
Statistica Sinica 5(1995), 475-484

EXACT ELFVING-MINIMAX DESIGNS

FOR QUADRATIC REGRESSION

Olaf Kra�t and Martin Schaefer

RWTH Aachen

Abstract: For quadratic polynomial regression on [�1; 1] exact n-point designs are

given which minimize the maximal variance of the estimated parameters. It turns out

that they coincide with c-optimum designs for estimating the parameter with highest

degree.

Key words and phrases: Exact regression designs, Elfving-optimality, c-optimal de-

signs.

1. Introduction and Notations

In this paper we present exact optimum designs for a minimax criterion �rst

proposed by Elfving (1959), here restricted to the case of quadratic polynomial

regression on the interval [�1; 1]. This means explicitly: Let

y(x) = a1 + a2x+ a3x
2
; x 2 [a; b]:

Assume that for each component xi of x = (x1; x2; � � � ; xn) 2 [a; b]n one can

observe random variables Yxi
which have expectations E(Yxi

) = y(xi), variances

Var(Yxi
) = �

2, independent of xi, and which are pairwise uncorrelated. Such a

vector x is called an exact n-point design dn.

We use the notations

s� = s�(dn) =
nX

j=1

x
�
j ; 0 � � � 4;

M(dn) =

2
4 s0 s1 s2

s1 s2 s3

s2 s3 s4

3
5

and

�n = fdn : M(dn) is regularg:

Note that detM(dn) is the sum of squares of Vandermonde determinants. Hence

dn 2 �n if and only if dn has at least three di�erent components.
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It is well-known that for dn 2 �n the covariance matrix of the least squares

estimator â = (â1, â2, â3)
T of a = (a1, a2, a3)

T is given by

Cov(â) = �
2
M

�1(dn) = �
2(mij(dn))1�i;j�3;

in particular, Var(âi) = �
2
m

ii(dn), 1 � i � 3.

We call a design d�n 2 �n an n-point EMM-design (Elfving-minimax design,

cf. Elfving (1959)) i� it satis�es

max
1�i�3

m
ii(d�n) � max

1�i�3
m

ii(dn) for all dn 2 �n: (1)

In Section 2 we present the n-point EMM-designs for the case [a; b] = [�1; 1].

It will turn out that in this special setting EMM-optimality is equivalent to c-

optimality for c = e3 = (0; 0; 1)T . In the approximate theory the c-optimal design

is well-known in more general settings. Unfortunately, the methods applied there

are not appropriate in the exact theory. For instance, the minimax theorem in the

remarkable paper (Kiefer and Wolfwitz (1959)) does not hold in the exact theory.

Our results also provide an example for the di�erence between approximate and

exact optimal designs; here, even the support of the optimal exact design may

di�er from that of the optimal approximate design. Apparently, a �rst example

of this type is the exact G-optimal design for linear regression when n is odd, cf.

Jung (1971).

2. n-Point EMM-Designs

We consider the setting given in the introduction with [a; b] = [�1; 1]. The

symmetry of the problem suggests that the optimum design should be symmetric

around zero. Putting n = 4p+q, q 2 f0; 1; 2; 3g, it came as a surprise to us that for

q = 2 this is not the case. In fact, this case requires a rather involved analysis. We

therefore give the solution for the other cases �rst. (A design dn = (x1; x2; : : : ; xn)

for which ni components are equal to ai, 1 � i � 3, n1 + n2 + n3 = n, will be

denoted by

dn =

�
a1 a2 a3

n1 n2 n3

�
):

Proposition 1. Let n = 4p+ q, p 2 N, q 2 f0; 1; 3g (or p = 0 and q = 3). Then

the n-point EMM-designs are uniquely determined and given by

d
�

n =

�
�1 0 1

p 2p p

�
; n = 4p;

d
�

n =

�
�1 0 1

p 2p+ 1 p

�
; n = 4p+ 1;

d
�

n =

�
�1 0 1

p+ 1 2p+ 1 p+ 1

�
; n = 4p+ 3:
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Proof. Let dn 2 �n. Then we have

m
33(dn) = (ns2 � s

2

1
) det M�1(dn) � n(ns4 � s

2

2
)�1: (2)

This follows at once from (ns2 � s
2
1
)(ns4 � s

2
2
)� n det M(dn) = (ns3 � s1s2)

2.

For d�n one easily obtains

max
1�i�3

m
ii(d�n) =

8<
:
p
�1
; if n = 4p,

n(2p(2p+ 1))�1; if n = 4p+ 1,

n((2p+ 1)(2p + 2))�1; if n = 4p+ 3.

(3)

Putting yi = x
2
i , one observes that v(y1; y2; : : : ; yn) = n

Pn
i=1 y

2
i � [

Pn
i=1 yi]

2
=

ns4 � s
2
2 is convex on [0; 1]n. Thus, v attains its maximum only for y�i 2 f0; 1g,

1 � i � n. Let r = r(y�
1
; y

�

2
; : : : ; y

�

n) = #fi : y�i = 1g. Then

8<
:

4p2 � v(y�1 ; y
�

2 ; : : : ; y
�

n) = (2p� r)2 � 0; if n = 4p,

2p(2p+ 1)� v(y�1 ; y
�

2 ; : : : ; y
�

n) = (r � 2p)(r � 2p� 1) � 0; if n = 4p+ 1,

(2p+1)(2p+2)�v(y�1; y
�

2 ; : : : ; y
�

n)=(r�2p�1)(r�2p�2)�0; if n = 4p+ 3.

(4)

Combining (2), (4) and (3), yields

max
1�i�3

m
ii(dn) � m

33(dn) � max
1�i�3

m
ii(d�n):

One also gets uniqueness of d�n by discussing the cases when equality holds in (2)

and (4).

In the same way as for the case n = 4p one can show that the approximate

EMM-design is given by ��(�1) = �
�(1) = 1=4, ��(0) = 1=2. It is thus the same

as the approximate A-optimum design.

For the case n = 4p + 2 the technique used in the proof of Proposition 1

does not go through. Our approach will proceed by deriving some \complete-

class-type" results whose proof is � in view of their quite technical structure �

postponed to the appendix. We �rst show that one can restrict oneself to designs

of the form

dn =

�
�1 x 1

k m `

�
; x 2 (�1; 1); k; `;m 2 N: (5)

We then prove that in case n = 4p + 2 a design of the form (5) cannot be an

EMM-design if k + ` 6= 2p+ 1. Finally, we treat the case k + ` = 2p+ 1 and get

Proposition 2. Let n = 4p+ 2 and x0 be the real root of u(x) = 0, where

u(x) = (2p+ 1)2x3 � 3(2p+ 1)x2 + (20p2 + 20p+ 3)x� 2p� 1: (6)
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Then

d
�

n =

�
�1 x0 1

p 2p+ 1 p+ 1

�
and d

��

n =

�
�1 �x0 1

p+ 1 2p+ 1 p

�

are the n-point EMM-designs.

Remark. A referee asked for a generalization to arbitrary intervals [a; b]. This

seems to be formidable as one can already guess from the structure of the ap-

proximate EMM-design for linear regression: It has support fa; bg and weights

�(a) = �(b) = 1

2
; if a2 + b

2
� 2;

�(a) = jbj(jaj + jbj)�1; �(b) = 1� �(a); if jabj � 1;

�(a) = (1� b
2)(a2 � b

2)�1; �(b) = 1� �(a); otherwise.

If one considers, however, only c = (0; 0; 1)T -optimal designs, then from propo-

sitions 1 and 2 one gets also the solution for arbitrary intervals [a; b], simply by

transformation of the support. In the case of symmetric intervals [�b; b] an in-

spection of the proofs reveals that slight extensions are possible. So Proposition

1 remains true, if one replaces the support by f�b; 0; bg and b is such that

b
4
� 2; if n = 4p;

b
4
� (2p)�1(4p+ 1); if n = 4p+ 1;

b
4
� (2(p+ 1))�1(4p+ 3); if n = 4p+ 3:

In case n = 4p+ 2, b4 also has to be upper bounded by a function f(p) which is

too involved to be reproduced here.
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Appendix

Several lemmas will be necessary to prove Proposition 2. The �rst lemma

shows that for d�n, d
��

n one has

max
1�i�3

m
ii(d�n) = m

33(d�n) = m
33(d��n ) = max

1�i�3
m

ii(d��n ): (7)

As a consequence we only have to show that

m
33(d�n) � m

33(dn) for all dn 2 �n: (8)

Lemma 1.

(a) The polynomial u(x) from (6) has exactly one real root x0 and x0 2 (0; 1).
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(b) For d�n, d
��

n as given in Proposition 2 the relations (7) hold true.

Proof. (a) One easily checks that the derivative u0(x) is positive for all x 2 R

and that u(0) < 0 < u(1). This implies (a).

(b) For xi 2 [�1; 1], 1 � i � n, one always has

2(ns2 � s
2

1 � s2s4 + s
2

3) =
nX
i=1

nX
j=1

(xi � xj)
2(1� x

2

ix
2

j) � 0;

hence

m
33(dn) > m

11(dn) for all dn 2 �n:

Furthermore, d�n satis�es

(4p+ 2)s2(d
�

n)� (s1(d
�

n))
2
� (4p+ 2)s4(d

�

n) + (s2(d
�

n))
2

= (2p+1)2x2
0
(1�x2

0
)+((2p+1)x0�1)

2+(2p+1)2x2
0
+4p(p+1)�1>0;

hence

m
33(d�n) > m

22(d�n):

The arguments for d��n are the same.

It remains to prove (8). Here the crucial step is to show that for a design

d̂n = (x̂1; x̂2; : : : ; x̂n) minimizing m33(dn) necessarily all x̂i 2 (�1; 1) have to be

the same. This will be proved by considering the derivatives w.r.t. x̂i all other

x̂j kept �xed. The following notations are useful:

Let n 2 N, n � 3, x1; x2; : : : ; xn 2 R be given, dn = (x1; x2; : : : ; xn) and for

x 2 R

dx = (x1; x2; : : : ; xn; x);

M(dx) =M + F (x);

where

M =M(dn) =

2
4 n s1 s2

s1 s2 s3

s2 s3 s4

3
5 ; F (x) =

2
4 1 x x

2

x x
2

x
3

x
2

x
3

x
4

3
5 :

Furthermore, let

D = fx 2 R : M(dx) is regularg

and

'(x) = m
33(dx) = e

T
3M

�1(dx)e3; x 2 D; (9)

where e3 = (0; 0; 1)T .

Lemma 2. With the notations given above let

� = min
1�i�n

xi < � = max
1�i�n

xi:
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Then

(a) ' is strictly increasing on (�1; �]\D and strictly decreasing on [�;1)\D.

(b) ' has in D exactly one local minimum, say at x = x0 and x0 is in the

interval (�; �) and is the only real root of

g(x) = a(x) + 2x b(x); (10)

where
a(x) = (x+ s1)(x

2 + s2)� (n+ 1)(x3 + s3);

b(x) = (n+ 1)(x2 + s2)� (x+ s1)
2
:

Proof. Note �rst that if M(dx) is singular then x = � or x = �. This follows

from � < � and the fact that M(dx) is regular i� dx = (x1; x2; : : : ; xn; x) has at

least three di�erent components. To prove (a) let

h(x) = x
2
b(x) + x a(x) + c(x); x 2 R;

where

c(x) = (x+ s1)(x
3 + s3)� (x2 + s2)

2
;

F
0(x) =

d

dx
F (x) =

2
4 0 1 2x

1 2x 3x2

2x 3x2 4x3

3
5 ; F 00(x) =

d
2

dx2
F (x) =

2
4 0 0 2

0 2 6x

2 6x 12x2

3
5 ;

and, for x 2 D, �(x) = det M�2(dx). Then one obtains

'
0(x) = �e

T
3
M

�1(dx)F
0(x)M�1(dx)e3 = �2�(x) g(x)h(x); x 2 D; (11)

and

'
00(x) = e

T
3
M

�1(dx)[2F
0(x)M�1(dx)F

0(x)� F
00(x)]M�1(dx)e3; x 2 D: (12)

Putting a = s1s2 � ns3, b = ns2 � s
2
1, c = s1s3 � s

2
2, g(x) and h(x) can be

written as

g(x) =
nX
i=1

(x�xi)
3+2bx+a =

nX
i=1

(x�xi)
3+

1

2

nX
i=1

nX
j=1

(xi�xj)
2(2x�xi�xj) (13)

and

h(x) = bx
2 + ax+ c =

1

2

nX
i=1

nX
j=1

(xi � xj)
2(x� xi)(x� xj): (14)

From this we see that

g(x)h(x) < 0 for x 2 (�1; �] and g(x)h(x) > 0 for x 2 [�;1):
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Together with (11) this entails assertion (a), since �(x) > 0.

To prove (b) note �rst that

ng
0(x) = 3(nx� s1)

2 + (2n+ 3)b > 0 for all x 2 R:

Therefore, g(x) is strictly increasing and has exactly one real root x0. Also, from

(13) one sees that g(�) < 0 < g(�); hence x0 2 (�; �) and � noting the �rst

remark in the proof � x0 2 D. Further, from (12) one gets

'
00(x0) �� e

T
3
M

�1(dx0)F
00(x0)M

�1(dx0)e3

=a2(x0)� 4b(x0)c(x0)

= (n+ 1)�2[((n+ 1)a(x0) + 2(x0 + s1)b(x0))
2 + 4b3(x0)] > 0:

Thus, at x = x0 the function '(x) has a local minimum. It remains to show that

there are no others. On referring to h(x) and from

n
2(a2 � 4bc) = (na+ 2bs1)

2 + 4b3 > 0

and (14) one sees that h(x) has two real roots, say x1 and x2, x1 < x2. But

g(x) �h(x) is a polynomial of degree 5 the highest coe�cient of which is positive.

Hence from (11) and �(x) > 0 it follows that the only local minimum of '(x) is

at x = x0.

Corollary 1. If d�n+1 is an (n + 1)-point EMM-design on [�1; 1], then there

exist k; `;m 2 N, k + `+m = n+ 1, and x 2 (�1; 1) such that

d
�

n+1 =

�
�1 x 1

k m `

�
:

Proof. Let d�n+1 = (x1; x2; : : : ; xn; xn+1) and, without loss of generality, xn+1 =

min1�i�n+1 xi. If xn+1 > �1, then from part (a) of Lemma 2 one gets '(�1) <

'(xn+1). Thus, dn+1 = (x1; x2; : : : ; xn;�1) would be EMM-better than d�n+1. In

the same way one sees that max1�i�n+1 xi = 1.

Now let i0 2 f1; 2; : : : ; n + 1g and �1 < xi0 < 1; without loss of generality

i0 = n+ 1. Since d�n+1 is an EMM-design, for dx = (x1; : : : ; xn; x) one has

'(xn+1) = m
33(d�n+1) � m

33(dx) = '(x) for all x 2 (�1; 1):

Thus at x = xn+1 there is a local minimum of '. From part (b) of Lemma 2 one

gets

g(xn+1) = a(xn+1) + 2xn+1b(xn+1) = 0:

But a(x) and b(x) are constant on fx1; x2; : : : ; xn+1g and, therefore, xi = xj for

all i; j such that �1 < xi; xj < 1.
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In view of Corollary 1 we can now restrict ourselves to designs of the form

dk;`;m;x =

�
�1 x 1

k m `

�
; x 2 (�1; 1); k; `;m 2 N; k + `+m = n:

For such designs one easily calculates

m
33(dk;`;m;x) = [4k`+m(k+`)+2(k�`)mx+(k+`)mx2][4k`m(1�x2)2]�1: (15)

We consider only the case n = 4p + 2, in the next lemma, with the exclusion

k + ` 6= 2p+ 1.

Lemma 3. Let k; `;m 2 N, k+ `+m = 4p+2, k+ ` 6= 2p+1, and x 2 (�1; 1).

Then

m
33(dk;`;m;x) > m

33(d�n):

Proof. From (2) we get

m
33(dk;`;m;x) � n[m(k + `)(1� x

2)2]�1 � n[m(k + `)]�1 � (2p+ 1)[2p(p+ 1)]�1

and from (15) that

m
33(d�n) = [8p2+8p+1�2(2p+1)x0+(2p+1)2x20)][4p(p+1)(2p+1)(1�x20)

2]�1:

Applying u(x0) = 0 twice, (cf. (6)) it is seen that

2p+ 1 > 2p(p+ 1)m33(d�n)

is equivalent to

0 < 7(2p+ 1)� 2(52p2 + 52p+ 7)x0 � (2p+ 1)(60p2 + 60p� 7)x2
0
: (16)

Because of x0 > 0, (cf. Lemma 1.) (16) is equivalent to

x0 < [(2p+ 1)(60p2 + 60p� 7)]�1(�� 52p2 � 52p� 7) = x1;

where

� = 2[2p(548p3 + 1096p2 + 667p + 119)]1=2 > 66p2 + 66p+ 7:

Hence

x1 > 14p(p+ 1)[(2p + 1)(60p2 + 60p� 7)]�1 � 7[30(2p + 1)]�1 = x2:
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It is easy to show that u(x2) � 0 = u(x0). Since u(x) is increasing, we get

x0 � x2 < x1 which proves the assertion.

We are now prepared to prove Proposition 2: By the foregoing results, at-

tention can be restricted to designs dk;`;m;x, where k+` = 2p+1 and x 2 (�1; 1),

and � without loss of generality � k < `. In case k = p, ` = p+ 1, one gets

 (x) = m
33(dp;p+1;2p+1;x) � m

33(d�n)

with equality holding i� x = x0. This follows from the fact that  (x) is strictly

decreasing in (�1; x0] and strictly increasing in [x0; 1).

Now let k < p < ` and x1 2 (�1; 1) such that

m
33(dk;`;m;x1) = minfm33(dk;`;m;x) : x 2 (�1; 1)g: (18)

Putting j = `� k and, (cf. (10)), with s1 = j + (m� 1)x1, s2 = m+ (m� 1)x21,

s3 = j + (m� 1)x31, s4 = m+ (m� 1)x41,

g(x1) = m
2
x
3

1 � 3mjx21 + (5m2
� 2j2)x1 �mj;

it follows that (18) is, by Lemma 2, equivalent to g(x1) = 0. Now it su�ces to

show that

m
33(dk;`;m;x1) > m

33(dp;p+1;2p+1;x1): (19)

Because of g(x1) = 0, (19) is equivalent to

m(j + 1)x21 � 2(m2 + j)x1 +m(j + 1) > 0; (20)

and from

x1 < 1 � (m2 + j)[m(j + 1)]�1

one gets the equivalence of (20) to

x1 < [m2 + j � ((m2
� 1)(m2

� j
2))1=2][m(j + 1)]�1 = x2: (21)

Since g is strictly increasing and g(x1) = 0, (21) will hold true if one can show

that g(x2) > 0. Putting z = m
2, and after tedious calculations one �nds that

g(x2) > 0 is equivalent to

(z�j2)[2z2+(5j+1)z+j(j2+5j+2)] > (z�j2)[2z+j2+5j+2][(z�1)(z�j2)]1=2:

(22)

Because of 0 < j < z
1=2, (22) is equivalent to

(3j4 + 14j3 + 24j2 + 18j + 5)z + j
6 + 10j5 + 36j4 + 62j3 + 55j2 + 24j + 4 > 0:

Since the last inequality obviously holds true, Proposition 2 is proved.
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