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Abstract: Regularization plays a major role in modern data analysis, whenever

non-regularized fitting is likely to lead to over-fitted model. It is known that most

regularized optimization problems have Bayesian interpretation in which the prior

plays the role of the regularizer. In this paper, we consider the issue of sensitivity of

the regularized solution to the prior specification within the Bayesian perspective.

We suggest a class of flat-tailed priors for a general likelihood function for robust

Bayesian solutions, in the same spirit as the t-distribution being suggested as a

flat-tail prior for normal likelihood. Results are applied to a family of regularized

learning methods and group LASSO. In addition, the consistency issue for LASSO

is discussed within this framework.
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1. Introduction

Regularized optimization, which plays an important role in both statistical

and machine learning problems, can often be described as:

β̂(λ) = arg min
β

L(Y,Xβ) + λJ(β), (1.1)

where L(Y,Xβ) is a non-negative loss (cost) function, convex in β, J(β) is a

non-negative convex penalty, and λ is the non-negative tuning parameter. Many

popular methods such as ridge regression (Hoerl and Kennard (1970)), LASSO

(Tibshirani (1996)), SVM (Vapnik (1998)), SCAD (Fan and Li (2001)), Group

LASSO (Yuan and Lin, (2004)) and Elastic Net (Zou and Hastie (2005)) fall into

this category. It is known that most of these problems have Bayesian interpre-

tation, such that the loss function is interpreted as the negative log-likelihood,

the penalty term as the negative log-prior density and the regularized solution

corresponds to the global maxima of the posterior distribution. In regularized op-

timization, the optimal choice of the tuning parameter is usually based on some

cross-validation. This setup corresponds to Empirical Bayes technique with a

hierarchical prior specification, i.e., given the hyperparameter, the prior belongs
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to some robust family of distributions, and the data provide guidance in choosing

the hyperparameter.

Generally, robust Bayesian analysis focuses on the sensitivity of Bayesian

answers to the inputs in the analysis: the model, the prior distribution, the loss

function, or any combinations thereof. Since a Bayesian decision maker incorpo-

rates the prior information in the study, which is often viewed as subjective, the

sensitivity analysis of priors becomes the most important issue in robust Bayesian

analysis.

There are three main approaches in sensitivity analysis of priors. First, and

most common in practice, is informal sensitivity analysis, in which the analysis is

repeated simply on different prior distributions and the resulting inferences com-

pared. Second, global sensitivity analysis, which concerns the range of Bayesian

answers as the prior varies over a certain class, see e.g., Moreno (2000). The

third approach is local sensitivity analysis, which concerns the rate of change

in inference as the input varies, see e.g., Gustafson, Srinivasan and Wasserman

(1996), Gustafson (2000) and Sivaganesan (2000). The key requirement in both

global and local approaches is to choose an appropriate class of prior distribu-

tions. Berger (1994) mentions four criteria in choosing a class of priors: (1) easy

to elicit and interpret; (2) easy to handle computationally; (3) large enough to

reflect prior uncertainty; (4) extendable to higher dimensions.

In high-dimensional problems (dimensionality corresponds to the number of

parameters, p, in the model), it may not be feasible to elicit a subjective prior

distribution, unless a low-dimensional structure is assumed. One way to bypass

this problem is to use some inherently robust prior in the analysis, to make it

easier to build in the robustness at the beginning (before observing the data)

than to check the sensitivity of the inference after observing the data. Many

studies (Box and Tiao (1973), Berger (1985), O’Hagan (1988), Fan and Berger

(1992)) have shown that use of flat-tailed priors tends to be robust and they

suggest using t-distribution for the normal likelihood. However, there seems to

be no general result about the flat-tailed property in Bayesian literature. In this

paper, we investigate a class of flat-tailed priors for a general likelihood function

in the same spirit as the ‘ t-distribution suggested as a flat-tail prior for normal

likelihood,’ for robust Bayesian solution using squared error loss.

In this paper, Bayesian inference is based on the posterior mode, similar to

that in the regularized optimization setup. Furthermore, we focus on the case

where p is finite and does not depend on the sample size n. The remaining

part of this paper is organized as follows. In Section 2, we suggest a criterion

characterizing the tail behavior of a distributions and formalize the robustness

property in terms of the relative tail behaviors of the likelihood and the priors.



REGULARIZED OPTIMIZATION IN STATISTICAL LEARNING 413

In Section 3, we study the robustness properties for bridge regression, a special

family of penalized regression of a penalty function,
∑ |βj |γ with γ ≥ 1. The

robustness property for the group LASSO solution is discussed in Section 4,

followed by a discussion of the consistency issue for the LASSO solution in Section

5. Discussion and future work are presented in Section 6. The proof of Theorem

1 is postponed to Section 7.

2. Sensitivity Analysis of Flat-tailed Priors

First, a criterion that characterizes the tail behavior of a distribution is

suggested. Second, two notions of Bayesian robustness are proposed. Then, the

main result of Bayesian robustness is shown.

2.1. Characterizing distribution’s tail behavior

A natural way to describe the tail behavior of a distribution π(θ) is

π(θ + ∆) − π(θ)

∆
, (2.1)

where θ, θ + ∆ ∈ Θ. The main drawback of (2.1) is that, when θ is in the tail

region, (2.1) tends to be close to zero. A more meaningful criterion is to use the

relative change

1

π(θ)
× π(θ + ∆) − π(θ)

∆
. (2.2)

If the multivariate density π(θ) is differentiable with respect to θ, (2.2) suggests

an alternative way measure the tail behavior of a distribution by

τ [π(θ)] =
∥

∥

∥

∂ log π(θ)

∂θ

∥

∥

∥

2
. (2.3)

Plausibly, the quantity in (2.3) should be small for a flat-tailed prior. Table 1

provides τ [π(θ)] for four well-known multivariate distributions.

Table 1. τ [π(θ)] for four well-known distributions.

Distribution π(θ) ∝ τ [π(θ)]

Gaussian exp[−∑p

j=1

θ2
j

2σ2 ] ||θ||2
σ2

Laplacian exp[−
∑p

j=1
|θj |
a

]
√

p

a
, θj 6= 0, j = 1, . . . , p

t-distribution
∏p

j=1[1 +
θ2

j

νj
]−

νj+1

2

{

∑p

j=1

(νj+1)2θ2
j

(νj+θ2
j
)2

}

1
2

Exponential power exp[− 1
2

∑p

j=1 |
θj

σ
|γ ] γ

2σγ

{

∑p

j=1 |θj |2(γ−1)
}

1
2
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From Table 1, we can see that when ||θ||2 is large, the tail behaviors of

these distributions in terms of τ [π(θ)] are substantially different. For the normal

distribution, τ [π(θ)] increases as the θ goes away from the center. For the Lapla-

cian distribution, τ [π(θ)] is a constant with respect to θ. For the t-distribution,

τ [π(θ)] is bounded above by a constant, and will go to zero if all θj’s go away

from the origin simultaneously. The exponential power family, which includes the

Gaussian and Laplacian distributions as two special cases, shows the different tail

behaviors in terms of τ [π(θ)] for different γ.

2.2. Two notions of Bayesian robustness

Let Y = (y1, . . . , yn) be the observed data and l(θ|Y ) the log-likelihood

function. Write θ̂ for the maximum likelihood estimate (MLE), θ∗ for the mode

of the prior distribution π(θ), θ̃ for the posterior mode, and let ||θ̂ − θ∗||2 = C.

Note that, whenever the prior and/or the posterior distributions are multimodal,

θ∗ and θ̃ denote the global maxima of the prior and the posterior respectively.

In this paper the Bayesian inference is based on θ̃, and its robustness prop-

erty is examined with respect to the effect of the nominal prior. For any prior

distribution, when C is small, θ̃ is a compromise between θ̂ and θ∗, and data

adaptiveness is not a critical issue. However, when C is large, the nominal prior

is not compatible with the observed data, and we wish the posterior mode to be

data-adaptive for moderate or large sample size, mainly because the data gener-

ating mechanism, or the likelihood, is assumed to be correct. This data-adaptive

property can be measured by the distance between θ̃ and θ̂, e.g., ||θ̂− θ̃||2, as well

as by the relative distance between θ̃ and θ̂, compared to the distance between θ̃

and θ∗, i.e., the ratio

r(θ̃, θ∗, θ̂) =
||θ̂ − θ̃||2
||θ∗ − θ̃||2

. (2.4)

Based on these two measures for data-adaptiveness, we define the notions of weak

and strong Bayesian robustness as follows.

Definitions: Weak and Strong Bayesian Robustness

Weak Bayesian Robustness: the relative distance r(θ̃, θ∗, θ̂) → 0 as C → ∞.

Strong Bayesian Robustness: the distance between θ̃ and θ̂, ||θ̂−θ̃||2, remains

bounded, no matter how large C is.

By the triangle inequality for the L2 norm, it is easy to see that strong

Bayesian robustness implies weak Bayesian robustness, while the reverse is not

true. For weak Bayesian robustness, ||θ̂ − θ̃||2 can still go to infinity as C →
∞, even though the relative distance r(θ̃, θ∗, θ̂) goes to zero. Therefore, strong
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Bayesian robustness is preferable vis-à-vis its stronger data-adaptive property,
but it requires more ‘flat-tailedness’ in the prior.

2.3. Bayesian robustness

Our main results of Bayesian robustness are given in Theorem 1, under the
following assumptions.

Assumption 1. The support of l(θ|Y ) and π(θ) is Rp and both of them are
everywhere differentiable with respect to θ. The MLE θ̂ is unique and is an
interior point of Rp.

Assumption 2A. There exists a P > 0, such that for some positive constants
A2,

∥

∥

∥

∂l(θ|Y )

∂θ

∥

∥

∥

2
≤ A2||θ − θ̂||P2 ∀ θ ∈ Rp. (2.5)

Assumption 2B. There exists a P > 0, such that for some positive constants
A1,

A1‖θ − θ̂‖P
2 ≤

∥

∥

∥

∂l(θ|Y )

∂θ

∥

∥

∥

2
∀ θ ∈ Rp. (2.6)

Given that for some P > 0, the log-likelihood function l(θ|Y ) has tail behav-
ior according to Assumption 2, we define three classes of priors characterized by
different tail behaviors relative to the log-likelihood tails. Generally, the priors
in the first class have the ‘least flat’ tails, while priors in the third class have the
‘most flat’ tails.

Definitions: Prior tail-behavior relative to the likelihood tail

The prior distribution π(θ), with τ [π(θ)] defined in (2.3), is said to belong
to Class 1, 2 and 3, respectively, according to the following criteria.

Class 1. There exists a Q ≥ P , such that for some constant B1,

B1 ||θ − θ∗||Q2 ≤ τ [π(θ)], ∀ θ ∈ Rp. (2.7)

Class 2. There exists a Q, 0 < Q < P , such that for some constant B2,

τ [π(θ)] ≤ B2 ||θ − θ∗||Q2 , ∀ θ ∈ Rp, (2.8)

τ [π(θ)] → ∞ as ||θ − θ∗||2 → ∞. (2.9)

Class 3. τ [π(θ)] is bounded above by a constant:

τ [π(θ)] ≤ B3 ∀ θ ∈ Rp. (2.10)

Theorem 1. Under Assumption 1 and the weak and strong Bayesian robustness

defined earlier, the inference based on the prior π(θ) has the following proper-

ties.
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1. If l(θ|Y ) satisfies Assumption 2A and π(θ) is in Class 1, the weak Bayesian

robustness property does not hold.

2. If l(θ|Y ) satisfies Assumption 2B and π(θ) is in Class 2, the weak Bayesian

robustness property holds, but the strong property does not hold.

3. If l(θ|Y ) satisfies Assumption 2B and π(θ) is in Class 3, the strong Bayesian

robustness property holds.

Robustness properties in Theorem 1 hold for all sample sizes n and dimen-

sions p. In fact, using a flat-tailed prior is motivated by choosing some inherently

robust prior class in advance, so a robustness property that does not depend on

n or p is preferred. However, in Section 5, the effect of sample size n on the

upper bound for ||θ̃ − θ̂||2 is utilized to discuss the consistency properties of the

LASSO solution.

In this paper, the definitions of weak/strong Bayesian robustness and As-

sumption 2 are based on the L2 norm. However, the only property of the L2

norm used in the proof of Theorem 1 is the triangle inequality. Therefore, the

results of Theorem 1 can be generalized to other proper norms.

The motivation for the regularized optimization in high-dimensional prob-

lems is to avoid overfitting to noisy data by restricting the solution to a subset

of the original space. Different penalty function J(β) in (1.1) corresponds to

different subsets, and choosing the tuning parameter λ corresponds to selecting

the regularized solution in that subset. From the Bayesian perspective, choosing

the subset as our solution space is simply selecting the class of prior distribu-

tions. The more prior information (constraints) we have, the smaller the subset

we focus on in which to find our solution. Intuitively, a prior with strong/weak

Bayesian robustness property can be described as follows: no matter what the

unregularized solution, the regularized solution in that subspace will not be too far

away from it in a specified sense.

Consider the linear regression model with p explanatory variables:

Y = Xβ + ε, ε ∼ N(0, I), (2.11)

where X is a n × p matrix with full column rank. Let ν1 and ν2 be the smallest

and largest eigenvalues of XT X, β̂o be the ordinary least square (OLS) solution.

Then we have

ν1‖β − β̂o‖2 ≤
∥

∥

∥

∂l(β|Y )

∂β

∥

∥

∥

2
≤ ν2‖β − β̂o‖2, (2.12)

which indicates that for the normal likelihood case, both Assumption 2A and

2B hold with P equal to 1. Suppose the prior distribution for β is multivariate

independent t. From Table 1, we see that the Student t-prior belongs to Class 3
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and Assumption 1 is trivial to check. Thus, by Theorem 1, we have the following

result.

Corollary 1. For the linear regression model in (2.11), suppose X has full column

rank. The inference based on the multivariate independent t-prior distribution has

the strong Bayesian robustness property.

Sometimes, in order to achieve a sparse solution, the penalty term, J(β), is

not differentiable at the origin and Assumption 1 is not satisfied. However, in

some cases, we can still investigate the robustness properties of the estimates,

via arguments similar to those used in proving Theorem 1.

3. Bridge Regression Family

Frank and Friedman (1993) introduced bridge regression and it was further

discussed by Fu (1998). Bridge regression is a family of penalized regressions,

which minimize squared error loss subject to the constraint
∑ |βj |γ ≤ t with γ ≥

0, i.e.,

β̂bridge = arg min
β

n
∑

i=1

(yi − xT
i β)2 + λ

p
∑

j=1

|βj |γ . (3.1)

Here, we consider the bridge regression with γ ≥ 1 (when γ < 1, the penalty

function is not convex) and X of full column rank. Note that, when γ = 1,

bridge regression is same as the LASSO, and when γ = 2, bridge regression

becomes ridge regression.

From the Bayesian perspective, the bridge regression solution can be viewed

as the mode of the posterior density

π(β|Y ) ∝ exp
{

− 1

2

[

(Y − Xβ)T (Y − Xβ) + λ

p
∑

j=1

|βj |γ
]}

, (3.2)

with the prior in the exponential power family. From Table 1, we know that

τ [π(β)] ∝
[

∑

j

β
2(γ−1)
j

]
1

2

. (3.3)

In addition, it is easy to check that when γ > 1, the log-prior density is differen-

tiable with respect to β. By the Hölder inequality, we have

[

∑

j

β
2(γ−1)
j

]
1

2 ≥ D1 (||β||2)γ−1 given γ ≥ 2, (3.4)

[

∑

j

β
2(γ−1)
j

]
1

2 ≤ D2 (||β||2)γ−1 given 1 < γ < 2, (3.5)
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where D1 and D2 are two positive constants. Now, (3.4) and (3.5) imply that

the bridge regression prior with γ ≥ 2 and 1 < γ < 2 belong to Class 1 and

2, respectively. Therefore, by Theorem 1, we know that the bridge solution

with γ ≥ 2 does not have the weak Bayesian robustness property, whereas for

1 < γ < 2 it has the weak, but not the strong, Bayesian robustness property.

When γ = 1, the bridge regression prior is the Laplacian distribution, which

is not differentiable at βj = 0, j = 1, . . . , p. Thus, Theorem 1 cannot be applied

in the LASSO case. However, l(β|Y ) is differentiable everywhere and the LASSO

solution satisfies
∣

∣

∣

∣

∂l(θ|Y )

∂βj
|β̂lasso

∣

∣

∣

∣

≤ λ

2
, ∀ j = 1, . . . , p. (3.6)

Then, by (2.12), we have

‖β̂lasso − β̂o‖2 ≤
λ
√

p

2ν1
. (3.7)

Thus, the LASSO solution has strong Bayesian robustness property. The above

discussion leads to the following result.

Theorem 2. Suppose the matrix X has full column rank. The bridge regression

satisfies the following.

1. If γ ≥ 2, the weak Bayesian robustness property does not hold.

2. If 1 < γ < 2, the weak Bayesian robustness property holds, but the strong

property does not hold.

3. If γ = 1, the strong Bayesian robustness property holds.

Pericchi and Smith (1992) obtained the exact solution of posterior mean

under a Gaussian likelihood and Laplacian prior in one dimension. Interestingly,

they found that the absolute distance between posterior mean and data-based

weighted average is bounded by a constant. Therefore, the posterior mean has a

property similar to strong Bayesian robustness in this particular situation.

4. Group LASSO

Consider the regression model with J factors:

Y =

J
∑

j=1

Xjβj + ε, (4.1)

where Y is a length n vector, ε ∼ N(0, σ2I), Xj is a n× pj matrix corresponding

to the jth factor, and βj is a coefficient vector of size pj, j = 1, . . . , J . Given
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positive definite matrices K1, . . . ,KJ , the group LASSO estimate is defined as

the solution to

(Y −
J

∑

j=1

Xjβj)
T (Y −

J
∑

j=1

Xjβj) + λ
J

∑

j=1

(βT
j Kjβj)

1

2 , (4.2)

where λ ≥ 0 is a tuning parameter.

Define Zj = XjK
−1/2
j and ηj = K

1/2
j βj for j = 1, . . . , J . Define Z =

(Z1, . . . , ZJ) and ηT = (ηT
1 , . . . , ηT

J ). Then, (4.2) can be represented as

(Y − Zη)T (Y − Zη) + λ

J
∑

j=1

(ηT
j ηj)

1

2 . (4.3)

Like LASSO, the posterior distribution corresponding to the group LASSO is

not differentiable everywhere. However, it can be shown that the group LASSO

solution β̂glasso satisfies
∣

∣

∣

∣

∂l(η|Y )

∂ηij
|β̂glasso

∣

∣

∣

∣

≤ λ

2
, i = 1, . . . , pj , j = 1, . . . , J, (4.4)

where ηij is the ith element of ηj and l(η|Y ) is the Gaussian log-likelihood. Then,

(4.4) implies that the group LASSO estimate has the strong Bayesian robustness

property.

5. Revisit LASSO

Consider the linear regression model

yi = xiβ + εi, εi
i.i.d.∼ N(0, σ2), i = 1, . . . , n. (5.1)

The following theorem gives us a probabilistic bound for the L2 distance between

the LASSO estimate and the true value β.

Theorem 3. Suppose that (1/n)XT X is non-singular with smallest eigenvalue

ν. Then

P
(

||β̂lasso − β||2 ≤ λ
√

p

2nν
+ ε

)

≥ P
(

χ2
p ≤ nε2ν

σ2

)

, (5.2)

for any ε > 0.

Proof. Given XT X is non-singular, it is well known that the OLS estimate, β̂o

satisfies

(β̂o − β)T (XT X)(β̂o − β) ∼ σ2χ2
p. (5.3)
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By (3.7) and the triangle inequality

||β̂lasso − β||2 ≤ ||β̂lasso − β̂o||2 + ||β̂o − β||2, (5.4)

P
(

||β̂lasso − β||2 ≤ λ
√

p

2nν
+ ε

)

≥ P
(

(β̂o − β)T (β̂o − β) ≤ ε2
)

. (5.5)

Since

(β̂o − β)T (XT X)(β̂o − β) ≥ nν(β̂o − β)T (β̂o − β), (5.6)

P
(

(β̂o − β)T (β̂o − β) ≤ ε2
)

≥ P
(

(β̂o − β)T (XT X)(β̂o − β) ≤ nε2ν
)

. (5.7)

The result follows from (5.3), (5.5) and (5.7).

Corollary 2. Suppose that (1/n)XT X → Σ, as n → ∞, where Σ is a positive

definite matrix with the smallest eigenvalue ν. Then for any ε > 0,

P
(

||β̂lasso − β||2 ≤ ε
)

→ 1 as n → ∞. (5.8)

Proof. The convergence of (1/n)XT X implies the convergence of the eigenvalues

and the result follows from Theorem 3.

Although the LASSO solution is a consistent estimate in terms of L2 distance,

it doesn’t mean that it is consistent in terms of variable selection. In fact, Leng,

Lin and Wahba (2004) pointed out the inconsistency of LASSO if tuned by

predictive criteria, such as cross-validation. This is akin to AIC’s properties

in linear regression, namely, AIC is optimal in prediction and over-consistent in

variable selection. A heuristic explaination of this coincidence is the asymptotic

equivalence between cross-validation and AIC established by Stone (1977).

Knight and Fu (2000) proposed a way to achieve consistency in terms of

variable selection by thresholding the LASSO solution by a quantity of order nα

with −1/2 < α < 0. In fact, this can be shown as a consequence of Theorem 3.

Let

β̄ε
j =

{

0, if |β̂lasso
j | < ε,

β̂lasso
j , if |β̂lasso

j | ≥ ε,

and T ε = {j | β̄ε
j 6= 0}.

Corollary 3. Let the conditions in Corollary 2 hold, and suppose ε ∼ O(nα),

where −1/2 < α < 0. Then P (T ε = {j | βj 6= 0}) → 1 as n → ∞.

Proof. It is sufficient to show that, as n → ∞, P (j ∈ T ε | βj 6= 0) → 1 and

P (j 6∈ T ε | βj = 0) → 1. Then must have λ
√

p/(2nν) + ε → 0 and nε2ν/σ2 → ∞
as n → ∞, but this implies −1/2 < α < 0.
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Corollary 3 suggests that thresholding LASSO estimators achieves consis-

tency in variable selection. A detailed discussion of the asymptotic properties of

estimators based on thresholding method can be found at Donoho et al. (1996).

6. Discussion and Future Work

The suggestion of using a Student t-distribution to provide a robust analysis

for a Gaussian location parameter has a long history. Pericchi and Smith (1992)

obtained the approximate posterior mean for the Gaussian likelihood and t-prior

distribution in one dimension. Their results imply that the posterior mean cor-

responding to the t-prior behaves like a “trimmed” mean. In this paper, we show

the robustness property of the inference from the Gaussian likelihood and t-prior.

Unlike the posterior mode and MLE for the 0− 1 loss function, in general we do

not have a natural data-based counterpart for the posterior mean in the case of

the squared error loss.

Although Theorem 1 is useful for a large class of priors, (2.5) and (2.6) in

Assumption 2A and 2B are difficult to check, except for the normal likelihood

case. In our future work, we will explore the connection between the flatness of

a prior and robustness for other likelihood functions. We are also investigating

the robustness property of other regularizers such as the Elastic Net.

7. Proof of Theorem 1

Proof. By Assumption 1, we know that a necessary condition for θ̃ to be a

global maxima is that it be a stationary point where the derivative of log π(θ|Y )

vanishes. Hence, it is sufficient to show that Theorem 1 holds for all the stationary

points. Here, we abuse the notation and write θ̃ as any stationary point of

log π(θ|Y ). By definition, for any stationary point θ̃, we have

∂l(θ|Y )

∂θ
|θ̃ = −∂ log π(θ)

∂θ
|θ̃ ⇒

∥

∥

∥

∂l(θ|Y )

∂θ
|θ̃

∥

∥

∥

2
= τ [π(θ̃)]. (7.1)

First, we consider the priors from Class 1. For any stationary point θ̃, by

(2.5), (2.7) and (7.1), we have

B1||θ̃ − θ∗||Q2 ≤ A2||θ̃ − θ̂||P2 , Q ≥ P > 0, (7.2)

⇒ ||θ̃ − θ∗||2 ≤
(

A2

B1

)
1

Q

||θ̃ − θ̂||
P
Q

2 . (7.3)

By the triangle inequality, we have ||θ̂ − θ̃||2 + ||θ̃ − θ∗||2 ≥ ||θ̂ − θ∗||2 = C. Now

(7.3) implies that

||θ̃ − θ̂||2 +

(

A2

B1

)
1

Q

||θ̃ − θ̂||
P
Q

2 ≥ C. (7.4)
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Since the left hand side of (7.4) is a strictly increasing function of ||θ̃ − θ̂||2, it

follows that, as C → ∞, ||θ̃ − θ̂||2 → ∞. On the other hand, (7.2) implies

(

B1

A2

)
1

Q

||θ̃ − θ̂||
Q−P

Q

2 ≤ r(θ̃, θ∗, θ̂), (7.5)

where the left hand side term does not go to zero as C → ∞.

We now consider the priors from Class 2. For any stationary point θ̃, by

(2.6), (2.8) and (7.1), we have

A1||θ̃ − θ̂||P2 ≤ B2||θ̃ − θ∗||Q2 , 0 < Q < P, (7.6)

⇒ ||θ̃ − θ̂||2 ≤
(

B2

A1

)
1

P

||θ̃ − θ∗||
Q

P

2 . (7.7)

By the triangle inequality, we have

(

B2

A1

)
1

P

||θ̃ − θ∗||
Q
P

2 + ||θ̃ − θ∗||2 ≥ ||θ̂ − θ∗||2 = C. (7.8)

Since the left hand side of (7.8) is a strictly increasing function of ||θ̃ − θ∗||2, it

follows that, as C → ∞, ||θ̃ − θ∗||2 → ∞. By (2.9) and (7.1), we have

∥

∥

∥

∂l(θ|Y )

∂θ
|θ̃

∥

∥

∥

2
= τ [π(θ̃)] → ∞ as C → ∞, (7.9)

which implies that ||θ̃ − θ̂||2 → ∞ as C → ∞. Thus the strong Bayesian robust-

ness property does not hold. On the other hand, (7.6) implies that

r(θ̃, θ∗, θ̂) ≤
(

B2

A1

)
1

P

||θ̃ − θ̂||
Q−P

P

2 , (7.10)

where the right hand side term of (7.10) goes to zero as C → ∞. Therefore, we

have the weak Bayesian robustness property.

We now consider the priors from Class 3. By (2.6), (2.10) and (7.1), we have

A1||θ̃ − θ̂||P2 ≤ B2 ⇒ ||θ̃ − θ̂||2 ≤
(

B2

A1

)
1

P

. (7.11)

Therefore, we have the strong Bayesian robustness property.
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