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Abstract: In partially linear model selection, we develop a profiled forward re-

gression (PFR) algorithm for ultrahigh dimensional variable screening. The PFR

algorithm effectively combines the ideas of nonparametric profiling and forward

regression. This allows us to obtain a uniform bound for the absolute difference

between the profiled predictors and their estimators. Based on this finding, we are

able to show that the PFR algorithm uncovers all relevant variables within a few

fairly short steps. Numerical studies are presented to illustrate the performance of

the proposed method.
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1. Introduction

In regression analysis, the linear model has been commonly used to link a

response variable to explanatory variables for data analysis. One major reason

for this is that its resulting ordinary least squares (OLS) estimates have a closed

form that is easy to compute. However, there are two scenarios in which OLS

does not apply: (i) there is an additional explanatory variable that is not easily

parameterized, and (ii) the linear model is appropriate but the number of linear

predictors d is greater than the sample size n. As a result, the closed form breaks

down, and the computation of parameter estimates under these scenarios is not

straightforward.

In the first scenario, Heckman (1986); Engle et al. (1986); Speckman (1988)

and Wahba (1984) considered the partially linear model,

Y = X⊤β + g(U) + ε, (1.1)

where Y ∈ R1 is the response variable, X ∈ Rd is a predictor vector, β ∈ Rd is

an unknown parameter vector, U is an univariate explanatory variable in [0, 1]

(for simplicity), and g(U) is an unknown smooth function of U . We also assume

that (X⊤, U)⊤ and ε are independent. This model is important in the context
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of semiparametric regression. Detailed information on parameter estimators and

their properties can be found in Härdle, Liang, and Gao (2000), while useful

discussions on variable selection and parameter shrinkage are given in Bunea

(2004) and Xie and Huang (2009), respectively. It is noteworthy that although

Xie and Huang studied high-dimensional partially linear models (i.e., d → ∞ as

n → ∞), they required d2/n → 0 as n → ∞.

Under the second scenario, Wold (1966) proposed a partial least squares

algorithm that has been widely used in the field of chemometrics. However,

the theoretical properties of partial least squares estimates are not well estab-

lished. Furthermore, due to technology developments as well as theoretical and

practical demands across various fields (e.g., engineering, medicine, and busi-

ness), high-dimensional data analysis has come to play an increasingly critical

role (see Fan and Li (2006)). Hence, it is not surprising that researchers have

recently proposed novel approaches to analyze ultrahigh (or high) dimensional

data with d ≫ n. Useful references can be found in Fan and Lv (2008); Can-

des and Tao (2007); Paul et al. (2008) and Wang (2009). All of these studies

focus primarily on linear regression models. Lately, Fan, Feng, and Song (2010)

extended Fan and Lv’s (2008) sure independence screening (SIS) approach to a

general parametric model. Moreover, Witten and Tibshirani (2009) developed

the covariance-regularized regression for generalized linear models. As a result,

we are able to analyze high-dimensional data for broad parametric models.

In practice, we may encounter the challenging situation where both scenarios

appear. This motives us to study ultrahigh dimensional partial linear models.

To this end, we employ Fan and Huang’s (2005) profile least squares approach

to convert the partial linear model (1.1) to the classical linear regression model.

In addition, we obtain a uniform bound of the absolute difference between the

profiled predictors and their estimators when d ≫ n. This finding allows us

to apply Wang’s (2009) forward regression (FR) algorithm to develop a profiled

forward regression (PFR) procedure for ultrahigh dimensional screening. We

show that the FPR algorithm is able to detect relevant predictors within a limited

number of steps. Moreover, we obtain a better detecting rate than that of Wang

(2009) without imposing the normality assumption on predictors.

The rest of the article is organized as follows. Section 2 introduces the PFR

algorithm, whose asymptotic properties are presented in Section 3. Extensive

numerical studies are reported in Section 4, while a short discussion is given in

Section 5. All technical proofs are left to the Appendix.

2. Profiled Forward Regression

2.1. Model and notations

Let (Xi, Ui, Yi) be independent and identically distributed as (X,U, Y ) for
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1 ≤ i ≤ n and Xi = (Xi1, . . . , Xid)
⊤ ∈ Rd. Let Y = (Y1, . . . , Yn)

⊤ ∈ Rn be

the response vector and X = (X1, . . . , Xn)
⊤ ∈ Rn×d the matrix of explanatory

variables. We then refer to Xij as a relevant (irrelevant) predictor if βj ̸= 0

(βj = 0), and use a generic notation M = {j1, . . . , jd∗} to denote an arbitrary

model with Xij1 , . . . , Xijd∗ as relevant predictors. Accordingly, MF = {1, . . . , d}
and MT = {j : βj ̸= 0} represent the full model and the true model, respectively.

We denote the size of model M (i.e., the number of predictors in model M)

by |M|. Hence, |MF | = d and |MT | = d0, where d0 is the number of relevant

predictors in the true model. Moreover, for any candidate model M, the notation

Xi(M) = {Xij : j ∈ M} stands for the subvector of Xi that yields the submatrix

X(M) of X.

2.2. Profiled responses and predictors

In regression analysis, the profile least squares approach is useful to convert

the semiparametric model to the least squares setting Fan and Huang (2005).

Following this approach, we can easily verify that

Yi −E(Yi|Ui) =

d∑
j=1

βj

{
Xij − E(Xij |Ui)

}
+ εi. (2.1)

Then, we define the profiled response and the profiled predictor as Y ∗
i = Yi −

E(Yi|Ui) and X∗
i = Xi − E(Xi|Ui) = (X∗

i1, . . . , X
∗
id)

⊤ ∈ Rd, respectively, where

X∗
ij = Xij − E(Xij |Ui) for i = 1, . . . , n and j = 1, . . . , d. As a result, the partial

linear model (1.1) reduces to the classical linear regression model

Y ∗
i = X∗⊤

i β + εi, (2.2)

in which the variance of X∗
i is denoted by Σ. To implement the linear model

(2.2) in practice, however, the unknown functions E(Yi|Ui) and E(Xi|Ui) need

to be estimated nonparametrically. For this purpose, we employ the local linear

regression technique (Fan and Gijbels (1996)). To illustrate this process, we

estimate E(Yi|Ui) as follows. Let

Q(α1i, α2i) =

n∑
j=1

{
Yj − α1i − α2i(Uj − Ui)

}2
Kh(Ui − Uj),

whereKh(u) = K(u/h)/h, K(·) is a density function symmetric about 0, and h >

0 is a bandwidth. Let (α̂1i, α̂2i) = argminα1i,α2i
Q(α1i, α2i) and take Uji = Uj−Ui.

Then E(Yi|Ui) can be estimated by α̂1i=s⊤i Y, where si=(si1, . . . , sin)
⊤∈Rn and
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sij =[{ n∑
j=1

U2
jiKh(Uji)

}{ n∑
j=1

YjKh(Uji)
}
−
{ n∑

j=1

UjiKh(Uji)
}{ n∑

j=1

UjiYjKh(Uji)
}]

×

[{ n∑
j=1

U2
jiKh(Uji)

}{ n∑
j=1

Kh(Uji)
}
−
{ n∑

j=1

UjiKh(Uji)
}{ n∑

j=1

UjiKh(Uji)
}]−1

.

Similarly, one can estimate E(Xij |Ui) by s⊤i Xj , where Xj is the jth column

of X. Accordingly, the profiled response and predictors can be estimated by

Ŷ = (Ŷ1, . . . , Ŷn)
T = (In−S)Y and X̂ = (X̂1, . . . , X̂n)

T = (In−S)X, respectively,
where In ∈ Rn×n is an identity matrix and S = (s1, . . . , sn)

⊤ ∈ Rn×n is the

smoothing matrix. Note that we use S to represent the smoothing matrix, which

is a slight abuse of notation.

2.3. The PFR algorithm

In linear regression modeling, Wang (2009) proposed a forward regression

(FR) method for ultrahigh dimensional variable screening. Based on the profiled

estimators of Ŷ and X̂, we adopt FR to develop the PFR algorithm for model

(1.1). For the sake of completeness, the algorithm is briefly described below.

Step (1) (Initialization). Initiate a null model as M(0) = ∅.
Step (2) (Forward Regression).

(2.A) (Evaluation). In the kth step (k ≥ 1), the model M(k−1) is given

a priori. Then, for every j ∈ MF \M(k−1), a candidate model is

constructed as M(k−1)
j = M(k−1)

∪
{j}, whose lack of fit can be

quantified as RSS
(k−1)
j = Ŷ⊤{In −HM(k−1)

j

}Ŷ, where

HM(k−1)
j

= X̂
(M(k−1)

j )

{
X̂⊤
(M(k−1)

j )
X̂
(M(k−1)

j )

}−1
X̂⊤
(M(k−1)

j )
.

(2.B) (Screening). Subsequently, the next most promising predictor is

discovered as ak = argminj∈MF \M(k−1)RSS
(k−1)
j , and the candidate

model is updated accordingly, that is, M(k) = M(k−1)
∪
{ak}.

Step (3) (Solution Path). By iterating Step (2) n times, a total of n nested

candidate models is obtained with the solution path S = {M(k) : 1 ≤
k ≤ n}, where M(k) = {a1, . . . , ak}.

After extending FR to model (1.1), we study the theoretical properties of PFR

to assure that it is applicable in practice.
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3. Theoretical Properties

3.1. The technical conditions

To gain theoretical insights into PFR, we consider standard technical condi-

tions. We relabel the profiled response variable Y ∗ and predictors X∗
j as V0 and

Vj , respectively, for j = 1, . . . , d; this allows us to avoid imposing conditions on re-

sponse variable and predictors separately. In addition, we write G0(t) = E(Y |t)
and Gj(t) = E(Xj |t). Let Ĝj(t) be the estimator of Gj(t) and Mj(u) be the

generating functions of Vj for j = 0, . . . , d.

(C1) (Normality) The error, ε, is normal.

(C2) (Covariance Matrix) If λmin(A) and λmax(A), respectively, are the smallest

and largest eigenvalues of a positive definite matrix A, then, there exist

two positive constants 0 < τmin < τmax < ∞ such that 2τmin < λmin(Σ) ≤
λmax(Σ) < 2−1τmax.

(C3) (Regression Coefficients) ∥β∥ ≤ Cβ for some constant Cβ > 0 and βmin ≥
νβn

−ξmin for some ξmin > 0 and νβ > 0, where ∥ · ∥ denotes the standard

L2 norm and βmin = minj∈MT
|βj |.

(C4) (Divergence Speed of d and d0) There exist positive constants ξ, ξ0, and ν,

such that log d ≤ min(νnξ, n3/10), d0 ≤ νnξ0 , and ξ + 6ξ0 + 12ξmin < 1.

(C5) (Smoothness Constraint) Gj(·), j = 0, 1, . . . , d, are uniformly Lipschitz

continuous of order one.

(C6) (Local Weights) The weight functions ωnk(·) satisfy, with probability one,

(i) max
1≤k≤n

n∑
i=1

ωnk(Ui) = O(1),

(ii) max
1≤i,k≤n

ωnk(Ui) = O(bn),

(iii) max
1≤i≤n

n∑
k=1

ωnk(Ui)I(|Ui − Uk| > cn) = O(cn),

where bn = n−4/5 and cn = n−2/5 log n.

(C7) (Moment Constraint) max
0≤j≤d

E{exp(u|Vj |)} < ∞ for all 0 ≤ u ≤ t0/σv,

where t0 > 0 and σ2
v > 0 are positive constants; the generating functions

Mj(u) (j = 0, . . . , d) satisfy

max
0≤j≤d

sup
0≤u≤t0

∣∣∣∣d3 log{Mj(u)}
du3

∣∣∣∣ < ∞;

max
0≤j≤d

E|Vj |2k ≤ σ2
v for some k > 2.
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Conditions (C1)–(C4) have customarily been assumed in the model selection liter-

ature, see Wang (2009). Conditions (C5) and (C6) are the standard assumptions

for nonparametric regression, and can be easily ensured or verified; see Härdle,

Liang, and Gao (2000). Condition (C7) is used for obtaining an exponential in-

equality of a sum of random variables (Chernoff (1952)). Finally, it is noteworthy

that most of the literature has imposed the normality assumption (Zhang and

Huang (2008)) or the spherically symmetric distribution (Fan and Lv (2008)) on

X, while we do not need it.

3.2. The profiled consistency

In nonparametric regression analysis, one needs an accurate estimator for

nonparametric functions. When d = 1, Mack and Silverman (1982) established

a uniform convergence result. Following their approach, we are able to obtain a

uniform convergence rate when d is finite. If d ≫ n, this becomes a challenging

task. This motivates us to develop a number of novel theoretical results in the

Appendix. These findings provide theoretical justifications for PFR, but they also

facilitate the development of ultrahigh dimensional methods in the nonparametric

(or semiparametric) context.

Based on (C6), Gj(t) can be expressed as
∑n

k=1 ωnk(t)Yk if j = 0, and∑n
k=1 ωnk(t)Xjk if j = 1, . . . , d, for some weight function ωnk(·). To assure the

good performance of PFR, we obtain the profiled consistency of the estimators

Ĝj(t) (or the profiled estimators, Ŷ and X̂j) for j = 0, . . . , d.

Theorem 1. Under (C4)−(C7), we have

max
0≤j≤d

max
1≤i≤n

∣∣∣∣∣Ĝj(Ui)−
n∑

k=1

ωnk(Ui)Gj(Uk)

∣∣∣∣∣ = op

(
n−1/4 log−1 n

)
. (3.1)

This result indicates that the profiled estimators have the uniform conver-

gence rate n−1/4 log−1 n, independent of d as long as log d < n3/10. This finding

suggests that, under a fairly mild restriction, the performance of PFR can be

asymptotically as good as FR. Although the rate in Theorem 1 is slower than

the optimal uniform convergence rate of n−2/5 log n established by Mack and Sil-

verman (1982) when d = 1, n−1/4 log−1 n is sufficient for establishing theoretical

analyses on the variable screening method.

3.3. Screening consistency

In the variable screening process, it is important to identify all relevant

variables within a rather limited number of steps (Fan and Lv (2008)). To this



PROFILED FORWARD REGRESSION IN PARTIALLY LINEAR MODELS 537

end, we take the solution path S to be screening consistent if

P
(
MT ⊂ M(k) ∈ S for some 1 ≤ k ≤ n

)
→ 1. (3.2)

Then, we establish PFR’s screening consistency as follows.

Theorem 2. Under (C1)−(C7), we have that, as n → ∞,

P
(
MT ⊂ M([Knξ0+4ξmin ])

)
→ 1,

where the constant K = 6τmaxτ
−2
minC

2
βν

−4
β ν is independent of n, with componenet

constants from (C2), (C3), and (C4), and where [t] denotes the smallest integer

not less than t.

This theorem indicates that, with probability tending to one, the PFR al-

gorithm is able to detect all relevant predictors within O(nξ0+4ξmin) steps. This

number is much smaller than the sample size n under Condition (C4). Further-

more, if the size of the true model is fixed, ξ0 = 0, and the size of the smallest

nonzero regression coefficient is bounded away from 0, ξmin = 0, then only a finite

number of steps are needed to discover the entire relevant variable set. Moreover,

the rate demonstrated in Theorem 2, O(nξ0+4ξmin), is sharper than the rate of

O(n2ξ0+4ξmin) given in Wang (2009), which is due to our approach; see Appendix

B.

Theorem 2 provides a theoretical basis for PFR that enables us to empirically

select the best model from S. We therefore consider two BIC criteria

BIC1(M) = log σ̂2
(M) + n−1|M|

(
log n+ 2 log d

)
, (3.3)

and BIC2(M) = log σ̂2
(M) + n−1|M|

(
2 log d

)
, (3.4)

where M is an arbitrary candidate model with |M| ≤ n, σ̂2
(M) = n−1RSS(M),

RSS(M) = Ŷ⊤{In − HM}Ŷ, and HM = X̂(M){X̂⊤
(M)X̂(M)}−1X̂⊤

(M). The first

of these has been considered by Chen and Chen (2008) and Wang (2009), while

the second one has been investigated by An et al (2008). For either criterion,

we select the best model M̂ = M(m̂), where m̂ = argmin1≤m≤nBICk(M(m)).

Applying the same techniques as those in Wang (2009), we are able to show that

P (MT ⊂ M̂) → 1. Consequently, the selected model M̂ is screening consistent

and its size is usually considerably smaller than n. Nevertheless, we typically

do not expect that P (MT = M̂) → 1 since even in the classical large sample

size and fixed dimension setup, forward regression is not consistent in selection

(Wang (2009)). We present numerical evidence in the next section.
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4. Numerical Studies

4.1. Simulation settings and performance measures

We give examples to demonstrate the finite sample performance of PFR.

In each simulated model, we generated the index variable U from a uniform

distribution on [0, 1]; it is independent of the predictors X. The variance of ε

was selected so that the resulting theoretical R2 = var{X⊤
i β + g(Ui)}/var(Yi)

was approximately 75%. This ensured that the signal-to-noise ratio was not

weak. In addition, four sample sizes (n = 50, 100, 150, and 200) and three

predictor dimensions (d = 500, 1,000, 2,000) were considered, and a total of

N = 200 realizations were conducted. For the sake of comparison, the FR method

proposed by Wang (2009) was also evaluated.

Example 1. (Independent Predictors) The linear component, X⊤β, of this

model is given by Fan and Lv (2008). Accordingly, the linear predictors were

independent and standard normal random variables. The size of the true model

was d0 = 8 with βj = (−1)I(ãj>0.6)(4 log n/
√
n+ |Zj |) for every 1 ≤ j ≤ d0, with

ãj uniformly distributed on [0, 1] and Zj standard normal. In addition to the

linear component, the nonlinear element was g(U) = 20UI(U < 0.5) + 10(U ≥
0.5), a piecewise linear function with structural change.

Example 2. (Autoregressive Correlation) The predictors associated with

the linear component are correlated with each other in an autoregressive manner;

see Tibshirani (1996). Specifically, the Xi (i = 1, . . . , n) were generated from a

multivariate normal distribution with mean 0 and cov(Xij1 , Xij2) = 0.5|j1−j2|

for 1 ≤ j1, j2 ≤ d. The 1st, 4th, and 7th elements of β were 3, 1.5, and 2,

respectively. The remaining elements of β were 0. Consequently, we had d0 = 3.

Furthermore, the nonlinear component was g(U) = exp(3U), a nonlinear and

increasing function.

Example 3. (Compound Symmetry) The covariance structure of predictors in

the linear component is compound symmetry (Fan and Lv (2008)). Specifically,

the Xi (i = 1, . . . , n) were simulated from a multivariate normal distribution with

mean 0, var(Xij) = 1, and cov(Xij1 , Xij2) = 0.5 for j1 ̸= j2, where j = 1, . . . , d

and 1 ≤ j1, j2 ≤ d. Furthermore, βj = 5 for j ≤ d0 = 3, while βj = 0 for j > d0.

Moreover, the nonlinear component was g(U) = 10 sin(2πU), which represents a

nonlinear and non-monotonic function.

In the above examples, let {Xi(k) : 1 ≤ i ≤ n} be the simulated predic-

tors from the kth realization, where k = 1, . . . , N . Analogously, let β̂(k) =

(β̂1(k), . . . , β̂d(k))
⊤ ∈ Rd and Σ̂(k) = n−1

∑n
i=1Xi(k)X

⊤
i(k) be the estimators of

β and Σ, respectively, and let the selected model be M̂(k) = {j : |β̂j(k)| > 0}.
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To study the finite sample performance of FR and PFR, we computed six per-

formance measures: (i.) the coverage probability (100% × N−1
∑N

k=1 I(M̂(k) ⊃
MT )); (ii.) the percentage of correct fit (100%×N−1

∑N
k=1 I(M̂(k) = MT )); (iii.)

the percentage of correct zeros (100%×{(d−d0)N}−1{
∑N

k=1

∑d
j=1 I(β̂j(k) = 0)×

I(βj = 0)}); (iv.) the percentage of incorrect zeros (100%×(d0N)−1{
∑N

k=1

∑d
j=1

I(β̂j(k) = 0)×I(βj ̸= 0)}); (v.) the average size of the selected model (N−1
∑N

k=1

|M̂(k)|); and (vi.) the relative estimation error (100% × N−1
∑N

k=1{(β̂(k) −
β)⊤Σ̂(k)(β̂(k) − β)}/{β⊤Σ̂(k)β})).

4.2. Simulation results

The detailed simulation results of Examples 1 to 3 are presented in Tables

1−3, respectively. Because U and X are independent, we can show that FR is

screening consistent under the appropriate conditions from Wang (2009). As a

result, the finite sample performance of the FR method is qualitatively similar to

that of the PFR method. However, Tables 1−3 show that PFR outperforms FR.

This finding is not surprising since FR does not control the nonlinear component

g(U). To save space, we focus only on PFR in the following discussions.

For the fixed dimension d, the PFR’s finite sample performance improves

substantially as the sample size increases. For example, with a reasonably large

sample size (e.g., n = 200), the resulting coverage probability approaches 100%.

These results numerically confirm that PFR is screening consistent; see Theo-

rem 2. As a byproduct of the screening consistency property, the percentage of

incorrect zeros moves quickly toward 0 as the sample size increases.

It is noteworthy that focusing solely on the screening consistency is insuffi-

cient for assessing performance. This is because an excellent coverage probability

can be attained by some näıve or useless method. For example, if one always

selects the full model MF as the “best” model, the resulting coverage probabil-

ity is 100%. Although this is an excellent coverage probability, its cost is a huge

model size. This motivates us to evaluate the PFR’s capability in identifying

the correct sparse solutions. Tables 1−3 indicate that PFR together with the

BIC criteria (3.3) and (3.4) identifies correct zeros almost 100% of cases. As a

result, the average model size is not only small, but also closes to the true model

size d0 when the sample size is large. Consequently, the relative estimation error

steadily decreases as the sample size increases.

We also note that the finite sample performances of the two BIC criteria are

qualitatively similar. Because BIC1 uses a slightly larger penalty than does BIC2,

its capability in identifying sparse solutions is stronger while its underfitting

effect is more serious. As a result, BIC1 typically yields the larger percentage of
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Table 1. Simulation Results for Example 1.

Model Coverage Correct % of % of Average Relative
Selection Probability Selection Incorrect Correct Model Estimation

d n Criterion (%) (%) Zeros Zeros Size Error (%)
PFR

2,000 100 BIC1 20.2 0.0 79.8 100.0 1.7 66.3
BIC2 48.9 2.0 51.1 99.9 5.2 39.6

150 BIC1 74.8 24.5 25.2 100.0 6.0 16.7
BIC2 90.2 33.5 9.8 100.0 7.8 8.9

200 BIC1 90.1 54.0 9.9 100.0 7.2 6.3
BIC2 97.1 57.5 2.9 100.0 8.2 4.1

1,000 100 BIC1 30.3 1.0 69.7 100.0 2.5 55.1
BIC2 67.3 6.0 32.7 99.9 6.6 26.7

150 BIC1 79.5 29.0 20.5 100.0 6.4 13.0
BIC2 92.2 38.5 7.8 99.9 7.9 7.2

200 BIC1 92.7 55.5 7.3 100.0 7.5 5.0
BIC2 97.2 59.5 2.8 100.0 8.1 3.8

500 100 BIC1 44.1 6.5 55.9 100.0 3.6 42.0
BIC2 76.2 15.5 23.8 99.8 7.1 19.5

150 BIC1 83.9 37.5 16.1 100.0 6.7 10.7
BIC2 95.2 47.5 4.8 99.9 8.1 6.0

200 BIC1 95.2 69.5 4.8 100.0 7.6 3.7
BIC2 98.6 62.5 1.4 99.9 8.4 3.4

FR
2,000 100 BIC1 12.6 0.0 87.4 100.0 1.1 78.0

BIC2 31.3 0.0 68.7 100.0 3.5 59.9
150 BIC1 39.2 0.5 60.8 100.0 3.2 48.9

BIC2 69.4 8.0 30.6 100.0 6.2 29.1
200 BIC1 63.0 8.5 37.0 100.0 5.1 27.7

BIC2 84.1 21.0 15.9 100.0 7.1 16.5

1,000 100 BIC1 16.2 0.0 83.8 100.0 1.4 72.3
BIC2 41.6 1.5 58.4 99.9 3.9 49.8

150 BIC1 48.4 3.0 51.6 100.0 3.9 40.9
BIC2 74.6 7.5 25.4 99.9 6.5 24.0

200 BIC1 72.6 15.0 27.4 100.0 5.8 22.0
BIC2 89.1 32.0 10.9 100.0 7.5 14.2

500 100 BIC1 20.6 0.0 79.4 100.0 1.7 68.1
BIC2 51.2 2.0 48.8 99.9 4.8 43.2

150 BIC1 56.4 7.0 43.6 100.0 4.5 34.9
BIC2 81.3 14.5 18.7 99.9 6.9 20.4

200 BIC1 77.1 19.5 22.9 100.0 6.2 18.9
BIC2 91.4 40.5 8.6 99.9 7.7 12.8
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Table 2. Simulation Results for Example 2.

Model Coverage Correct % of % of Average Relative
Selection Probability Selection Incorrect Correct Model Estimation

d n Criterion (%) (%) Zeros Zeros Size Error (%)
PFR

2,000 100 BIC1 64.5 15.5 35.5 100.0 2.0 19.2
BIC2 74.5 21.5 25.5 100.0 2.8 18.3

150 BIC1 81.8 48.0 18.2 100.0 2.5 9.2
BIC2 90.3 52.5 9.7 100.0 3.2 8.8

200 BIC1 92.3 75.5 7.7 100.0 2.8 4.0
BIC2 96.7 64.5 3.3 100.0 3.3 4.8

1,000 100 BIC1 66.2 15.5 33.8 100.0 2.0 17.9
BIC2 78.5 31.5 21.5 99.9 2.9 15.7

150 BIC1 83.8 52.5 16.2 100.0 2.6 8.0
BIC2 90.7 54.0 9.3 100.0 3.1 7.6

200 BIC1 93.8 79.5 6.2 100.0 2.8 3.7
BIC2 98.7 71.0 1.3 100.0 3.3 3.6

500 100 BIC1 67.7 18.0 32.3 100.0 2.1 17.4
BIC2 79.7 27.5 20.3 99.9 2.9 15.5

150 BIC1 87.2 61.0 12.8 100.0 2.6 6.4
BIC2 93.8 59.0 6.2 99.9 3.1 6.0

200 BIC1 94.8 83.0 5.2 100.0 2.9 3.3
BIC2 98.3 71.0 1.7 99.9 3.3 3.8

FR
2,000 100 BIC1 18.7 0.0 81.3 100.0 0.6 72.9

BIC2 30.8 0.0 69.2 100.0 1.4 70.4
150 BIC1 39.3 0.5 60.7 100.0 1.2 44.8

BIC2 52.3 3.0 47.7 100.0 1.9 38.3
200 BIC1 51.3 2.0 48.7 100.0 1.6 30.9

BIC2 63.7 10.5 36.3 100.0 2.2 26.0

1,000 100 BIC1 24.8 0.0 75.2 100.0 0.8 63.8
BIC2 36.0 0.5 64.0 100.0 1.5 59.5

150 BIC1 39.5 0.5 60.5 100.0 1.2 44.9
BIC2 55.3 3.5 44.7 100.0 2.1 38.7

200 BIC1 54.5 3.5 45.5 100.0 1.7 29.2
BIC2 68.5 14.5 31.5 100.0 2.4 25.3

500 100 BIC1 27.0 0.0 73.0 100.0 0.9 62.8
BIC2 39.8 2.5 60.2 99.9 1.7 58.8

150 BIC1 46.3 1.5 53.7 100.0 1.4 37.7
BIC2 59.5 6.5 40.5 99.9 2.1 30.4

200 BIC1 58.0 5.5 42.0 100.0 1.8 26.2
BIC2 73.0 22.5 27.0 99.9 2.6 23.4
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Table 3. Simulation Results for Example 3.

Model Coverage Correct % of % of Average Relative
Selection Probability Selection Incorrect Correct Model Estimation

d n Criterion (%) (%) Zeros Zeros Size Error (%)
PFR

2,000 100 BIC1 48.0 5.5 52.0 100.0 2.1 19.7
BIC2 55.0 12.0 45.0 100.0 2.6 17.1

150 BIC1 84.7 59.5 15.3 100.0 2.7 5.6
BIC2 91.0 66.0 9.0 100.0 3.1 4.3

200 BIC1 97.0 90.5 3.0 100.0 3.0 1.7
BIC2 98.3 81.5 1.7 100.0 3.2 1.9

1,000 100 BIC1 55.0 11.0 45.0 99.9 2.2 16.4
BIC2 63.5 20.5 36.5 99.9 2.7 13.8

150 BIC1 87.0 63.5 13.0 100.0 2.7 4.9
BIC2 94.2 71.0 5.8 100.0 3.2 3.6

200 BIC1 97.0 90.5 3.0 100.0 3.0 1.6
BIC2 98.7 81.5 1.3 100.0 3.2 1.7

500 100 BIC1 63.0 20.5 37.0 99.9 2.2 13.9
BIC2 73.7 31.0 26.3 99.9 2.9 10.7

150 BIC1 90.7 73.0 9.3 100.0 2.8 3.8
BIC2 95.5 69.5 4.5 99.9 3.2 3.3

200 BIC1 98.0 92.0 2.0 100.0 3.0 1.4
BIC2 99.3 81.5 0.7 100.0 3.2 1.5

FR
2,000 100 BIC1 27.5 0.0 72.5 100.0 1.7 32.3

BIC2 31.8 0.5 68.2 99.9 2.2 29.8
150 BIC1 53.3 8.5 46.7 100.0 2.1 18.3

BIC2 62.3 18.0 37.7 100.0 2.7 15.6
200 BIC1 72.5 29.5 27.5 100.0 2.4 10.4

BIC2 82.2 48.5 17.8 100.0 3.0 8.2

1,000 100 BIC1 34.2 0.0 65.8 99.9 1.8 28.3
BIC2 38.8 1.0 61.2 99.9 2.3 25.9

150 BIC1 58.0 7.5 42.0 100.0 2.1 16.2
BIC2 68.3 24.0 31.7 99.9 2.8 13.5

200 BIC1 76.0 34.0 24.0 100.0 2.5 9.1
BIC2 87.0 51.5 13.0 100.0 3.1 6.5

500 100 BIC1 39.5 1.0 60.5 99.9 1.8 26.0
BIC2 46.7 5.0 53.3 99.8 2.5 22.9

150 BIC1 64.2 15.5 35.8 99.9 2.2 13.6
BIC2 75.8 30.5 24.2 99.9 2.9 10.9

200 BIC1 83.7 52.5 16.3 100.0 2.6 6.4
BIC2 91.0 59.0 9.0 99.9 3.1 5.1
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Figure 1. The true nonparametric component (the solid line) and its estimate
(the dashed line).

incorrect zeros, while BIC2 leads to the bigger average model size. In addition,

Examples 2 and 3 show that BIC1 slightly outperforms BIC2 for identifying the

correct fit. However, since PFR is not a consistent selection method, we do not

expect that the percentage of correct fit will converge to 100% as n → ∞.

For the fixed sample size, we compare the PFR’s performance across various

dimensions of predictors. As expected, Tables 1−3 demonstrate that the larger

dimension of predictors leads to worse finite sample performance. It is of interest

to note that the performance of PFR does not deteriorate rapidly when d in-

creases. For example, Table 3 shows that if the dimension of predictors increases

from 500 to 4× 500 = 2, 000 with n = 100, the coverage probability drops from

63.0% to 48.0%. In contrast, if we fix the predictor dimension to be 2, 000, but

increase the sample size from n = 50 to n = 4 × 50 = 200, the coverage prob-

ability increases from 8.3% to 97.0%. These findings suggest that the sample

size plays a more important role than the dimension of predictors in ultrahigh

dimensional variable screening. In sum, the numerical results corroborate our

theoretical findings, and PFR performs well.

Finally, to gain some intuitive understanding of the estimated nonlinear com-

ponent, we fixed the sample size to be n = 200 and the predictor dimension to be

p = 500. Then, used BIC1 as the stopping rule to select linear component. Figure

1 shows that the resulting estimates approximate the true nonlinear component

fairly well.
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4.3. Empirical example

To illustrate the usefulness of the PFR method, we consider the data set

provided by a major domestic supermarket chain located in northern China.

It contains a total of 159 daily observations collected between 07/26/2008 and

12/31/2008. The response is the supermarket’s daily profit in log-scale, while

the predictor vector Xi is of 1,795 dimensions. The first 6 component of Xi (i.e.,

Xi1, . . . , Xi6) are dummy variables associated with Tuesday, Wednesday, Thurs-

day, Friday, Saturday, and Sunday, respectively; Monday is used as a benchmark.

Subsequently, Xij (j = 7 to j = 1, 795) correspond to the supermarket’s prod-

ucts, in log-scale, which have been advertised for sales promotion during the

above time period. For the sake of convenience, both response and predictors are

standardized to have zero mean and unit variance. Because the time U of the

sales promotion commonly affects the profit in a nonlinear form, we also include

it as the nonparametric component g(U) in our study.

We first conducted an out-of-sample performance to illustrate the usefulness

of PFR in forecasting. To this end, we considered the training sample size n0 =

120, and created a total of n − n0 = 39 moving windows Wl = {(Xi, Ui) : l ≤
i ≤ l+119}, l = 1, . . . , 39. Based on Wl, we fit the data with the partially linear

model via PFR. For the sake of comparison, we also fit the corresponding data

(ignoring Ui) with the linear model via FR. The resulting models were then used

to predict the value of Yl+120, denoted as Ŷl+120. To compare the accuracy of

predictions between FR and PFR, we computed the absolute prediction error

(APE), |Ŷl+120 − Yl+120|. The results suggest that PFR is considerably better

than FR in terms of both the mean (0.5646 vs. 0.6981) and the median (0.4587 vs.

0.6813) calculated from 39 APEs. This indicates that the nonlinear component

g(U) plays a useful role in PFR for forecasting.

We next applied the PFR method to the whole dataset, and identified four

relevant variables. Among them, two were the dummies associated with Saturday

and Sunday. Their corresponding regression coefficients of 0.30 (Saturday) and

0.38 (Sunday), respectively, perfectly match with the common conception that

weekend sales and profits are substantially higher than those of Monday. In

addition, PFR identified two food products for which sales promotion were very

effective. Moreover, Figure 2 presents the estimated nonparametric function

g(U) together with 90% pointwise confidence bands. It depicts a nonlinear curve

that rapidly increases as time approaches the end of the promotion period. Note

that the end of sales promotion was 12/31/2008; one day before the New Year

holidays. In sum, the partially linear model in conjunction with the PFR method

provides insightful findings on supermarket promotions.
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Figure 2. The estimated nonparametric component (the solid line) and its
90% pointwise confidence bands (the dashed lines).

5. Conclusion

We have proposed a PFR algorithm for ultrahigh dimensional variable screen-

ing in partially linear models. It combines the classical forward regression with

the nonparametric profiling estimator (Fan and Huang (2005)). We have shown

that PFR is screening consistent, and numerical results suggest that PFR per-

forms well.

In the recent literature on variable screening or selection, there are two closely

related forward regression methods, LARS by Efron et al. (2004), and stagewise

orthogonal matching pursuit (StoMP), by Donoho et al. (2006). LARS search

for the next variable in an equiangular direction with all current variables, while

StoMP selects predictors having significant correlation with the current resid-

ual at each stage, recursively, and can deal with the case where the data may

be noiseless. We cannot rule out the possibility that LARS and StoMP might

also have the screening consistency, as enjoyed by SIS, FR, and PFR. However,

various simulation studies conducted by Wang (2009) suggest that the LARS

finite sample performance in variable screening is much worse than that of FR.

Such a result is not surprising because the LARS estimate is closely related to

the LASSO estimate, which does not have the oracle property (Zou (2006); Fan

and Li (2001)). Our unreported numerical results suggest that, for partial linear

regression models, PFR outperforms the profiled LARS algorithm. Furthermore,

Stodden (2006) found that StoMP is inferior to LARS/LASSO in recovering the

underlying model when sparsity levels are high. We therefore expect PFR to be

superior to profiled StoMP.
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We identify three research areas that could broaden the usefulness of PFR.

The first is to generalize PFR to the varying coefficient model (Cai, Fan, and Li

(2000); Hastie and Tibshirani (1993)) and the single-index model (Xia (2006);

Hristache, Juditsky and Spokoiny (2001)) with their various extensions (Car-

roll et al. (1997)). The second is to develope a data driven bandwidth selection

method for PFR in an ultrahigh dimensional setting. The third is to employ the

property of profiled consistency in Theorem 1 to extend the existing screening

methods (e.g., LARS, Efron et al. (2004) and SIS, Fan and Lv (2008)) to semi-

parametric models. We believe that these efforts would enhance the usefulness

of ultrahigh dimensional variable screening in nonparametric data analysis.
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Appendix

Appendix A. Technical Lemmas

Before proving the two theorems, we present four lemmas. Lemmas A.1 and

A.2 are used for the proof of Theorem 1, while Lemma A.3 is used for Lemma

A.4, which is needed in the proof of Theorem 2.

Lemma A.1. Suppose (C5), (C6.i), and (C6.iii) hold. Then

max
0≤j≤d

max
1≤i≤n

∣∣∣Gj(Ui)−
n∑

k=1

ωnk(Ui)Gj(Uk)
∣∣∣ = O(cn).

Proof. For a given Gj(Ui) (j = 1, . . . , d and i = 1, . . . , n), we have

Gj(Ui)−
n∑

k=1

ωnk(Ui)Gj(Uk)

=
n∑

k=1

ωnk(Ui){Gj(Ui)−Gj(Uk)}

=

n∑
k=1

ωnk(Ui){Gj(Ui)−Gj(Uk)}I(|Ui − Uk| > cn)
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+

n∑
k=1

ωnk(Ui){Gj(Ui)−Gj(Uk)}I(|Ui − Uk| ≤ cn).

This, together with Condition (iii) of (C6), implies that

max
0≤j≤d

max
1≤i≤n

∣∣∣∣∣
n∑

k=1

ωnk(Ui){Gj(Uk)−Gj(Ui)}I(|Ui − Uk| > cn)

∣∣∣∣∣
≤ C max

0≤j≤d
max
1≤i≤n

∣∣∣∣∣
n∑

k=1

ωnk(Ui)I(|Ui − Uk| > cn)

∣∣∣∣∣ = O(cn).

Applying the Lipschitz continuity assumption (C5) and Condition (i) of (C6), we

obtain

max
0≤j≤d

max
1≤i≤n

∣∣∣∣∣
n∑

k=1

ωnk(Ui){Gj(Uk)−Gj(Ui)}I(|Ui − Uk| ≤ cn)

∣∣∣∣∣
≤ max

0≤j≤d
max
1≤i≤n

∣∣∣∣∣
n∑

k=1

ωnk(Ui)cn

∣∣∣∣∣ = O(cn).

This completes the proof.

Lemma A.2. Let W1, . . . ,Wn be i.i.d. with constant variance σ2. Take Zk =

(Wk − EWk)/σ, let M(u) = E{exp(uZk)} be the generating function of Zk

for k = 1, . . . , n, and assume that there is a positive constant t0 such that

E{exp(t|Wk|)} < ∞ for 0 ≤ t ≤ t0/σ. Let ank, 1 ≤ k ≤ n, be a sequence of con-

stants and A,A1, A2, . . . , be a sequence of constants satisfying An ≥
∑n

k=1 a
2
nkσ

2

and A ≥ max
k

|ankσ|/An. If

M∗ .
= sup

0≤u≤t0

∣∣∣∣d3 logM(u)

dt3

∣∣∣∣ < ∞, (A.1)

then, for 0 < ζ < t0/A, we have

P

{∣∣∣∣∣
n∑

k=1

ank(Wk − EWk)

∣∣∣∣∣ > ζ

}
≤ exp

{
− ζ2

2An

(
1− 1

3
AM∗ζ

)}
. (A.2)

Proof. Take tζ = ζ/An for ζ ≤ t0/A. Then |ankσtζ | = |ankσζ/An| ≤ Aζ ≤ t0.

Applying a Taylor expansion to log{M(u)} at u = 0, we have, for 0 ≤ u ≤ t0,

logM(u) = logM(0)

+t
d logM(u)

dt

∣∣∣
u=0

+
u2

2

d2 logM(u)

du2

∣∣∣
u=0

+
u3

6

d3 logM(u)

du3

∣∣∣
u=u∗

,
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where u∗ lies between u and 0. It is noteworthy that logM(0) = 0,

d logM(u)

du

∣∣∣
u=0

=E(Z1)=0,
d2 logM(u)

du2

∣∣∣
u=0

=1, and

∣∣∣∣d3 logM(u)

du3

∣∣∣
u=u∗

∣∣∣∣≤M∗.

It follows that

log
{
M
(
ankσtζ

)}
≤ 2−1

(
ankσζ

An

)2

+
1

6

∣∣∣∣ankσζAn

∣∣∣∣3 ·M∗

≤
a2nkσ

2ζ2

2A2
n

(
1 +

1

3
AM∗ζ

)
.

After algebraic simplification, we have

logP

{
n∑

k=1

ank(Wk − EWk) > ζ

}
= logP

{
n∑

k=1

ankσZk > ζ

}

≤ logE

[
exp

{
tζ

(
n∑

k=1

ankσZk − ζ

)}]
= −ζtζ +

n∑
k=1

logM(ankσtζ)

≤ − ζ2

An
+

n∑
k=1

a2nkσ
2ζ2

2An

(
1 +

1

3
AM∗ζ

)
≤ − ζ2

An
+

ζ2

2A2
n

(
1 +

1

3
AM∗ζ

)
= − ζ2

2An

(
1− 1

3
AM∗ζ

)
.

As a result,

P

{
n∑

k=1

ank(Wk − EWk) > ζ

}
≤ exp

{
− ζ2

An

(
1− 1

3
AM∗ζ

)}
. (A.3)

Analogously, we can show that

P

{
n∑

k=1

ank(Wk − EWk) < −ζ

}
≤ exp

{
− ζ2

An

(
1− 1

3
AM∗ζ

)}
. (A.4)

The results (A.3) and (A.4) complete the proof.

Lemma A.3 (Bernstein’s Inequality). Let {Rk, 1 ≤ k ≤ n} be independent

random variables with E(Rk) = 0 and var(Rk) = σ2
k. If E|Rk|l ≤ (l!/2)σ2

kc
l−2,

for 1 ≤ k ≤ n, 0 < c < ∞, and some l > 2, then

P

{
n∑

k=1

Rk > δ

}
≤ exp

{
− δ2

2(
∑n

k=1 σ
2
k + cδ)

}
for δ > 0.
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It can be easily shown that the sufficient condition in Lemma A.3 holds

when Rk are independent and identically distributed normal random variable or

P{|Rk| ≤ c} = 1 for 1 ≤ k ≤ n. A detailed proof of this lemma can be found in

Pollard (1984).

Lemma A.4. Take Σ̂ = n−1X̂⊤X̂ and Σ∗ = n−1X∗⊤X∗ and, for a subset model

M, let Σ̂(M) and Σ∗
(M) be the submatrices of Σ̂ and Σ∗, respectively. If (C2) and

(C4)−(C7) hold and m̃ = O(n2ξ0+4ξmin), then, with probability tending to one,

we have

τmin ≤ min
|M|≤m̃

λmin

{
Σ̂(M)

}
≤ max

|M|≤m̃
λmax

{
Σ̂(M)

}
≤ τmax. (A.5)

Proof. Let r = (r1, . . . , rd)
⊤ ∈ Rd be an arbitrary d-dimensional vector and

r(M) be the subvector corresponding to M. By (C2), we immediately have

2τmin ≤ min
M⊂MF

inf
∥r(M)∥=1

r⊤(M)Σ(M)r(M)

≤ max
M⊂MF

sup
∥r(M)∥=1

r⊤(M)Σ(M)r(M) ≤ 2−1τmax.

Therefore, (A.5) follows if we are able to show that

P

(
max

|M|≤m̃
sup

∥r(M)∥=1

∣∣∣r⊤(M)

{
Σ̂(M) − Σ(M)

}
r(M)

∣∣∣ > ϵ̃

)
→ 0, (A.6)

where ϵ̃ > 0 is an arbitrary positive number. Note that

Σ̂(M) − Σ∗
(M) =

1

n

{
X̂⊤
(M)X̂(M) − X∗⊤

(M)X
∗
(M)

}
=

1

n

{
X̂(M) − X∗

(M)

}⊤{
X̂(M) − X∗

(M)

}
+
1

n

{
X̂(M) − X∗

(M)

}⊤
X∗
(M) +

1

n
X∗⊤
(M)

{
X̂(M) − X∗

(M)

}
.

Under (C4)−(C7), it follows from Theorem 1 and the Cauchy inequality that

1

n
max

|M|≤m̃
sup

∥r(M)∥=1

∣∣∣r⊤(M)

[
X∗⊤
(M){X̂(M) − X∗

(M)}
]
r(M)

∣∣∣ = op

(
n−1/4 log−1 n

)
.

In the same way, we can prove that

1

n
max

|M|≤m̃
sup

∥r(M)∥=1

∣∣∣r⊤(M)

[
{X̂(M) − X∗

(M)}
⊤X∗

(M)

]
r(M)

∣∣∣=op

(
n−1/4 log−1 n

)
,

1

n
max

|M|≤m̃
sup

∥r(M)∥=1

∣∣∣r⊤(M)

[
{X̂(M)−X∗

(M)}
⊤{X̂(M)−X∗

(M)}
]
r(M)

∣∣∣=op

(
n−1/4 log−1 n

)
.
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The above results indicate that

P

(
max

|M|≤m̃
sup

∥r(M)∥=1

∣∣∣r⊤(M)

{
Σ̂(M) − Σ∗

(M)

}
r(M)

∣∣∣ > ϵ̃

)
→ 0.

To show (A.6), then, it suffices to prove that

P

(
max

|M|≤m̃
sup

∥r(M)∥=1

∣∣∣r⊤(M)

{
Σ∗

(M) − Σ(M)

}
r(M)

∣∣∣ > ϵ̃

)
→ 0. (A.7)

Under (C2), (C4), (C7), and calling on Lemma A.3, (A.7) can be proved in a

similar manner as Lemma 1 in Wang (2009). This completes the proof.

Appendix B. Proofs of the Theorems

Proof of Theorem 1. We focus on the case j ≥ 1 since the proof for j = 0 is

simpler. It is noteworthy that Ĝj(Ui) =
∑n

k=1 ωnk(Ui)Gj(Uk)+
∑n

k=1 ωnk(Ui)Vjk,

where Vjk is the kth sample of Vj (i.e., Vjk = X∗
jk). Then

max
1≤j≤d

max
1≤i≤n

|Ĝj(Ui)−Gj(Ui)|

≤ max
1≤j≤d

max
1≤i≤n

∣∣∣∣∣
n∑

k=1

ωnk(Ui)Gj(Uk)−Gj(Ui)

∣∣∣∣∣+ max
1≤j≤d

max
1≤i≤n

∣∣∣∣∣
n∑

k=1

ωnk(Ui)Vjk

∣∣∣∣∣ . (B.1)
By (C5) and (C6) along with Lemma A.1, the first term on the right side of the

above equation is bounded by O(cn), where cn is defined in (C6).

We next show the asymptotic convergence of the second term on the right

side of (B.1). To this end, we introduce a positive constant independent of n,

called C, and take ank = ωnk(Ui) and ζ = n−1/4 log−1 n. Let A be a constant

such that An = Cσ2bn, where bn is defined in (C6) and A ≥ max
1≤k≤n

ωnk(Ui)/Cbn.

By (C6), it is easily verified that An ≥
∑n

k=1 a
2
nkσ

2 and A ≥ max
k

|ankσ|/An.

Furthermore, it can be seen that the assumption (A.1) in Lemma A.2 satisfies

(C7) for each given j. Taken together with (C4), this leads to

P

{
max
1≤j≤d

max
1≤i≤n

∣∣∣∣∣
n∑

k=1

ωnk(Ui)Vjk

∣∣∣∣∣ > ζ

}

≤ dn max
1≤j≤d

max
1≤i≤n

P

{∣∣∣∣∣
n∑

k=1

ωnk(Ui)Vjk

∣∣∣∣∣ > ζ

}

≤ 2dn exp

{
− ζ2

2An
(1 +AMvζ)

}
≤ 2dn exp

{
− ζ2

4bnC

}
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= 2 exp
{
−n3/10 log−2 n

C
+ log(dn)

}
→ 0.

Consequently, max
1≤j≤d

max
1≤i≤n

|Ĝj(Ui)−Gj(Ui)| = op(n
−1/4 log−1 n). This completes

the proof of Theorem 1.

Proof of Theorem 2. It is important to note that although we adapt the

approach of Wang (2009), Theorem 1 and Lemma A.4 are critical to our proof

of Theorem 2. For every k ≤ [Knξ0+4ξmin ], we have

Ω(k)
.
= RSS(M(k))− RSS(M(k+1)) =

∥∥∥H(k)
ak+1

Q(M(k))Ŷ
∥∥∥2, (B.2)

where Q(M(k)) = In−HM(k) , HM(k) = X̂(M(k)){X̂⊤
(M(k))

X̂(M(k))}−1X̂⊤
(M(k))

, H
(k)
ak+1

= X̂(k)
ak+1X̂

(k)⊤
ak+1∥X̂

(k)
ak+1∥−2, and X̂(k)

ak+1 = {In −HM(k)}X̂ak+1
. Suppose that MT ̸⊂

M[Knξ0+4ξmin ]. This leads to

Ω(k) ≥ max
j∈M∗

k

∥∥∥H(k)
j Q(M(k))Ŷ

∥∥∥2
≥ 3−1 max

j∈M∗
k

∥∥∥H(k)
j Q(M(k))

{
X∗
(MT )β(MT )

}∥∥∥2 − max
j∈MT

∥∥∥H(k)
j Q(M(k))E

∥∥∥2
− max

j∈MT

∥∥∥H(k)
j Q(M(k))(Ŷ− Y∗)

∥∥∥2, (B.3)

where M∗
k

.
= MT \M(k) ̸= ∅, E = (ε1, . . . , εn)

⊤ ∈ Rn, and H
(k)
j is the H

(k)
ak+1

above. Under (C4)–(C7) and applying Theorem 1, maxi |Ŷi − Y ∗
i | = op(n

−1/4

log−1 n). In addition, both H
(k)
j and Q(M(k)) are projection matrices. Thus, the

third term on the right side of (B.3) is bounded by ∥Ŷ − Y∗∥2 = n · op(n−1/2).

As a result, we need only focus on the first two terms on the right side of (B.3).

After Theorem 1, we have

max
i,j

∥∥∥X̂ij −X∗
i,j

∥∥∥ = op

(
n−1/4 log−1 n

)
. (B.4)

We then can show that the first term (ignoring the constant) satisfies

max
j∈M∗

k

∥∥∥H(k)
j Q(M(k))

{
X∗
(MT )β(MT )

}∥∥∥2
= max

j∈M∗
k

∥∥∥H(k)
j Q(M(k))

{
X∗
(M∗

k)
β(M∗

k)

}∥∥∥2
≥
{

max
j∈MT

∥X̂j∥2
}−1[

max
j∈M∗

k

∣∣∣X̂⊤
j Q(M(k))

{
X∗
(M∗

k)
β(M∗

k)

}∣∣∣2]. (B.5)
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Moreover, the Cauchy inequality and (C3) lead to∥∥∥Q(M(k))

{
X∗
(M∗

k)
β(M∗

k)

}∥∥∥2
=
∑

j∈M∗
k

βj

(
X̂⊤
j Q(M(k))

{
X∗
(M∗

k)
β(M∗

k)

})

≤
( ∑

j∈M∗
k

β2
j

)1/2( ∑
j∈M∗

k

[
X̂⊤
j Q(M(k))

{
X∗
(M∗

k)
β(M∗

k)

}]2)1/2

≤ Cβ · |MT |1/2 max
j∈M∗

k

∣∣∣X̂⊤
j Q(M(k))

{
X∗
(M∗

k)
β(M∗

k)

}∣∣∣. (B.6)

Then, (B.6) together with (C1)–(C3) and Lemma A.4, demonstrates that the

right side of (B.5) can be further bounded by

{
max
j∈MT

∥X̂j∥2
}−1

·

[∥∥∥Q(M(k))

{
X∗
(M∗

k)
β(M∗

k)

}∥∥∥2 · |MT |−1/2C−1
β

]2
≥ nτ−1

maxτ
2
minβ

4
min|MT |−1C−2

β ≥ τ−1
maxτ

2
minC

−2
β ν4βν

−1 · n1−ξ0−4ξmin . (B.7)

Consider the second term of (B.3). By (C1) and (C2) along with Lemma A.4,

we have ∥X̂(k)
j ∥2 ≥ nτmin. After algebraic simplification with (B.4), we obtain∥∥∥H(k)

j Q(M(k))E
∥∥∥2 ≤ τ−1

minn
−1 max

j∈MT

max
|M|≤m∗

(
X∗⊤
j Q(M)E

)2
, (B.8)

where m∗ = Knξ0+4ξmin . It is noteworthy that X∗⊤
j Q(M)E is a normal random

variable with mean 0 and variance ∥Q(M)X∗
j∥2 ≤ ∥X∗

j∥2. Accordingly, the right

side of (B.8) is bounded by τ−1
minn

−1 max
j∈MT

∥X∗
j∥2 · max

j∈MT

max
|M|≤m∗

χ2
1, which can be

shown to be less than 3Kνnξ+ξ0+4ξmin with probability tending to one. This, in

conjunction with (B.3) and (B.7), yields

n−1Ω(k) ≥ 3−1τ−1
maxτ

2
minC

−2
β ν4βν

−1n−ξ0−4ξmin

×
{
1− 9Kν2τmaxτ

−2
minC

2
βν

−4
β nξ+2ξ0+8ξmin−1

}
{1 + op(1)} (B.9)

uniformly for every k ≤ Knξ0+4ξmin . Under (C4), we have

n−1∥Ŷ∥2 ≥ n−1

[Knξ0+4ξmin ]∑
k=1

Ω(k) → 2. (B.10)

Without loss of generality, we further assume that var(Y ∗
i ) = 1. Then, according

to Theorem 1, we have n−1∥Ŷ∥2 →p 1. This contradicts the result of (B.10),
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which implies that it is impossible to have M(k)
∩

MT = ∅ for every 1 ≤ k ≤
Knξ0+4ξmin . Consequently, with probability tending to one, all relevant variables

are identified within a total of Knξ0+4ξmin steps. This completes the proof.
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