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Abstract: Suppose F is a class of bounded or unbounded functions. We construct

a Bayesian bootstrapped U-process over F and study the limiting behavior of the

process. We obtain conditional central limit theorems for Bayesian bootstrapped

U-processes and Dirichlet U-processes over F , and discuss Bayesian bootstrap ap-

proximations for U-processes. Some problems concerning hypothesis testing in

high-dimensional spaces are solved by combining the results in this paper with the

Projection Pursuit method.
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1. Introduction

In recent years, theories of U-statistics and U-processes have generated an
extensive literature. Much of this literature is surveyed by Serfling (1980) and Lee
(1990). U-processes are useful for solving complex statistical problems. Examples
are density estimation, non-parameter regression tests and goodness-of-fit tests.
Recent studies by Nolan and Pollard (1987, 1988), Arcones and Giné (1992, 1993,
1995), Arcones and Yu (1994) on U-processes have led to further developments.
In particular, Nolan and Pollard (1988) provide a central limit theorem for U-
processes of order m = 2; Acrones and Giné (1993) extend the results of Nolan
and Pollard (1987, 1988) to U-Processes of arbitrary degrees. However, it is
difficult to apply these results in practice because the distributions and limiting
distributions of U-processes depend on the unknown underlying distributions.
To solve this problem, some authors study the bootstrap for U-statistics and
U-processes: Acrones and Giné (1992) study the bootstrap of U and V statistics;
Acrones and Giné (1994) present an Efron-type of bootstrap for U-processes,
and prove an (almost sure) consistency result; Huskova and Janssen (1993a,
b) prove the consistency of the Bayesian bootstrap for U-statistics. The main
objective of this paper is to develop approximations for the distributions and
limiting distributions of U-processes using the Bayesian bootstrap method due
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to Rubin (1981) and Lo (1987). This method has been validated with first- and
second-order limit theorems for a variety of statistics. See, for example, Lo (1987,
1993), Wang (1989), Mason and Newton (1992), Huskova and Janssen (1993a, b),
Praestgaard and Wellner (1993), Aerts and Janssen (1995), Shao and Tu (1995),
Barbe and Bertail (1995), James (1997) and Zhang(1997).

In Bayesian analysis, Dirichlet processes are used in a wide range of situ-
ations due to the computational convenience that results from conjugate prior
properties of the process. Ferguson (1973) constructs a prior distribution, using
Dirichlet processes, to study Bayesian nonparametric problems. Lo (1987) com-
bines Dirichlet processes with the Bayesian bootstrap, and gives approximations
for the empirical processes indexed by a class of indicator functions in R1. In
subsequent sections, we demonstrate that Lo’s (1987) results hold also for U-
processes indexed by a class of unbounded functions in Rd, d ≥ 1. Furthermore,
it is shown that a framework useful for testing multivariate hypotheses can be
constructed by combining the Bayesian bootstrap and Projection Pursuit (PP)
methods.

The analysis conducted here relies on some important results of Pollard
(1984) for empirical processes, and the approach we adopt is parallel to Pollard
(1984, Chs. II and VII). There are, however, significant differences between the
two approaches. Empirical processes are constructed from sums of independent
random variables, whereas our Dirichlet U-processes cannot be written in such
form. In the paper, we construct a Bayesian bootstrapped U-process. We show
that Bayesian bootstrapped U-processes and Dirichlet U-processes conditionally
converge in distribution to a common P-bridge process almost surely, i.e., for
the same index set, Bayesian bootstrapped U-processes, Dirichlet U-processes
and U-processes have the same limiting distribution almost surely. This implies
that Bayesian bootstrapped U-processes and Dirichlet U-processes can be used
to simulate the distributions and limiting distributions of U-processes.

The rest of this paper is organized as follows. Section 2 introduces Dirichlet
U-Processes and Bayesian bootstrapped U-processes, and gives the main results
for Bayesian bootstrap approximations of U-Processes. In Section 3, we discuss
problems of hypothesis testing in high dimensional spaces by combining the re-
sults in this paper with Projection Pursuit (PP) methods. Section 4 contains
some useful lemmas and proofs of the main results.

2. Bayesian Bootstrap Approximation of U-processes and Dirichlet
U-processes

Assume that {Xi} are i.i.d. Rd-valued random vectors, d ≥ 1, with a com-
mon unknown probability measure P0. Let {Zi} be independent standard ex-
ponential random variables with mean 1. Furthermore, suppose {Xi} and {Zi}
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are mutually independent random sequences on a probability space (Ω,T ,P).
Let f(x1, . . . , xm) be a function from Rmd to R,xi ∈ Rd, 1 ≤ i ≤ m. Let
1 ≤ i ≤ m ≤ n and

P =
m∏

k=1

P0, Pf =
∫

f(X1, . . . ,Xm) dP, Vi = Zi/
n∑

j=1

Zj . (2.1)

Obviously, (V1, . . . , Vn−1) follows the Dirichlet distribution D(1, . . . , 1). Suppose
F is a class of symmetric functions from Rmd to R. The U-statistic based on the
sample X1, . . . ,Xn and a symmetric kernel f is defined as

Unf = (n − m)!/n!
∑

(i1,...,im)∈In
m

f(Xi1 , . . . ,Xim), (2.2)

where In
m = {(i1, . . . , im) : 1 ≤ ik ≤ n, il �= ik if 1 ≤ l �= k,≤ m}. See Serfling

(1980) or Lee (1990) for details. The process {√n(Unf − Pf) : f ∈ F} is called
a U-process over F (cf. Nolan and Pollard (1987)). Let Pn be the empirical
probability measure with respect to the sample X1, . . . ,Xn,

Un,zf = (n − m)!/n!
∑
In
m

( m∏
k=1

Zik

)
f(Xi1 , . . . ,Xim),

(2.3)
Dn,zf =

√
n(Un,zf − Unf).

Definition 2.1. {Dn,z(f − Pnf) : f ∈ F} is called a Bayesian bootstrapped
U-process over F .

Define the Dirichlet U-statistic as

Un,vf =
∑

(i1,...,im)∈In
m

(
m∏

k=1

Vik)f(Xi1 , . . . ,Xim), (2.4)

and call {Dn,vf : f ∈ F} a Dirichlet U-process over F , where Dn,v =
√

n(Un,v −
Un).

Condition 1. F is permissible (see Pollard (1984, p.196)), and there exists a
positive function F with PF 2 < ∞, such that |f | ≤ F for any f ∈ F .
Condition 2. The class of graphs of functions in F has polynomial discrimina-
tion (see Pollard (1984, pp.17-27)).

Let “ d−→” denote convergence in distribution and Vnf =
√

n(Unf −Pf), f ∈
F . Acrones and Giné (1993) show that the result of Nolan and Pollard (1988)
still holds for m ≥ 3. Especially, Theorem 4.9 (Acrones and Giné (1993)) implies
that if F satisfies Conditions 1 and 2, then
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(1) Vn
d−→BP , where BP is a P-bridge process over F defined in Theorem 2.1

below (cf. Theorem 3.1 of Arcones and Yu (1994)).
Making use of (1) and Pollard (1984, Theorem 12, p.70), we have

(2) supF
√

n|Unf − Pf | d−→ supf∈F |BP f |.
Note that the probability measure P is unknown, so both sides of (1) and (2) are
actually unknown. These results are hard to use in practice. In Theorem 2.1 , we
prove that conditional distributions of Bayesian bootstrapped U-processes over
F converge almost surely to that of a P-bridge process BP over F . Corollary
1 below shows that Dirichlet U-processes over F also conditionally converge in
distribution to a P-bridge process BP over F almost surely. We can therefore
use Bayesian bootstrapped U-processes or Dirichlet U-processes to simulate the
distributions and limiting distributions of U-processes.

Let Q be any probability measure, and let

X = (X1,X2, . . .), f(1)(x) = E(f(X1, . . . ,Xm) |X1 = x),
(2.5)

Qf =
∫

fdQ and dp(f, g,Q) = (Q(|f − g|p))1/p, p = 1, 2.

Suppose X is the class of all bounded, real functions on F . Equip X with the
metric generated by the uniform norm ‖ · ‖, ‖x‖ = supF |x(f)| for x ∈ X . Let
C(F , P ) be the set of all functionals x(·) in X that are uniformly continuous
with respect to the the seminorm d2(·, ·, P ) on F . That is , to each ε > 0 and
each x ∈ X there is a δ > 0 for which |x(f) − x(g)| < ε whenever d2(f, g, P ) =
(P (f −g)2)1/2 < δ. Given a sample sequence X = (X1,X2, . . .), let “ d∗−→” denote
convergence in P(· |X)-distribution.

Theorem 2.1. Assume that the stochastic process Dn,z is indexed by F and that
F satisfies Conditions 1 and 2. For almost all samples X , if X is fixed, then
(i) {Dn,z(f − Pnf) : f ∈ F} d∗−→{BP f : f ∈ F},
(ii) supf∈F |Dn,z(f − Pnf)| d∗−→ supf∈F |BP f |,
where BP is a P-bridge process over F . Here BP is a tight Gaussian ran-
dom element of X with sample paths in C(F , P ), zero mean and covariance
Cov (BP f,BP h) = m2 Cov (f(1)(X1), h(1)(X1)) for all f, h ∈ F (cf. Pollard
(1984, pp. 149-157)).

Corollary 1. Under the conditions of Theorem 2.1, for almost all samples X, if
X is fixed, then
(i) Dn,v

d∗−→BP and (ii) supf∈F |Dn,vf | d∗−→ supf∈F |BP f |,
where BP is as defined in Theorem 2.1.

Corollary 2. If the conditions of Theorem 2.1 are satisfied, then
(i) Dn,v

d−→BP and (ii) supf∈F |Dn,vf | d−→ supf∈F |BP f |,
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where BP is as defined in Theorem 2.1.

Remark 1. Since empirical processes are special cases of U-processes, Corollary
2 implies Zhang’s (1997) Theorem 3.3. Furthermore, we can obtain the Bayesian
bootstrap approximation of empirical processes over F from Theorem 2.1 or
Corollary 1.

3. Hypothesis Testing in High-Dimensional Spaces

The objective of the PP technique is to project high dimensional data into
low dimensional subspaces. Thus, the problem of “curse of dimensionality” (Hu-
ber (1985)) is avoided. In this section, we discuss hypothesis testing in Rd by
combining Corollary 1 with the PP method. Obviously, the problem can be
treated similarly by Theorem 2.1 and the PP method.

3.1 Test of multivariate distribution

Consider the testing problem

H0 : F (x) = F0(x) vs Ha : F (x) �= F0(x), (3.1.1)

where F0(x) is a known distribution function, x ∈ Rd, d ≥ 1. Assume that
X1, . . . ,Xn are i.i.d. Rd-valued random vectors and X1 ∼ P . The indicator
function of set A is IA and ‖ · ‖ is the Euclidean norm. Let a, x ∈ Rd with
‖a‖ = 1 and t ∈ R. Denote the distribution functions of X1 and aτX1 as F (x)
and F a(t) respectively. Let

Fn(x) = 1/n
n∑

i=1

I(−∞,x)(Xi), F a
n (t) = 1/n

n∑
i=1

I(−∞,t)(a
τXi),

Fn,v(x) =
n∑

i=1

ViI(−∞,x)(Xi) and F a
n,v(t) =

n∑
i=1

ViI(−∞,t)(a
τXi).

We consider Bayesian bootstrap approximations of the Cramér-Von Mises statis-
tic and PP Cramér-Von Mises statistic. The approximations enable us to con-
duct goodness-of-fit tests for unknown multivariate distribution functions. The
Cramér-Von Mises statistic is

Mn = n

∫
Rd

(Fn(x) − F (x))2 dF (x), n ≥ 1. (3.1.2)

Let the PP Cramér-Von Mises statistics be defined as

M̂n = sup
‖a‖=1

n

∫
(F a

n (y) − F a(y))2 dF a(y), n ≥ 1, (3.1.3)
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and set

Mn,v = n

∫
Rd

(Fn(x) − Fn,v(x))2 dFn(x), (3.1.4)

M̂n,v = sup
‖a‖=1

n

∫
(F a

n (y) − F a
n,v(y))2 dF a

n (y), n ≥ 1. (3.1.5)

We call Mn,v and M̂n,v a Bayesian bootstrapped Cramér-Von Mises statistic and
a Bayesian bootstrapped PP Cramér-Von Mises statistic, respectively.

Proposition 1. Mn and Mn,v have the same limiting distribution almost surely.
Specifically,

(i) Mn
d−→M =

∫
Rd(BpI(−∞,x))2 dP and

(ii) Mn,v
d∗−→M =

∫
Rd(BpI(−∞,x))2 dP for almost all samples X.

Obviously, Mn = n
∫
Rd(Fn(x) − F0(x))2 dF0(x) can be used as a test statistic

for (3.1.1). If the null hypothesis holds, then (i) of Proposition 1 implies that
Mn

d−→M . Given that P is unknown, the distribution functions of M and Mn

cannot be calculated when d > 2. However, (ii) indicates that for almost all
samples X, if X is given and n is sufficiently large, then the distribution of Mn,v

is approximately equal to that of M . Hence, we can use the distribution of Mn,v

to simulate the distribution of Mn and approximate the distribution of M . A
procedure for simulation is as follows.

Step 1. Suppose n and m are sufficiently large and let X1, . . . ,Xn be an in-
dependent sample of size n. Generate m independent random replications of
(V1, . . . , Vn): (V (k)

1 , . . . , V
(k)
n ), k = 1, . . . ,m. Calculate Mn,v at (V (k)

1 , . . . , V
(k)
n )

and denote the outcome by M
(k)
n,v , i.e.,

M (k)
n,v =

n∑
j=1

(
n∑

i=1

(V (k)
n − 1/n)I(−∞,Xj)(Xi))2, 1 ≤ k ≤ m.

Step 2. Calculate the empirical distribution function with respect to M
(1)
n,v, . . .,

M
(m)
n,v and denote the outcome by Fm,n. Since Fm,n converges to the distribution

function of Mn,v with P(· |X)-probability one, we replace the distribution of
Mn by Fn,m, and use it to approximate the distribution of M . For any given
α ∈ (0, 1), a confidence region of level 1 − α can be constructed by using Fm,n.
Thus, a test for (3.1.1) can be conducted.

In order to avoid “curse of dimensionality” when testing (3.1.1), we employ
the PP method. We have the following result.

Proposition 2. If H0 in (3.1.1) holds, then
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(i) M̂n
d−→ sup‖a‖=1

∫
(BP I(−∞, y)(aτx))2 dP and

(ii) M̂n,v
d∗−→ sup‖a‖=1

∫
(BP I(−∞, y)(aτx))2 dP for almost all X.

3.2. Testing multivariate location

Suppose X1, . . . ,Xn are i.i.d. random vectors with P(X1 < x) = F (x −
θ), and F (y) = F (−y) for any y ∈ Rd. Furthermore, suppose that F a(t) is
continuous for any unit vector a ∈ Rd, where F a(t) = P(aτX1 < t). We wish to
test

H0 : θ = 0 vs Ha : θ �= 0. (3.2.1)

Let h(·) be a Borel measurable function on Rk, ha(x1, . . . , xk)=h(aτx1, . . . , a
τxk),

xi ∈ Rd, 1 ≤ i ≤ k, and Fh = {ha(x1, . . . , xk) : a ∈ Rd, ‖a‖ = 1}. We call {Unf :
f ∈ Fh} and {Dn,vf : f ∈ Fh} a PP U-process and a PP Bayesian bootstrapped
U-process, respectively, and term h(·) the kernel function. Wilcoxon tests are
based on U -statistics, which can be applied to location testing problems. Here
we consider the multivariate case and give Bayesian bootstrap approximations.

Choose m = 2 in Corollary 1. The kernel of the Wilcoxon statistic is
h(x1, x2) = I{x1+x2>0}. If H0 holds, then for any ha ∈ Fh, Pha = 1/2 and
ha

(1)(x) = E(h(aτ X1, a
τX2)) |X1 = x) = F a(aτx) . Our test statistics are

Dn = sup‖a‖=1

√
n|Unha − 1/2| = supha∈Fh

√
n|Unha − Pha|, n ≥ 1. Obviously,

supf∈Fh
|Dn,vf | = sup‖a‖=1

√
n|Un,vh

a − Unha|. If θ = 0, combining Theorem 12
of Pollard (1984, p.70) with the result of Nolan and Pollard (1988), and Corollary
1 , we have

Dn
d−→ sup

Fh

|BP f |, and sup
Fh

|Dn,vf | d∗−→ sup
Fh

|BP f | for almost all X, (3.2.2)

where Cov (BP ha, BP hb) = 4
∫

F a(aτy)F b(bτy) dF (y) − 1 and E(BP ha) = 0 for
any ha, hb ∈ Fh. Using (3.2.2), a test of (3.2.1) can be readily conducted.

Suppose ξ1, . . . , ξn, η1, . . . , ηn are mutually independent, where ξ1, . . . , ξn are
i.i.d. random vectors with distribution function F (x) and η1, . . . , ηn are i.i.d. ran-
dom vectors with distribution function F (x − µ), x, µ ∈ Rd. Furthermore, sup-
pose F a(t) = P(aτ ξ1 < t), t ∈ R, is continuous for any unit vector a in Rd. Our
goal is to test

H0 : µ = 0 vs Ha : µ �= 0. (3.2.3)

Let Xi = (ξi, ηi), 1 ≤ i ≤ n, x = (x1, x2) and u = (u1, u2), where x1, x2, u1, u2 ∈
Rd. Let h((s1, s2), (t1, t2)) = I{s1<t2} + I{t1≤s2}, s1, s2, t1, t2 ∈ R. For any
a ∈ Rd, ‖a‖ = 1, let ha(x, u) = h((aτx1, a

τx2), (aτu1, a
τu2)). Let m = 2 and

F = Fh = {ha(·, ·) : a ∈ Rd, ‖a‖ = 1} in Corollary 1. If H0 holds, then
Pha = Eha(X1,X2) = 1 for any ha ∈ Fh. Thus, Dn = sup‖a‖=1

√
n|Un(ha) − 1|
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can be used to test (3.2.3). Obviously, ha
(1)(x) = 1 − F a(aτx1) + F a(aτx2),

Dn
d−→ supFh

|BP ha|, and, for almost all X,

sup
‖a‖=1

|Dn,vh
a| d∗−→ sup

Fh

|BP ha|, (3.2.4)

where Cov (BP (ha), BP (hb)) = 8(
∫

F a(aτy)F b(bτy) dF (y)−1/4) and E(BP (ha))
= 0 for any ha, hb ∈ Fh. Therefore, we can use Dn,v to simulate the distribution
of Dn and test (3.2.3) from (3.2.4).

3.3. Tests about multivariate dispersion

A. One-sample case. Assume that X1, . . . ,Xn are i.i.d. Rd-valued random
vectors with Var(X1) = V . Let V0 > 0 be a positive definite d × d matrix. We
wish to test

H0 : V = V0 vs Ha : V �= V0. (3.3.1)

Since V = V0 is equivalent to aτ (V −V0)a = 0 for all unit vectors a ∈ Rd, we can
use Dn = sup‖a‖=1

√
n|aτ (V̂ − V0)a| as a test statistic, where V̂ =

∑n
i=1(Xi −

X̄)(Xi−X̄)τ/(n−1) is the sample covariance matrix. Let h(x1, x2) = (x1−x2)2/2
and µ = EX1. If the null hypothesis holds and E‖X1‖4 < +∞, then Dn =
supFh

|Unf − Pf | and ha
(1)(x) = E(2−1(aτX1 − aτX2)2 |X1 = x) = (aτ (x −

µ))2/2 + aτV0a/2. Therefore,

Dn
d−→ sup

Fh

|BP f |, and sup
Fh

|Dn,vf | d∗−→ sup
Fh

|BP f | for almost all X, (3.3.2)

where Cov (BP ha, BP hb) = E(aτ (X1−µ)bτ (X1−µ))2−aτV0abτV0b and E(BP ha)
= 0 for any ha, hb ∈ Fh. It is straightforward to see that H0 can be tested using
(3.3.2).

B. Two-sample case. Lehmann (1951) proposed a statistic for a two-sample
scale test as follows. Suppose {X1,1, . . . ,X1,n1} and {X2,1, . . . ,X2,n2} are inde-
pendent sequences of one-dimensional random variables, where X1,1, . . . ,X1,n1

are i.i.d. with distribution function F (x) and X2,1, . . . ,X2,n2 are i.i.d. with dis-
tribution function F ((x − µ)/σ). The U -statistic with kernel h(s1, s2, t1, t2) =
I{|s1−s2|>|t1−t2|} was used to test σ = 1 against σ �= 1. Here we give an alternative
test statistic for the multivariate case using Bayesian bootstrap and PP methods.

Suppose ξ1, . . . , ξn are i.i.d. random vectors in Rd with density function G(x)
and η1, . . . , ηn are i.i.d. random vectors in Rd with density function G1(x) =
det(V )G(V (x − µ)), where x, µ ∈ Rd and V is a d × d positive definite matrix.
Furthermore, suppose ξ1, . . . , ξn and η1, . . . , ηn are mutually independent and
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F a(t) = P(aτ ξ1 < t) is continuous in R for any unit vector a ∈ Rd. We wish to
test

H0 : V = Id×d vs Ha : V �= Id×d, (3.3.3)

where Id×d is a d × d identity matrix. Let Xi = (ξi, ηi), 1 ≤ i ≤ n, x = (x1, x2),
u = (u1, u2) and ha(x, u) = I{|aτ x1−aτ u1|>|aτx2−aτ u2|}, where x1, x2, u1, u2, a ∈
Rd. Choose m = 2 and F = Fh = {ha : a ∈ Rd, ‖a‖ = 1} in Corollary 1.
If H0 holds, then aτ (ξ1 − ξ2) and aτ (η1 − η2) have the same distribution and
Pha = 1/2 for any unit vector a ∈ Rd. We use Dn = sup‖a‖=1

√
n|1/[n(n −

1)]
∑

1≤i�=j≤n I{|aτ ξi−aτ ξj |>|aτ ηi−aτ ηj |} − 1/2| as the test statistic for (3.3.3). It is
easy to show that

Dn = sup
Fh

√
n|Un(ha(x, y)) − Pha|,Dn

d−→ sup
Fh

|BP ha|,
(3.3.4)

sup
Fh

|Dn,vh
a| d∗−→ sup

Fh

|BP ha| for almost all X,

where Cov (BP ha, BP hb) = 4(E(ha
(1)(ξ1, η1)hb

(1)(ξ1, η1))− 1/4) and E(BP ha) = 0
for any ha, hb ∈ Fh.

3.4. Test of independence

To test the independence of one-dimensional random variables X and Y ,
Kendall (1938) proposed a method based on the U -statistic Kn with kernel func-
tion

h((s1, t1), (s2, t2)) = I{(s2−s1)(t2−t1)>0} − I{(s2−s1)(t2−t1)≤0}. (3.4.1)

Its reject on region is of the form {
√

n|Kn| > β}, we consider a multivariate
counterpart.

Suppose ξ and η are d1- and d2-dimensional random vectors respectively,
d = d1 + d2. Furthermore, suppose X1, . . . ,Xn are independent observations of
(ξ, η), where Xi = (ξi, ηi), 1 ≤ i ≤ n. We are interested in testing

H0 : ξ and η are independent vs Ha : H0 is not true. (3.4.2)

Let a = (a1, a2) ∈ Rd with ‖a‖ = 1 and ar ∈ Rdr , r = 1, 2. Let the distribution
functions of ξ and η be F and G, respectively. Furthermore, suppose F a1(t) and
Ga2(t) are continuous for any unit vector a = (a1, a2), where F a1(t) = P(aτ

1ξ < t)
and Ga2(t) = P(aτ

2η < t). Let x = (x1, x2), u = (u1, u2), xr, ur ∈ Rdr , r = 1, 2,
and ha(x, u) = h((aτ

1x1, a
τ
2x2), (aτ

1u1, a
τ
2u2)), where h((s1, t1), (s2, t2)) is defined

by (3.4.1). Using Corollary 1 and choosing m = 2 and F = Fh = {ha : a ∈
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Rd, ‖a‖ = 1}, it is easy to see that sup‖a‖=1

√
n|Unha| can be used as a test

statistic for (3.4.2). If the null hypothesis is true, then

Pha = 0, Dn = sup
‖a‖=1

√
n|Unha − Pha| = sup

ha∈Fh

√
n|Unha|,

ha
(1)(x, y) = 1 − 2F a1(aτ

1x) − 2Ga2(aτ
2y) + 4F a1(aτ

1x)Ga2(aτ
2y)

for any ha ∈ Fh. We have that

Dn
d−→ sup

Fh

|BP f |, and sup
Fh

|Dn,vf | d∗−→ sup
Fh

|BP f | for almost all X, (3.4.3)

where E(BP f) = 0 and Cov (BP ha, BP hb) = 4[1−4
∫

F a1(aτ
1x)F b1(bτ

1x) dF (x)][1
−4

∫
Ga2(aτ

2y)Gb2(bτ
2y) dG(y)] for any f, ha, hb ∈ Fh. Test (3.4.2) using (3.4.3).

4. Proofs of Main Results

Given a pseudometric space (F , d), the covering number and the covering
integral are defined, respectively, by

N(u, d,F) = min{m : there are f1, . . . , fm ∈ F such that

sup
f∈F

min
1≤j≤m

d(f, fj) ≤ u},

J(u, d,F) =
∫ u

0
(2 log(N(t,F , d)2/t))1/2dt for any u > 0.

See Pollard (1984, p.143). Let dn,p(f, g) = (Un(|f − g|p))1/p, p = 1, 2, n ≥ 1.
Define Np(u,Un,F) as the random covering numbers of (F , dn,p). In order to
prove Theorem 2.1, we require the following lemmas.

Lemma 1. Let F be a permissible class of symmetric functions on Rmd with an
envelope F > 0 and PF < ∞. If log N1(u,Un,F) = oP (n), then
(i) supF |Un,z2f − Pf | −→ 0 a.s. and
(ii) supF |Un,z2f − Pf | −→ 0 with P(· |X)-probability one
for almost all samples X, where

Un,z2f = (n − m)!/(n!(2m − 1))
∑

(i1,...,im)∈In
m

( m∏
k=1

Zik − 1
)2

f(Xi1, . . . ,Xim).

Proof. Let π(z1, . . . , zm) = (
∏m

i=1 zi−1)2/(2m−1) and fπ((z1, x1), . . . , (zm, xm))
= π(z1, . . . , zm)f(x1, . . . , xm), where f ∈ F , zi ∈ R, xi ∈ Rd and 1 ≤ i ≤
m. Obviously, Un,z2f is the U-statistic based on i.i.d. pairs (Zi,Xi), 1 ≤ i ≤
n, with kernel function fπ. For any ε ∈ (0, 1), there is K > 0 such that
E(π(Z1, . . . , Zm)I{π>K}) < ε/(2(PF + 1)). Let FK = {fπI{π≤K} : f ∈ F}
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and Fπ,K = πFI{π>K}. Since Un,z2f = Unfπ and Pfπ = Pf for any f ∈ F , we
have supF |Un,z2f−Pf | ≤ supFK

|Unf−Pf |+UnFπ,K+P (FπI{π>K}). Obviously,
log N1(u,Un,FK) ≤ log N1(u/K,Un,F) = oP (n) for any u > 0. Theorem 3.1 of
Acrones and Giné (1993) and the Strong Law of Large Numbers for U-statistics
imply that supFK

|Unf − Pf | → 0 a.s. and UnFπ,K → P (πFI{π>K}) ≤ ε/2 a.s.
This completes the proof of result (i). Statement (ii) follows from result (i) by
Fubini’s theorem.

Lemma 2. Suppose F satisfies Condition 1 in Section 2 and there are A > 0
and W > 0 such that, for any probability measure Q with QF 2 < ∞ and for any
u > 0, N(u, d2(·, ·, Q),F) ≤ Au−W . Then for any ε > 0 and η > 0 there is a
δ > 0 such that, for almost all samples X lim supn→∞ P{sup(f,g)∈[δ] |Dn,z(f −
g)| > η |X} ≤ ε, where [δ] = {(f, g) : f, g ∈ F , d2(f, g, P ) = (P (f − g)2)1/2 ≤ δ}
and δ > 0.

Proof. For any η > 0, let δ ∈ (0, η/(4m)). By Theorem 3.1 of Acrones and Giné
(1993), for almost all samples X there is a positive integer NX such that, for any
n ≥ NX and any (f, g) ∈ [δ], P(|Dn,z(f−g))| > η/2 | X) ≤ 2(η/2)−2m2δ2 ≤ 1/2.
Choose a sequence of i.i.d. random variables {σi : 1 ≤ i ≤ n}, P(σi = +1) =
P(σi = −1) = 1/2, independent of the sequences {Xi} and {Zi}. From Lemma
8 and the Second Symmetrization Method in Pollard (1984, p.14),

P( sup
(f,g)∈[δ]

|Dn,z(f − g)| > η | X) ≤ 4P( sup
(f,g)∈[δ]

|D0
n,z(f − g)| > η/4 |X), (4.0)

where D0
n,zf =

√
n(n − m)!/n!

∑
In
m

(
∏m

k=1 σik)(
∏m

k=1 Zik − 1)f(Xi1 , . . . ,Xim).
Let dn,z(f, g) = (Un,z2(f − g)2)1/2 and [δ]n = {(f, g) : f, g ∈ F , dn,z(f, g) ≤ δ}.
We have

P( sup
(f,g)∈[δ]

|D0
n,z(f − g)| > η/4 | X)

(4.1)
≤ P( sup

(f,g)∈[2δ]n

|D0
n,z(f − g)| > η/4 | X) + P([δ] − [2δ]n | X).

By Lemma 1, P([δ] − [2δ]n | X) ≤ P(sup(f,g)∈[δ] |Un,z2(f − g)2 − P (f − g)2| >

δ2/2 | X) −→ 0 a.s. For given X(n) = (X1, . . . ,Xn) and Z(n) = (Z1, . . . , Zn),
if c > 0 and f, g ∈ F , Hoeffding’s Inequality gives

P(|D0
n,z(f − g)| ≥ cdn,z(f, g) |X(n), Z(n)) ≤ 2 exp{−c2/2}, n ≥ 2m.

For any ε ∈ (0, 1), choose ε1 ∈ (0, ε/8). Lemma 1 implies there exist an integer
N > 0 and a set E ∈ T not depending on X with P(E) > 1 − ε1, such that, for
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any n ≥ N

1/2 < ηn := (n − m)!/((2m − 1)n!)
∑
In
m

(
m∏

k=1

Zik − 1)2 < 2 and

(4.2)
Un,z2F 2 ≤ 2PF 2 on E uniformly.

Let U∗
n put mass (

∏m
k=1 Zik − 1)2/(

∑
In
m

(
∏m

k=1 Zik − 1)2) on each element (Xi1 ,
. . . ,Xim), (i1, . . . , im) ∈ In

m. Obviously, U∗
n(f) = Un,z2(f)/ηn. Let d2(f, g, U∗

n) =
(U∗

n(f − g)2)1/2. If n ≥ N , (4.2) implies that for any f, g ∈ F , dn,z(f, g) ≤
2d2(f, g, U∗

n) uniformly on E. Consequently, for any n ≥ N and any u >

0, N(2u, dn,z , F ) ≤ N(u, d2(·, ·, U∗
n ,F) ≤ Au−W on E uniformly. This im-

plies that J2(δ, dn,z ,F) −→ 0 on E uniformly as δ → 0. Therefore, there ex-
ists a positive number δ1 ≤ min{ε/18, η/(4m)} such that, for any t ∈ (0, δ1]
J2(t, dn,z ,F) ≤ η/208 on E uniformly. Choose n ≥ N and δ ∈ (0, δ1/2]. Let
PE(·) = P(·∩E)/P(E). Making use of Lemma 9 of Pollard (1984, Chapter VII)
on the probability space (E,E ∩ T ,PE),

PE(sup
[2δ]n

|D0
n,z(f − g)| > 26J2(2δ, dn,z ,F) | X(n), Z(n)) ≤ 4δ

and then

P(sup
[2δ]n

|D0
n,z(f − g)| > η/4 | X)

(4.3)
≤ PE(sup

[2δ]n

|D0
n,z(f − g)| > η/4 | X) + P(Ec) ≤ ε/4.

Combining (4.3) with (4.0) and (4.1) completes the proof of Lemma 2.

Lemma 3. Suppose Pf2 < ∞ for any f ∈ F . Then for any integer k > 0 and
fi ∈ F , 1 ≤ i ≤ k, (Dn,vf1, . . . ,Dn,vfk)

d∗−→N(0, Σ) for almost all samples X,
where Σ = (vi,j)k×k, vi,j = m2(P (fi,(1)fj,(1)) − PfiPfj).

Proof. Let Tnf = m
√

n
∑n

i=1(Vi − 1/n)f(1)(Xi). Obviously, for almost all X,

Tnf
d∗−→N(0,m2Var(f(1)(X1))), (4.4)

see Lo (1987). It is enough for us to show that (a) E((Dn,vf − Tnf)2 |X) → 0
for almost all samples X. Note that E(

∏m1
h=1 V kh

ih
) = Γ(n)

∏m1
h=1 Γ(kh + 1)/Γ(n +∑m1

h=1 kh), where Γ(α) =
∫ ∞
0 xα−1 exp{−x} dx, α > 0, kh > 0, 1 ≤ h ≤ m1 ≤ n.

It follows from the Strong Law of Large Numbers for U-statistics that, for almost
all samples X,

E[(Dn,vf)2 |X] → m2Var(f(1)(X1)), E[(Tnf)2 |X] → m2Var(f(1)(X1)),

E[(Tnf)(Dn,vf) |X] → m2Var(f(1)(X1)). (4.5)
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We obtain (a) from (4.5). Since Dn,v is a linear operator, the lemma follows from
(a), (4.4) and properties of characteristic functions.

Proof of Theorem 2.1. Let F0 = {f−Pf : f, g ∈ F} and Q be any probability
measure with QF 2 < ∞. Obviously, d2(f − Pf, g − Pg,Q) ≤ d2(f, g,Q) +
d2(f, g, P ) for any (f −Pf), (g −Pg) ∈ F0. Conditions 1 and 2, Lemmas II.25
and 36 in Pollard (1984, pp.27-34) imply that there exist A > 0 and W > 0 such
that, for all u > 0 and for all probability measures Q with QF 2 < ∞,

N(u, d2(·, ·, Q),F0) ≤ N(u/2, d2(·, ·, Q),F)N(u/2, d2(·, ·, P ),F) ≤ Au−W . (4.6)

This implies that Lemma 2 holds for the case of F = F0. Obviously, Dn,z(1) →
N(0,m2). By Theorem II.24 in Pollard (1984, p.25), for almost all X, supF
|Dn,z(f − Pf) − Dn,z(f − Pnf)| ≤ supF |Pnf − Pf ||Dn,z(1)| −→ 0 in P(· |X)-
probability. Therefore, Lemma 2 also holds for the process {Dn,z(f −Pnf) : f ∈
F}. Let Zn−k = 1/(n − k)

∑n
i=1 Zi, 1 ≤ k ≤ m , and Cn,m =

∏m−1
k=0 Zn−k. Since

Dn,vf = Dn,v(f −Pf)+Dn,v(Pf), supF |Dn,vf−Dn,z(f−Pf)| ≤ |Dn,v(1)|PF +
|√n(Cn,m − 1)/Cn,m| supF |Un,z(f − Pf)|, where Un,zf is defined in (2.3). Since
E|Dn,v(1)| =

√
nE(1 − ∑

In
m

∏m
k=1 Vik) = O(n−1/2), Dn,v(1) converges in proba-

bility to zero. By (4.6) and a similar proof to that of Lemma 1, for almost all
samples X, supF |Un,z(f − Pf)| −→ 0 with P(· | X)-probability one. Note that

√
n|Cn,m − 1| ≤

m−2∑
k=0

(
|
√

n(Zn−k − 1)|
m−1∏

i=k+1

Zn−k

)
+ |

√
n(Zn−m+1 − 1)|.

By the Central Limit Theorem and Kolmogorov’s Strong Law of Large Numbers,√
n(Zn−k − 1) converges in distribution to N(0, 1) and Zn−k → 1 a.s. as n → ∞

for any 0 ≤ k ≤ m − 1. It follows from Slutsky’s Theorem that

sup
f∈F

|Dn,vf − Dn,z(f − Pf)| → 0 in P(· | X)-probability . (4.7)

It follows from (4.7) that, for almost all samples X,

sup
F

|Dn,vf − Dn,z(f − Pnf)| ≤ sup
F

|Dn,vf − Dn,z(f − Pf)|

+ sup
F

|Pnf − Pf ||Dn,z(1)| −→ 0 in P(· | X)-probability . (4.8)

The proof of (i) is almost the same as that of Theorem VII.21 of Pollard (1984).
We therefore obtain result (i) from (4.8) and Lemmas 2 and 3. Then (ii) follows
from (i) and Theorem 12 in Pollard (1984, p.70).

Proof of Corollary 1. Equation (4.8) and Lemma 2 imply that for almost all X,
{Dn,vf : f ∈ F} and {Dn,z(f − Pnf) : f ∈ F} have the same limit distribution.
By Theorem 2.1, Corollary 1 holds.
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Proof of Corollary 2. By the definition of weak convergence of sequences of
random vectors and the Bounded Convergence Theorem, Theorem 2.1 implies
that the finite-dimensional distributions of {Dn,z(f − Pnf) : f ∈ F} converge
in P(·)-distribution to that of BP . By Fatou’s Lemma, (4.8) and Lemma 2 also
hold for the law P(·). This completes the proof of Corollary 2.

Proof of Proposition 1. Let En =
√

n(Pn − P ) and F = {I(−∞,x) : x ∈ Rd}.
Let ‖ · ‖F = supf∈F | · |. Consider the stochastic processes {Enf : f ∈ F}
and {Dn,vf : f ∈ F}. Obviously, Mn =

∫
Rd(EnI(−∞,x))2 dP and Mn,v =∫

Rd(Dn,vI(−∞,x))2 dPn. Theorem VII.21 of Pollard (1984, p.157) and Corollary

1 imply that En
d−→BP and, for almost all samples X, Dn,v

d∗−→BP . Theorem 13
in Pollard (1984, p.71) implies that for almost all X, if X is given, then there
exist random elements D′

n,v (n ≥ 1) and B′
P such that

(1) B′
P

d=BP ; D′
n,v

d=Dn,v, n ≥ 1; (2) ‖D′
n,v − B′

P ‖F −→ 0 a.s.,

where “X d=Y ” denotes that X and Y have the same distribution . Let M ′
n,v =∫

Rd(D′
n,v(I(−∞,x)))2 dPn and M ′ =

∫
Rd(B′

P (I(−∞,x)))2 dP . By (1) and (2), for
any ε > 0, there exists a constant δ > 0 such that if (P (f − g)2)1/2 ≤ δ for
f, g ∈ F , then

|B′
P f − B′

P g| ≤ 4ε‖B′
P ‖F and ‖D′

n,v‖F ≤ ‖B′
P ‖F + 1 < ∞ a.s. (4.9)

Lemmas 25 and 36 of Pollard (1984, pp.27-34) imply that there exists an integer
m ≥ 1 and {f1, . . . , fm} ⊂ F such that min1≤j≤m(P (f −fj)2)1/2 ≤ δ for any f ∈
F . Let A0 = ∅ and Ai = {I(−∞,x) : (P (I(−∞,x) − fi)2)1/2 ≤ δ, x ∈ Rd}, 1 ≤ i ≤
m . Let A∗

i = Ai −
⋃i−1

j=1 Aj and Bi = {x : x ∈ Rd, I(−∞,x) ∈ A∗
i }, i = 1, . . . ,m.

Obviously,
⋃m

i=1 Bi = Rd and Bi ∩ Bj = ∅ for 1 ≤ i �= j ≤ m. Let n → ∞ and
then ε → 0. By (2), (4.9) and Kolmogorov’s Strong Law of Large Numbers, for
almost all samples X, if X is fixed, then

|M ′
n,v − M ′| ≤ (2‖B′

P ‖F + 1)‖B′
P − D′

n,v‖F + |
m∑

i=1

(B′
P fi)2

∫
Bi

d (Pn − P )|

+|
m∑

i=1

∫
Bi

[(B′
P I(−∞,x))

2 − (B′
P fi)2] d (Pn − P )|

≤ ε + (2‖B′
P ‖F + 1)‖B′

P −D′
n,v‖F + m‖B′

P ‖2
F max

1≤j≤m
|PnIBj −PIBj |

−→ 0 with P(· |X)-probability one

By the definition of weak convergence of sequences of random variables and the
Bounded Convergence Theorem, (ii) implies (i).

Proof of Proposition 2. The proof is the same as that of Proposition 1. The
details are omitted.
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