for t ≥ x(n). If an estimate d(�x, t) is constant for t ≥ x(n), say, equal
to d(�x(n)), then (3.4) yields

∑
(�x,ξj)∈V1

I(d(�x, ξj), ε)

=
m−1∑
j=1

∫
Pε

pj

( j∑
i=1

pi − d(x(n))
)2

(
j∑

i=1

pi)n
m∏

k=1

p−1
k ps−1−α

1 pr−β
m dp
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=
m−1∑
j=1

[ j−2∏
k=1

∫ 1−[(m−k)/m]ε
1−[(m−k−1)/m]ε

(k/m)ε
1−[(m−k−1)/m]ε

qs−α−2
k (1 − qk)−1dqk

] ∫ 1−[(m−j+1)/m]ε
1−[(m−j)/m]ε

[(j−1)/m]ε
1−[(m−j)/m]ε

qs−α−2
j−1 dqj−1

×
∫ 1− (m−j)

m
ε

j
m

ε
(uj − d(x(n)))

2un+1+s−2
j (1 − uj)r−1duj

×
m−1∏

k=j+1

∫ 1−[(m−1)/m]ε
1−[(k−1)/m]ε

ε/m
1−[(k−1)/m]ε

(1 − rk)r−β−1(rk)−1drk, (4.14)

and∑
(�x,ξj)∈Vm

I(d(�x, ξj), ε) =
∫ 1−ε(m−2)/m

1
m

ε
ps−α−2
1 (1 − p1)r−βdp1

×
[ m−1∏

k=2

∫ 1−[(m−1)/m]ε
1−[(k−1)/m]ε

ε/m
1−[(k−1)/m]ε

r−1
k (1−rk)r−βdrk

]
(1−d(x(n)))

2. (4.15)

Note that (4.14) and (4.15) hold for d = d1 and for d = dL.
Note that by assumption, l0 �= l′0 and for t ≥ x(n) (thus for all (�x, t) ∈

V1 ∪ Vm),

d1(�x, t) = l0 (see (4.2)) and dL(�x, t) =
n + s

n + r + s
(�= l0) (see (1.5) and (4.4)).

(4.16)
Denote


 =
∫ 1

0
[(uj − dL(�x, ξj))2 − (uj − d1(�x, ξj))2]us+n−1

j (1 − uj)r−1duj. (4.17)

Then 
 is a constant for (�x, ξj) ∈ V1 and 
 < 0 by (3.9). If l0 < n+r
n+r+s , in

view of (3.14) and (4.16), (3.10) holds. Thus we can assume that l0 > n+r
n+r+s .

Denoting the third integral in (4.14) by
∫ 1− (m−j)

m
ε

j
m

ε
G(d), we obtain

|
( ∫ 1− (m−j)

m
ε

j
m

ε
[G(dL)−G(d1)]

)
−
|≤

∫ 1

1−ε
|G(d1)−G(dL)|+

∫ ε

0
|G(d1)−G(dL)|=o(ε)

uniformly in m. In view of (4.14), (4.17) and the above inequality, for small
enough ε, uniformly in m,

−
∑

(�x,t)∈V1

[I(dL(�x, t), ε) − I(d1(�x, t), ε)]

=
m−1∑
j=1

−[
 + o(ε)]
{
[
j−2∏
k=1

∫ 1−[(m−k)/m]ε
1−[(m−k−1)/m]ε

(k/m)ε
1−[(m−k−1)/m]ε

qs−α−2
k (1 − qk)−1dqk]

×
∫ 1−[(m−j+1)/m]ε

1−[(m−j)/m]ε

[(j−1)/m]ε
1−[(m−j)/m]ε

qs−α−2
j−1 dqj−1[

m−1∏
k=j+1

∫ 1−[(m−1)/m]ε
1−[(k−1)/m]ε

ε/m
1−[(k−1)/m]ε

(1−rk)r−β−1r−1
k drk]

}
. (4.18)
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In view of (4.15) and (4.16),∑
(�x,t)∈Vm

[I(dL(�x, t), ε) − I(d1(�x, t), ε)]

=
∫ 1−ε(m−2)/m

1
m

ε
ps−α−2
1 (1 − p1)r−βdp1

[ m−1∏
k=2

∫ 1−[(m−1)/m]ε
1−[(k−1)/m]ε

ε/m
1−[(k−1)/m]ε

r−1
k (1 − rk)r−βdrk

]

×
[
(1− n + s

n + r + s
)2−(1−l0)2

]
. (4.19)

In the following, we evaluate the order of integrals in (4.18) and (4.19), which
depends on α, β, r and s. When β = 0 and r > 0, the case

α = β = 0 and r = s = 1 (4.20)

is the most interesting and important one (see (1.3) and (1.4)). Assume first that
(4.20) is true. Then for a large enough m (for a given small positive number ε),
one has, for the factors in (4.18) and (4.19),

∫ 1−[(m−k)/m]ε
1−[(m−k−1)/m]ε

(k/m)ε
1−[(m−k−1)/m]ε

qs−α−2
k (1 − qk)−1dqk

= −lnk − 2lnε + 2 ln m + ln(1 − m − k

m
ε) + ln(1 − m − 1

m
ε) (4.21)

≈ 2 ln m − lnk − 2lnε, k ≥ 1.

Note that the approximation is uniform for all m. Similarly, uniformly in m,
∫ 1−[(m−j+1)/m]ε

1−[(m−j)/m]ε

[(j−1)/m]ε
1−[(m−j)/m]ε

qs−α−2
j−1 dqj−1 ≈ lnm − ln(j − 1) − lnε, j ≥ 2

∫ 1−[(m−1)/m]ε
1−[(k−1)/m]ε

ε/m
1−[(k−1)/m]ε

(1 − rk)r−β−1r−1
k drk ≈ lnm − lnεk ≥ 1. (4.22)

Thus (4.18) through (4.22) yields (for the given ε > 0 and for a large enough m),

−∑
(�x,ξj)∈V1

[I(dL(�x, ξj), ε) − I(d1(�x, ξj), ε)]∑
(�x,ξj)∈Vm

[I(dL(�x, ξj), ε) − I(d1(�x, ξj), ε)]

≈
−∑m−1

j=1 (
)
j−2∏
k=1

(2lnm−lnk−2lnε)(lnm−ln(j−1)−lnε)1(j≥2)
m−1∏

k=j+1
(lnm−lnε)

[( 1
n+2 )2 − (1 − l0)2](lnm − lnε)m−1

≥
m−1∑
j=3

−(
)(−lnε)
[( 1

n+2 )2 − (1 − l0)2](lnm − lnε)2

= (m − 3)
−(
)(−lnε)

[( 1
n+2 )2 − (1 − l0)2](lnm − lnε)2

≥ 2. (4.23)



BEST INVARIANT ESTIMATOR 389

The last inequality holds since limm→∞(m/(lnm)2) = ∞. This completes the
proof of (4.12) under the assumption (4.20). If (4.20) is not true, only (4.21)
through (4.23) need to be modified. We skip the details; (4.13) can be shown in
a similar manner.

Lemma 4. Inequality (4.10) holds.

Proof. The idea to prove (4.10) for each possible �x is similar to the arguments
along the lines (4.14) through (4.23). For simplicity, we only give the proof for
the case xn ≤ ξJ . Note that both d1(�x, t) and dL(�x, t) are constant for t > xn (see
(4.1)). Furthermore, ηk = 0 for k > J since xn ≤ ξJ . It can be shown as in (4.14)
that the sum of the first m − 1 − J terms in the numerator (or denominator) of
(4.10) is (for d = dL (or d = d1))

m−1∑
j>J

I(d(�x, ξj), ε)

=
m−1∑
j>J

[ J∏
k=1

∫ 1−[(m−k)/m]ε
1−[(m−k−1)/m]ε

(k/m)ε
1−[(m−k−1)/m]ε

qσk+s−α−2
k (1 − qk)ηk+1−1dqk

]

×
[ j−2∏

k>J

∫ 1−[(m−k)/m]ε
1−[(m−k−1)/m]ε

(k/m)ε
1−[(m−k−1)/m]ε

qn+s−α−2
k (1−qk)−1dqk

] ∫ 1−[(m−j+1)/m]ε
1−[(m−j)/m]ε

[(j−1)/m]ε
1−[(m−j)/m]ε

qn+s−α−2
j−1 dqj−1

×
∫ 1− (m−j)

m
ε

j
m

ε
(uj − d(xn))2un+s−1

j (1 − uj)r−1duj

m−1∏
k=j+1

∫ 1−[(m−1)/m]ε
1−[(k−1)/m]ε

ε/m
1−[(k−1)/m]ε

(1 − rk)r−β−1r−1
k drk (4.24)

and the last summand in the numerator (or denominator) of (4.23) is

I(d(�x, ξm), ε) =
∫ 1−ε(m−2)/m

ε/m
pη1+s−α−2
1 (1 − p1)n−σ1+r−βdp1

×
J∏

k>1

∫ 1−[(m−1)/m]ε
1−[(k−1)/m]ε

ε/m
1−[(k−1)/m]ε

(1 − rk)n−σk+r−βr−1+ηk
k drk

×
m−1∏
k>J

∫ 1−[(m−1)/m]ε
1−[(k−1)/m]ε

ε/m
1−[(k−1)/m]ε

(1 − rk)r−βr−1
k drk(1 − d(xn))2. (4.25)

To evaluate the order of the expressions in (4.24) and (4.25), WLOG, we can
assume that (4.20) is true. Then, for a large enough m (and fixed ε > 0), k > J ,

∫ 1−[(m−k)/m]ε
1−[(m−k−1)/m]ε

(k/m)ε
1−[(m−k−1)/m]ε

qn+s−α−2
k (1 − qk)−1dqk ≈ −lnε − ln(1 − ε) + ln m,
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∫ 1−[(m−j+1)/m]ε
1−[(m−j)/m]ε

[(j−1)/m]ε
1−[(m−j)/m]ε

qn+s−α−2
j−1 dqj−1 ≈ 1

n + s − α − 1
(denoted by c1 ),

∫ 1−[(m−1)/m]ε
1−[(k−1)/m]ε

ε/m
1−[(k−1)/m]ε

(1 − rk)r−β−1(rk)−1drk ≈ lnm − lnε. (4.26)

∫ 1− 1
m

ε

m−1
m

ε
un+s−α−2

m−1 (1−um−1)r−βduj ≈
∫ 1

0
un+s−α−2

m−1 (1−um−1)r−βduj (= c2).

The approximation in (4.26) is uniform in m. For a small ε > 0, the substitution
d = dL and d = d1 into (4.24) and (4.25) yields

−∑m−1
j>J [I(dL(�x, ξj), ε) − I(d1(�x, ξj), ε)]

[I(dL(�x, ξm), ε) − I(d1(�x, ξm), ε)]

≈ −∑m−1
j>J (
)

∏j−2
k>J(lnm − lnε)(c1)

∏m−1
k=j+1(lnm − lnε)

[( 1
n+2)2 − (1 − l0)2]

∏m−1
k>J (lnm − lnε)(c2)

=
−(m − 1 − J)(
)c1

[( 1
n+2)2 − (1 − l0)2](lnm − lnε)2(c2)

≥ 2 if m is large enough. (4.27)

Formula (4.27) yields (4.10) for xn ≤ ξJ . Similarly, we can show (4.10) for each
�x such that (�x, ξm) ∈ Vm and x1 ≤ ξJ < xn.

Proof of Theorem 1 for case (2). Given an arbitrary estimator d ∈ U , we
can assume d �= dL on a subset of positive Lebesgue measure. In view of Lemma
1, by taking subsets and taking limits, we can assume that there exists an infinite
sequence of points ξ1 < ξ2 < · · · and a finite integer J > 0 such that

(1) d �= dL for some (�x, t) ∈ {ξ1, ξ2, . . . , ξJ}n+1;
(2) d = dn for (�x, t) ∈ {ξ1, ξ2, . . .}n+1, where dn takes on finitely many values.
Statement (2) implies that for (�x, t) ∈ {ξ1, ξ2, . . .}n+1, d takes on finitely many
values.

It follows from Lemma 2 that d = dL on {ξ1, ξ2, . . .}n+1. The latter equality
contradicts (1). This concludes the proof of the theorem for the case (2).

5. Comment

The proof of the theorem for case (3) is very similar to that for case (2),
except that it is more technical. We refer to a technical report (Yu (1994)).
Finally, we give some comments on the new approach for proving the admissibility
used in this paper. The method is summarized in Proposition 1. Note that if
the Bk’s in the inequality (1.6) are all singletons and if the τj in (1.6) is replaced
by τ , then Proposition 1 reduces to the standard (generalized) Bayes argument.
Thus, like Blyth’s Lemma (1951), Proposition 1 is a refinement of the standard



BEST INVARIANT ESTIMATOR 391

(generalized) Bayes argument. However, they are different, since Blyth’s Lemma
requires rj(δ0)−rk∫ b

a
dτj

→ 0, where rk(δ0) and rk are the Bayes risks (with respect to

τj) of δ0 and the Bayes rule, respectively. We were not able to evaluate these two
Bayes risks directly in our problem.

Under the conditions of Proposition 1, we do not require that the Bayes risk
r(τ, δ0) is finite or δ0(�x) is a limit of posterior Bayes actions. Recall that the
step-wise Bayes arguments have been widely used in proving admissibility when
r(τ, δ0) = ∞. Using the stepwise Bayes argument, the sample space is partitioned
into several subsets. Then on each subset Sj, a proper prior πj is selected so that
Eπj(L(θ, δ0(�x))|�x) < ∞, where δ0(�x) is a Bayes estimate with respect to πj for
all �x ∈ Sj.

There are two differences between the new approach proposed in Proposi-
tion 1 and the stepwise Bayes approach. The new approach is simpler when both
approaches are applicable to the same problem, such as in the special case con-
sidered in this paper, i.e., α = β = −1 (which is solved by Brown (1988) using
a step-wise Bayes argument). While the step-wise Bayes approach needs to find
several priors for the different subsets of the sample space, the new approach
essentially needs one prior τ∗ (as in (3.3)) and the priors τ∗

ε , ε > 0 as in (3.3), are
truncated versions of τ∗. Another difference is that the new approach no longer
requires that for each �x, δ0(�x) minimizes Eπ(L(θ, δ(�x))|�x) w.r.t. some prior π.
That is, it does not requires that δ0(�x) be a posterior Bayes action (or limit of
posterior Bayes actions), whereas the stepwise Bayes argument or the others does
(see Remark 1).

Proof of Proposition 1. We first assume that there is a rule δ which improves
on δ0, that is,

0 ≤ R(θ, δ0) − R(θ, δ) = E(
∑
k

1[ �X ∈ Bk][L(θ, δ0( �X)) − L(θ, δ( �X))]), (5.1)

where {Bk; k ∈ K} is a partition of the subset {�x ∈ X ; δ0(�x) �= δ(�x)}. Then we
reach a contradiction.

By (5.1), we have E(
∑

k 1[ �X ∈ Bk]L(θ, δ0( �X))≥E(
∑

k 1[ �X ∈ Bk]L(θ, δ( �X)).
Integrating expressions on both sides of the inequality over the prior dτj and
changing the order of integration and expectation yield

E(
∑
k

1[ �X ∈ Bk]Eτj (L(θ, δ0( �X))| �X)) ≥ E(
∑
k

1[ �X ∈ Bk]Eτj (L(θ, δ( �X))| �X)).

It further yields

E(
∑

k 1[ �X ∈ Bk]Eτj (L(θ, δ0( �X))| �X))

E(
∑

k 1[ �X ∈ Bk]Eτj (L(θ, δ( �X))| �X))
≥ 1. (5.2)
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Assumption (1.6) in Proposition 1 yields

lim
j→∞

E(
∑

k 1[ �X ∈ Bk]Eτj (L(θ, δ0( �X))| �X))

E(
∑

k 1[ �X ∈ Bk]Eτj (L(θ, δ( �X))| �X))
< 1,

which contradicts to (5.2). This completes the proof of Proposition 1.

Acknowledgement

The author gratefully acknowledges the valuable opinions and suggestions
from a referee. Partially supported by NSF Grants DMS 9202070 and DMS-
9402561.

References
Aggarwal, O. P. (1955). Some minimax invariant procedures for estimating a cumulative dis-

tribution function. Ann. Math. Statist. 26, 450-462.
Berger, J. O. (1985). Statistical Decision theory and Bayes Analysis. 2nd ed. Spring-verlag.

New York. p.159.
Blyth, C. R. (1951). On minimax statistical decision procedures and their admissibility. Ann.

Math. Statist. 22, 22-42.
Brown, L. D. (1988). Admissibility in discrete and continuous invariant nonparametric estima-

tion problems and in their multinomial analogs. Ann. Statist. 16, 1567-1593.
Cohen, M. P. and Kuo, L. (1985). The admissibility of the empirical distribution function. Ann.

Statist. 13, 262-271.
Ferguson, T. S. (1967). Mathematical Statistics, A Decision Theoretic Approach. Academic

Press, New York. p.697.
Yu, Q. (1989a). Inadmissibility of the empirical distribution function in continuous invariant

problems. Ann. Statist. 17, 1347-1359.
Yu, Q. (1989b). Admissibility of the empirical distribution function in the invariant problem.

Statist. and Decisions 7, 383-398.
Yu, Q. (1989c). Admissibility of the best invariant estimator of a distribution function. Statist.

and Decisions 7, 1-14.
Yu, Q. and Chow, M. S. (1991) Minimaxity of the empirical distribution function in invariant

estimation. Ann. Statist. 19, 935-951.
Yu, Q. (1992). Minimaxity of the empirical distribution function in discrete invariant estimation

of a distribution function. Statist. and Decisions 10, 25-38.
Yu, Q. (1993). Admissibility of the empirical distribution function in discrete nonparametric

invariant problems. Statist. and Prob. Let. 18, 337-343.
Yu, Q. and Phadia, E. G. (1993). Admissibility of the best invariant estimator of a distribution

function under the Kolmogorov-Smirnov Loss. Comm. Statist. Theory Methods 22, 2103-
2124.

Yu, Q. (1994). Technical report on “Admissibility of the best invariant estimator of a discrete
distribution function”. Dept. of Math, SUNY at Binghamton.

Yu, Q. and Kuo, L. (1995). An analogy between nonparametric problems of estimating a
distribution function and their parametric versions. Sankhya. 57, 472-485.

Department of Mathematical Sciences, State University of New York at Binghamton, Box 6000,
Binghamton, NY 13902-6000, U.S.A.

E-mail: qyu@math.binghamton.edu

(Received June 1995; accepted April 1997)


