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Abstract: Supersaturated designs are designed to assess the effects of many factors
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1. Introduction

In industry the first phase of experimentation often begins with a screening
experiment, where many questions are addressed with few experimental units. It
is often found that many of the factors are unimportant, and further experiments
are carried out using only those “significant” factors. The situation where many
effects are unimportant is called “effect sparsity” (Box and Meyer (1986)). Sat-
urated designs have been extended to supersaturated designs (SSDs) by Booth
and Cox (1962); recent advances are given by Lin (1993, 1995), Wu (1993), and
Nguyen (1996). In these designs, there are more experimental factors under con-
sideration than there are experimental units. Here, effect sparsity is relied upon
to make analysis feasible; if the few important factors are fit to a model, the
residual error can be used to test the significance of those terms included in the
model.

As with any decision problem, errors of various types must be balanced
against costs. In screening designs, there are costs of declaring an inactive factor
to be active (Type I error), and costs of declaring an active effect to be inactive
(Type II error). Type II errors are troublesome as addressed in Lin (1995).
However, Type I errors are also troublesome, as they can cause unnecessary
cost in the follow-up experiments, and they can cause detrimental actions if the
experiment has immediate impact on practice. Unfortunately, Type I errors are
very likely when “effect sparsity” holds.

Lenth (1989) recognized the problem of Type I errors and provided an ap-
proximate multiplicity adjustment procedure for detecting effects in saturated



102 PETER H. WESTFALL, S. STANLEY YOUNG AND DENNIS K. J. LIN

designs, using effect sparsity and independence of estimated effects. The as-
sumption of independence fails in the more complex SSDs, where effects are con-
founded, even in main-effects only models. For these reasons, generic variable
selection methods commonly employed in regression, such as forward selection,
have been suggested and performed by Lin (1993). The data analyzed by Lin
consisted of a half fraction of a Plackett-Burman design. Wang (1995) points out
the problem with forward selection analysis of SSDs by replicating Lin’s analysis
on the other half, and observing that four of the five “important” factors found
in one half fraction were not found in the other. The problem of so little agree-
ment between the two analyses could easily be attributable to the multiplicity
problem, as we will show.

One appeal of stepwise-type variable selection methods is that nominal Type
I error significance levels are used, providing the analyst with some measure of
confidence that the variables selected are real. However, if effect sparsity holds
in an SSD, we find that Type I error rates can be quite high—easily in the 70%
range for α = .05 forward selection with 20 or so variables, and nearly certain for
α = .15 and higher forward selection cutoff values. These error rates are derived
using a particular example of an SSD, but can be much worse, depending upon
the number of variables investigated. Even more troublesome is that a large
number of false significances is probable under effect sparsity.

As in Draperet et al. (1971), Aitken (1974), Butler (1982), and Grechanovsky
and Pinsker (1995), we consider forward selection methods based on significance
tests, and attempt to provide actual significance levels to correct for this prob-
lem. The method uses the exact distribution of the maximum forward-selection
F statistic to judge significance of a variable to be entered, under the assumption
that the entry of the first variables has been pre-selected and not data-steered.
This distribution is virtually intractable when there are more variables than data
points, as occurs in SSDs, but its significance levels can be estimated consistently
and efficiently using a Bonferroni control variates resampling method. Draper
et al. (1971), obtained this distribution for uncorrelated predictors; Forsythe et
al. (1972), describe a variation of the method based on permutation tests; Butler
(1982, 1984) provides upper and lower bounds for the significance level of an
entering variable using this distribution; Miller (1990), p. 89 describes a varia-
tion for use when there are more observations than variables; and Grechanovsky
and Pinsker (1995) calculate the significance level analytically as the content of
multidimensional parallelepipeds.

An attractive feature of this approach is that the significance level is exact
at the first stage of the analysis (modulo Monte Carlo error, which can be con-
trolled). It is also exact at any stage if the first variables’ entry are forced a
priori. Generally, significance levels at later entry stages are only approximate
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since the procedure is conditional on the observed ordering of variables entered.
Nevertheless, theoretical and simulation results suggest that this method controls
overall Type I errors well and conservatively.

Interestingly, the ordinary Bonferroni method (without resampling) provides
a very accurate approximation to the true critical level of the multiple significance
tests in the designs we consider. The accuracy of the Bonferroni approximation
in this instance is perhaps surprising. Since there are perfect linear dependencies
among the numerators of the forward-selection F -statistics, as well as depen-
dence induced by correlation among the denominator MSE’s, one might expect
the Bonferroni approximation to be inaccurate. The fact that the Bonferroni
approximation is so accurate in these designs is very useful for the practitioner,
since it is easy to implement.

In Section 2 the model is described. The forward selection method and
analysis of its error rates are discussed in Section 3. Procedures that adjust
for selection of maximal effects are presented in Section 4, and their properties
are explored both analytically and via a large simulation study. Examples are
discussed in Section 5 and concluding remarks are given in Section 6.

2. The Model

Assume there are n experimental runs and q factors under study, of which k

are active. Let A = {i1, . . . , ik} and N = {ik+1, . . . , iq} denote indexes of active
and inert factors, respectively, so N ∪ A = {1, . . . , q} = S. If X denotes the
(n× q) design matrix (without intercept column), our model is Y = µ1+Xβ + ε,
where Y is the (n × 1) observable data vector, µ is the intercept term and 1 is
an n-vector of 1’s, β is a (q × 1) fixed and unknown vector of factor effects and ε

is a vector assumed to be distributed as Nn(0, σ2I). In the multiple hypothesis-
testing framework, we have null and alternative pairs Hj : βj = 0 and Hc

j : βj �= 0,
with Hj true for j ∈ N, and Hc

j true for j ∈ A. Under effect sparsity, we assume
that k is small relative to q.

3. Forward Selection and Type I Errors

With forward selection, one identifies the maximum F -statistic at successive
stages. Let F

(s)
j denote the F -statistic for testing Hj at stage s, s = 1, 2 . . .

Sequentially define j1 = arg maxj ∈ S F
(1)
j , j2 = arg maxj ∈ S−{j1} F

(2)
j , j3 =

arg maxj ∈ S−{j1,j2} F
(3)
j , etc., where F

(s)
j =RSS(j | j1, . . . , js−1)/ MSE(j, j1, . . . ,

js−1). Letting F (s) = maxj ∈ S−{j1,...js−1} F
(s)
j , the forward selection procedure

is defined by selecting variables j1, . . . , jf , where F (f) ≤ α and F (f+1) > α. If
F (1) > α then no variables are selected.
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If effect sparsity holds, then a particular effect is more likely to be inert
than active. At particular stages of the selection process it is possible that no
remaining effects are active; we find the distribution of the maximal F statistic
under this condition. The situation where no effects are active is called the
complete null hypothesis; when some (but not all) effects are inactive we have a
partial null hypothesis.

Lin (1993) gives as an example a SSD consisting of a half fraction of the
28-run Plackett and Burman design used by Williams (1968). Since columns 13
and 16 are identical, column 16 was removed, leaving 23 columns. Using the
resulting X14×23 design matrix, the complete null hypothesis may be created by
associating Y ∗ ∼ N14(0, I) with the given X. Letting V denote the number of
variables selected in a given sample, Figure 1 displays estimates of P (V ≥ k),
for k = 0, . . . , 6 based on 10,000 simulations, for forward selection using α = .05,
.10, and .15. These are fairly conservative entry levels—Kennedy and Bancroft
(1971) recommend α = .25, and some software packages use α = .50 as a default.
Clearly, there is a high probability that one or more inert effects are declared
significant; and for α = .15, many inert effects will be declared significant. With
α = .5 (not shown in the graph), all 10,000 samples had 6 or more selected
variables!
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Figure 1. Probability that the number of selected variables (V ) is at least k,
for α = .05, .10, or .15.

The number of false significances can be very large for this design for two
reasons: (i) the F -statistics are maxima at each step, implying that the ordinary
F -critical values are much too liberal; and (ii) the denominator estimates of the
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residual variance are biased downward, causing larger F -statistics (Copas and
Long (1991)). Thus, a large number of selected variables need not indicate that
any effects are active.

4. A Resampling Method to Control Type I Errors

The alternative forward selection procedure is developed in this section. We
attempt to control the Type I errors at each stage of the forward selection process.
The distribution of the maximal F statistic (conditional on a forced entry of the
first selected variables) is invariant to all parameters, and can be calculated. In
particular, the distribution is invariant to the parameters associated with the
first selected variables. According to the simulations and analytical work of this
section, we find that the method controls Type I errors conservatively, despite the
fact that it attempts to control Type I errors only at each stage of the selection
process.

4.1. Adjusted p-values

Suppose all Hj are true. Since the statistics F
(1)
j are invariant to location (µ)

and scale (σ2), the distribution of F (1) is completely determined by the known
design X, and is therefore known in principle. Letting f

(1)
α denote the upper

1 − α quantile of this distribution, the rule F (1) > f
(1)
α defines an exact α-level

test of the complete null hypothesis. Letting f (1) denote the observed value of
F (1), the adjusted p-value is given by

p(1) = P (F (1) > f (1) | all Hi true). (1)

At later stages, we calculate the adjusted p-values as if the order of entry of the
first (s− 1) variables are forced. Thus, p(s) = P (F (s) > f (s) | all Hi, i ∈ S− {j1,
. . . , j(s−1)} are true). Perfect linear relationships involving columns of the X

matrix induce complex dependence structures among the numerators of the Fj

statistics; thus, the distribution of F (1) appears intractable, and Monte Carlo
methods must be used to estimate (1). What follows is a description of a control
variate method for doing so.

To simplify notation, the method is described for calculating p(1), but an
identical method is used for each p(s), with the exception that the maximal Fi is
computed for all i ∈ S− {j1, . . . , j(s−1)}. Since the complete null distribution of
F (1) is invariant to location and scale, random variables F ∗(1) having its distri-
bution may be simulated by generating Y ∗ ∼ Nn(0, I), computing the statistics
F

∗(1)
j from Y ∗ and X, and letting F ∗(1) = maxj∈S F

∗(1)
j . While the so-called

“uniform resampling” method works directly with the F ∗(1), the control variate
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method approximates the p-value using the Bonferroni inequality, then uses sim-
ulation to estimate the remainder. The adjusted p-value is then the sum of the
analytic Bonferroni estimate and the Monte Carlo estimate of the remainder.
Related versions of this procedure are discussed in Heyse and Rom (1988) and
Naiman and Wynn (1992).

Letting δ(·) denote the indicator function, write p(1) = E{∑j∈S δ(F (1)
j >

f (1))} − E{∑
j∈S δ(F (1)

j > f (1))− δ(maxj∈S F
(1)
j > f (1))}. Noting that each F

(1)
j

is distributed as F1,n−2, the first summand is easily obtained as E{∑j∈S δ(F (1)
j >

f (1))} =
∑

j∈S E{δ(F (1)
j > f (1))} = qP(F1,n−2 > f (1)), the Bonferroni approx-

imation. We then estimate E{∑
j∈S δ(F (1)

j > f (1)) − δ(maxj∈S F
(1)
j > f (1))}

via Monte Carlo and subtract the result from qP(F1,n−2 > f (1)). Specifically,
generate Y ∗ ∼ Nn(0, I) as with uniform resampling, compute the difference
∆∗ =

∑
j∈S δ(F ∗(1)

j > f (1)) − δ(maxj∈S F
∗(1)
j > f (1)), and average the values

∆∗ over many (say M) resampled data sets. The estimated p-value is then
qP(F1,n−2 > f (1))−∆̄∗

M , and the standard error of the estimate is s.d.(∆∗)/M1/2,
where s.d.(∆∗) is the standard deviation of the M ∆∗’s.

We are most interested in estimating p(1) when f (1) is relatively large; this is
also the case where the Bonferroni approximation is best (Miller (1977)). In this
case, the standard error of the Bonferroni control variate method is much smaller
than that of the uniform resampling method, as described in Westfall (1997).

Using the X14×23 design matrix of Lin (1993) and Y ∗ ∼ N14(0, I), Table
1 compares the unadjusted, Bonferroni-adjusted, and Control-Variate estimated
adjusted p-values for the first selected variable. Note that the Bonferroni ap-
proximation is quite accurate in the tail of the distribution; Draper et al. (1971)
also noticed this for the forward selection statistic with uncorrelated predictors.
However, it is surprising that the Bonferroni multiplier k = 23 remains appro-
priate for large f despite the perfect linear dependencies among the contrasts
defining the numerators of the F statistics. One might think that the multiplier
would be only 14, since this is the maximum number of linearly independent
columns defining the contrasts. This result is yet another caution in the use of
SSDs: with a larger number of factors, determining significance becomes increas-
ingly difficult. Incorporating the perfect linear dependencies into the multiplicity
adjustment does not improve matters when f is large, since the Bonferroni ad-
justment (which ignores correlations) is an adequate approximation.

On the other hand, variable selection procedures are often recommended
with relaxed variable entry significance levels such as α = .50 instead of α = .05.
If this criterion is applied to the adjusted p-value, Table 1 shows potentially more
significances can be attained when the properly adjusted p-values are used, since
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the Bonferroni adjusted p-values are larger than the Control Variate adjusted
p-values.

Table 1. Comparison of unadjusted p-values with Bonferroni and Control
Variate (CV) resampling-based (M = 50, 000) estimates of p(1) = P (F (1) >

f), with k = 23.

Unadjusted Adjusted

f P (F1,12 > f) Bonferroni CV
4.0 0.068655 1.579065 0.90337
5.0 0.045115 1.037653 0.74893
6.0 0.030622 0.704301 0.58220
7.0 0.021346 0.490955 0.43950
8.0 0.015220 0.350062 0.32772
9.0 0.011067 0.254534 0.24413
10.0 0.008186 0.188282 0.18358
11.0 0.006149 0.141415 0.13916
12.0 0.004682 0.107677 0.10628
13.0 0.003609 0.083006 0.08239
14.0 0.002813 0.064709 0.06421
15.0 0.002216 0.050965 0.05069

4.2. An alternative stepwise method and error rate control

Type I errors indicated by Figure 1 may be controlled using the adjusted
p-values. Algorithmically, at step j, if p(j) > α, then stop; otherwise, enter Xj

and continue. This procedure controls the Type I error rate exactly at level α

under the complete null hypothesis (the “weak” sense described by Hochberg and
Tamhane (1987), p. 3), since P (Reject at least one Hi | all Hi true) = P (F (1) ≥
f

(1)
α ) = α. In addition, if the first s variables are forced, and the test is used to

evaluate the significance of the next entering variable (of the remaining q − s),
the procedure is again exact under the hypothesis of no effects among the q − s

remaining variables. The exactness disappears with simulated p-values, but the
errors can be made very small.

What can be said about control of Type I errors under partial nulls? This is
a difficult problem, but one can argue heuristically that the procedure should be
conservative in most cases. Ignore for the moment the randomness in the variable
entry, and assume that the first s variables with indices j1, . . . , js are forced to en-
ter. Assume also that the set of null effects, N, is a subset of the remaining indices
Rs = S−{j1, . . . , js}. For a false significance to occur at this stage, it is necessary
and sufficient that maxj∈N F

(s+1)
j ≥ f

(s+1)
α {arg maxj∈S−{j1,...,js} F

(s+1)
j } ∈ N,

where f
(s+1)
α is the 1 − α quantile of the distribution of maxj∈Rs F

(s+1)
j under
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the complete null hypothesis that all effects in Rs are null. Thus, the probability
of incorrectly declaring a variable significant at step s is bounded above by

P
(
{max

j∈N
F

(s+1)
j ≥ f (s+1)

α }
)
. (2)

The distribution of each F
(s+1)
j is the doubly non-central F1,n−s−2,δ1,δ2, where

δ1 = ‖(Pj,s − Ps)XRs(−j)βRs(−j) + (Pj,s − Ps)Xjβj‖2 (3)

and
δ2 = ‖(I − Pj,s)XRs(−j)βRs(−j)‖2. (4)

The notation in (3) and (4) follows: Pj,s is the projection matrix for the column
space of (1 : Xj1 : · · · : Xjs : Xj); Ps is the projection matrix for the column space
of (1 : Xj1 : · · · : Xjs); XRs(−j) is the design matrix whose rows are comprised
by indices in Rs − {N ∪ {j}}; and βRs(−j) is the vector comprising all non-null
effects, removing j, not yet selected.

Note that the terms involving βj drop out in the case Hj is true. What
follows is an heuristic argument (not a proof) that the probability in (2) is less
than α in many situations, as will be shown in the simulation studies.
Point 1. In (2) the maximum of the F

(s+1)
j is considered only over j ∈ N, and

not over the entire set of remaining indices j ∈ Rs. When the complete null
is true, all F -statistics would be central, and the probability in (2) is bounded
above by α.
Point 2. When the complete null is not true, the noncentrality parameters
change the situation. If the numerator noncentrality parameters were zero, then
the noncentral denominators would make the F -statistics stochastically smaller,
again suggesting that the probability in (2) should be less than α.
Point 3. The only problem is that the numerators are also noncentral, acting
stochastically in the opposite direction as described in Points 1 and 2. However,
we note that in the case of saturated and supersaturated designs, the design
vectors are chosen to be orthogonal (for saturated) or nearly orthogonal (for
supersaturated), so the numerator noncentrality vector (Pj,s−Ps)XRs(−j)βRs(−j)

should be “small”, in some sense, relative to the denominator noncentrality vector
(I − Pj,s)XRs(−j)βRs(−j). Specifically, assuming the appropriate inverses exist,

δ1/δ2 =
β′
Rs(−j)X

′
Rs(−j)(I − Ps)Pj,s(I − Ps)XRs(−j)βRs(−j)

β′
Rs(−j)X

′
Rs(−j)(I − Ps)(I − Pj,s)(I − Ps)XRs(−j)βRs(−j)

≤ ρ

1 − ρ
,

where ρ=λ1{(X ′
Rs(−j)(I−Ps)XRs(−j))−1X ′

Rs(−j)(I−Ps)Xj,s(X ′
j,sXj,s)−1X ′

j,s(I−
Ps)XRs(−j)}, which is the maximal canonical correlation between the selected
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variables (those in Xj,s) and the residualized remaining active variables (I −
Ps)XRs(−j). This is in turn bounded (more crudely) by the maximal canonical
correlation between the selected variables and the non-residualized remaining ac-
tive variables. This bound illustrates one important reason to have the columns
of SSDs as orthogonal as possible: false significances might arise due to con-
founding alone, as suggested by the numerator noncentrality parameter of the F

statistic. A good SSD from this perspective will require the projection matrix
Ps to be as orthogonal as possible, for all possible projections.

These arguments suggest, but do not prove that Type I error rates are less
than nominal levels: it may be possible to select parameters to maximize the
canonical correlation referred to above, so that inert effects have enough non-
centrality to be selected often. Additionally, the arguments do not account for
the randomness of the variable entry; Berk (1978) notes that F -values at later
steps of the variable selection procedure have a downward bias since important
dimensions have been “selected out” at earlier stages, which provides further
rationale for the conservativeness of the procedure from the familywise Type I
error standpoint.

The effect of the term (Pj,s − Ps)XRs(−j)βRs(−j) in the numerator noncen-
trality δ1 can be to increase or decrease the Type II error probability. With an
orthogonal array, the term is identically zero. SSDs are not orthogonal, and the
effects of this nonorthogonality on Type II error probabilities are unpredictable in
practice, depending upon the actual values of the parameters in βRs(−j). When
the error variance is known, we find that the power can be increased dramati-
cally, but the Type I errors also can be dramatically inflated since there is no
denominator noncentrality to counterbalance the numerator noncentrality.

4.3. Simulation and analytical studies

The design used for our simulation study is again that of Lin (1993), p. 30.
Data were simulated under various null and alternative configurations by gener-
ating random Y -vectors and associating them with the given design matrix. The
simulation required two loops, an outer loop, where the data were generated,
the ordinary forward selection procedures were used, and the summary statistics
were tabulated; and an inner loop, where the resampling estimates were tabu-
lated and passed to the outer loop. For the forward selection and Bonferroni
probabilities, the simulation size was taken to be 10,000, insuring a maximum
95% margin of error less than ±.01. The control variate entries require more
extensive simulations: the outer loop was chosen to be NSIM = 800 and the
simulation size for the inner loop was NRES = 400. Results from Westfall and
Young (1993), p. 41 suggest that the inner loop should be made smaller than the
outer loop, that the margin of error from using 400 instead of infinite resamples



110 PETER H. WESTFALL, S. STANLEY YOUNG AND DENNIS K. J. LIN

is ±1/401, and that the maximum 95% margin error from using 800 outer loop
simulations is ±1.96{(.5)(.5)/800}1/2 , yielding a maximum 95% margin of error
for the control variate simulations of ±.037; the value is much smaller for propor-
tions that are near 1.0 and 0.0. In practice, there would be no “outer loop”, and
one would take NRES much larger than 400, say 10,000 or more. Further, one
would examine the simulation standard error to determine whether the sample
size is adequate.

The methods compared are (i) ordinary forward selection, (ii) Bonferroni for-
ward selection, and (iii) resampling (using control variates). Consistent with the
notion of “effect sparsity”, the number of active effects considered are 0,1,. . . ,5.
In all cases the effects are assumed to have the same size, β/σ = 5.0. Due to the
confounding structure in the SSD, the sign of the effect can be very important in
determining the operating characteristics of the method. Thus the signs of the
effects are allowed to be either + or −.

To simplify matters, it is assumed that the active effects occur only for the
first five variables. Given the near symmetry of the SSD, one would expect that
the results would be similar for most other locations for active effects. Note that
in this particular SSD, the correlations for any specific column to all others has
20 ±1/7’s and 3 ±3/7’s. The correlations among first five columns, have all
±1/7, excepting columns (1,2), (2,4) and (4,5). Thus we have covered columns
with 0, 1, and 2 ± 3/7 (Columns 3, 1, 2 respectively). Column 5 has one 3/7
correlation pair, and thus represents the typical situation.

When “−” signs were used, they were assumed to occur only in the last
active variables. For example, in Table 2, the notation “3 + +−” indicates
(β1, β2, β3) = (5, 5,−5). For each parameter configuration, the FWE, the proba-
bility of declaring at least one effect significant, and the probability of declaring
all effects significant are tabulated. Forward selection is used in all cases, with
α = .05, .15, and .50 entry criteria.

Table 2 displays the results. While the FWE of the forward selection proce-
dure is uniformly high, the Bonferroni and resampling estimates control the FWE
generally at or below the nominal level. This suggests that when a variable is
declared significant by either of these methods, it is “honestly significant”, and
not an artifact of excessive testing.

One could argue against multiplicity-adjusted procedures on the basis of
increased Type II error probabilities. In some cases, the adjusted procedures
have virtually no power to detect any effect, whereas ordinary forward selection
has high power (e.g., the 2 + − configuration). However, with ordinary forward
selection, the error rates are so completely uncontrolled that one cannot expect
selected effects to be real. At least with the resampling method, one is able to
state a prescribed significance level. The price of familywise Type I error control
is the reduced power shown in Table 2.
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Table 2. Familywise Type I error rates and power functions.

α = .05 α = .15 α = .50
Number of ————————– ————————– ————————–

Effects FS BON RES FS BON RES FS BON RES

Familywise Error Rate
0 0.80 0.05 0.04 1.00 0.15 0.15 1.00 0.46 0.52
1 0.77 0.05 0.04 1.00 0.15 0.16 1.00 0.46 0.51
2 0.76 0.05 0.04 1.00 0.15 0.15 1.00 0.46 0.50

2+− 0.86 0.00 0.00 1.00 0.00 0.00 1.00 0.11 0.13
3 0.73 0.00 0.00 1.00 0.01 0.01 1.00 0.45 0.52

3+ + − 0.73 0.00 0.00 1.00 0.02 0.00 1.00 0.44 0.52
4 0.71 0.00 0.00 1.00 0.00 0.00 1.00 0.28 0.32

4+ + +− 0.71 0.00 0.00 0.99 0.00 0.00 1.00 0.20 0.21
4+ + −− 0.76 0.00 0.00 1.00 0.00 0.00 1.00 0.22 0.28

5 0.25 0.00 0.00 1.00 0.00 0.00 1.00 0.12 0.13
5+ + + + − 0.96 0.00 0.00 1.00 0.00 0.00 1.00 0.27 0.34
5+ + + −− 0.51 0.00 0.00 1.00 0.00 0.00 1.00 0.43 0.44

Power for at least one effect
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2+− 0.89 0.00 0.00 0.98 0.00 0.00 0.98 0.09 0.14
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3+ + − 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4+ + +− 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.92 0.95
4+ + −− 1.00 0.03 0.03 1.00 0.90 0.90 1.00 1.00 1.00

5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5+ + + + − 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5+ + + −− 1.00 0.54 0.52 1.00 1.00 1.00 1.00 1.00 1.00

Power for all effects
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2+− 0.89 0.00 0.00 0.98 0.00 0.00 0.98 0.07 0.14
3 1.00 0.00 0.00 1.00 0.07 0.07 1.00 0.92 0.99

3+ + − 1.00 0.00 0.00 1.00 0.07 0.07 1.00 0.90 1.00
4 0.99 0.00 0.00 0.99 0.00 0.00 0.99 0.38 0.64

4+ + +− 0.87 0.00 0.00 0.97 0.00 0.00 0.97 0.17 0.31
4+ + −− 0.78 0.00 0.00 0.98 0.00 0.00 0.98 0.19 0.28

5 0.01 0.00 0.00 0.29 0.00 0.00 0.29 0.00 0.00
5+ + + + − 0.49 0.00 0.00 0.73 0.00 0.00 0.73 0.04 0.07
5+ + + −− 0.08 0.00 0.00 0.64 0.00 0.00 0.65 0.01 0.02

The assumption that some effects are active and other are completely inac-
tive is artificial. Rather, it is likely that some effects are important, and others
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are relatively less important. This situation may be simulated by generating
active effects exactly as in Table 2, but by generating the remaining effects in-
dependently as N(0, 1). A N(0, 1) variable can rarely be expected to exceed 3.0,
and the active effects are always 5.0, so it is reasonable to call the remaining
effects “inactive”. This model is related to the Bayesian formulation of Box and
Meyer (1986), who assumed that the all parameters were normally distributed,
with a smaller variance for the inactive factors. These simulations (not shown)
showed similar control of Type I errors for the Control Variate and Bonferroni
adjustments, excessive Type I errors for the FS method, and generally lower
power for all methods.

The unpredictable effect of nonorthogonality on Type II error probabilities
is seen by comparing the “2 + −” entries (β1/σ = 5, β2/σ = −5) with the “2”
entries (β1/σ = β2/σ = 5) in Table 2. For “2 + −”, δ1/δ2 = 4.80, while under
“2”, δ1/δ2 = 30.00, for the first variable entered (either X1 or X2). Noting that
F = δ1/δ2 when σ = 0, this disparity explains the large differences in power
for these configurations. For situation “2 + −”, the first-entering variable is
barely significant , even before multiplicity adjustment, in cases where there is no
experimental error! The “2” case is “highly significant” in this case, even after
multiplicity adjustment: the Bonferroni adjustment is 23 × P (F1,12 > 30.00) =
.0033. The disparity between the “2 + −” and “2” cases is attributable to the
fairly large correlation (.43) between X1 and X2, which is the maximal correlation
in the given SSD, shared by many variable pairs.

To further examine the effects of numerator noncentrality, we considered the
case where the variance is known (in this example, σ = 1.0). The algorithm then
changes by substituting 1.0 for the denominator MSE in all cases, and changing
the F probabilities to χ2

1. In this case there is no denominator noncentrality, and
we can isolate the effects of numerator noncentrality. For the 2 + − parameter
configuration of Table 2, we find familywise error rates of .50, .53, and .63 for
Bonferroni forward selection at α = .05, .15, and .50 respectively, using 10,000
simulations. Examination of the simulations resulting in Type I errors showed
that the null effects that are confounded with the non-null effects were entered
at one of the first two steps. In the unknown variance case represented by Table
2, there was sufficient denominator noncentrality to prevent these occurrences.
On the other hand, power is predictably higher when variances are known: the
power for detecting both effects in this simulation was identically .98 for α = .05,
.15, and .50.

5. Applications

Table 3 displays the analysis of the actual response data (Lin (1993), p. 30).
Simulated values are estimated using NSIM = 200, 000 resampled data sets. A
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file was used for this analysis, which took approximately 3.0 hours
on a 2100 Alpha VAX EV-5 computer. The probability of observing a maximum
F -statistic as large as 20.5859 at the first step is estimated as 0.0155662, highly
significant. We therefore claim that X15 has a real effect, and continue. At
the second stage, the probability of observing an F -statistic as large as 4.5883,
in models including only the variable X15, is estimated as 0.816161, which is
insignificant at any reasonable level. Our analysis of this data will stop at this
point, declaring X15 to be the only significant variable.

Table 3. Forward selection results for Williams (1968) data. Monte Carlo
standard errors (based on 200,000 simulations) in parentheses.

Adjusted p-Value
Unadjusted ———————————

Step Variable F p-value Bonferroni CV
1 15 20.5859 0.000681 0.015667 0.015662

(0.000005)
2 12 4.5883 0.055410 1.219016 0.816161

(0.001328)
3 20 10.0744 0.009920 0.208313 0.200448

(0.000199)
4 4 16.7527 0.002705 0.054097 0.053782

(0.000040)
5 10 5.4188 0.048325 0.918169 0.691004

(0.001041)
6 11 7.1906 0.031469 0.566449 0.486729

(0.000635)

Note that variables 20 and 4 appear marginally significant (adjusted p-levels
of 0.200448 and 0.053782, respectively); however, if the second stage variable
X12 is a Type I error, then the denominator of the F -statistics at these later
stages is biased low, resulting in inflated F -statistics. Thus it is reasonable to
stop the selection process at stage 2. The remaining steps are shown to indicate
the adequacy of the Bonferroni approximation, which requires no simulation.

The second example is a cast fatigue experiment analyzed by Hamada and
Wu (1992), with data reported in their Table 2, p. 132. There were seven factors,
labelled A–F, in an orthogonal array with 12 runs. Hamada and Wu considered
an analysis strategy to identify significant main effects and interactions. We
re-analyze their data, with special attention to the multiplicity problem. Using
all seven main effects and 7!/(5!2!) = 21 interactions, we create a single SSD
with q = 28 factors and n = 12 observations. Table 4 displays the results of
the forward selection process using multiplicity-adjusted p-values, as described
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in Section 4.2, using 10,000 samples. Using a FWE = .50 entry-level criterion,
variables FG, F , and AE enter. Hamada and Wu found similar results without
multiplicity adjustments, but the AE term would not have been considered using
their “effect heredity” principle.

Table 4. Forward selection results for cast fatigue data. Monte Carlo stan-
dard errors (based on 10,000 simulations) in parentheses.

Adjusted p-Value
Unadjusted ———————————

Step Variable F p-value Bonferroni CV
1 FG 8.0963 0.017387 0.486825 0.440825

(0.002138)
2 F 37.2770 0.000178 0.004808 0.004808

(0.000000)†
3 AE 10.1568 0.012862 0.334409 0.320209

(0.001192)
4 EF 3.5719 0.100684 2.517090 0.986190

(0.009815)
† - ∆∗ ≡ 0 for all 10,000 samples.

6. Concluding Remarks

The general message is that identification of significant variables in SSDs
is very tricky. Many Type I and Type II errors are expected using forward
variable selection. Type I errors can be alleviated by using adjusted p-values,
at the expense of increasing Type II errors. If Type I errors are considered
important, then we recommend using adjusted p-values, with an entry criterion
no higher than FWE = .50. The justification for recommending an FWE of
.50 is that the procedure is conservative, and we would like to compensate for
this conservativeness by allowing more terms in the model. The value .50 is
the largest value of a FWE that seems reasonable: with this value, our results
suggest that the probability of claiming that an inactive effect is significant is no
more than .50. Any value larger than .50 would imply that we expect (or, it is
more likely than not) that some of the effects that we declare as active will in
fact be inactive. Further, while the simulations should be carried out on a wider
range of designs, our limited simulation study (shown in Table 2) suggests that
the true FWE is likely to be much less than .50 in practice.

It is wise to combine several data analysis methods to evaluate the inferences.
The proposed methods of this article should be included in the analyst’s toolkit,
particularly to highlight the potential pitfalls of Type I errors. At the very
least, we recommend that ordinary forward selection p-values and adjusted p-
values be displayed side-by-side in the analysis, to help the investigator gauge
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the likelihood that a given effect is real. The assumption of effect sparsity that is
implicit in the experimenter’s choice of an SSD implies that Type I errors will be
likely, should ordinary forward selection be used. When using forward selection
with multiplicity-adjusted p-values, the experimenter can be reasonably confident
(with prescribed familywise Type I error level) that effects declared significant
using this approach are not multiple testing artifacts.

It is surprising how well the Bonferroni adjustment compares to the actual
forward-selection adjusted p-values for the SSDs we considered. While we recom-
mend the use of actual adjusted levels formally, we can recommend the informal
use of the Bonferroni adjusted p-values as crude but effective upper bounds, for
those analysts who are concerned with the possibility of Type I errors in the
analysis of data arising from SSDs. The fact the appropriate multiplicity adjust-
ment acts like the Bonferroni multiplier reinforces the fact that it is (and should
be) difficult to claim significances with SSDs.

Statistics deals with managing uncertainty, but one might question whether
control of FWE is appropriate for the analysis of SSDs. An alternative to control-
ling the FWE is to control the “false discovery rate”, described in an unrelated
application by Benjamini and Hochberg (1995). Perhaps this is a useful avenue
for further research.

There are several alternatives to forward selection, and it may be possible to
derive methods related to those of this paper for FWE control for those methods
as well. One may supplement forward stepping with backstepping at each stage
to see whether all remaining terms are significant, commonly called stepwise
regression. For example, if there are 3 variables selected, we might then test
whether all of the selected variables remain significant at the α/3 level (assuming
that the Bonferroni correction is reasonable; and all indications of the present
paper suggest that it is). Now, the three variables that have had to enter the
model required significance at much more stringent levels, α/k, α/(k − 1), and
α/(k−2). This fact, coupled with the fact that the collinearity is minor by nature
of SSD construction, makes it unlikely that any of the variables will become
insignificant at the backstep operation. To check this conjecture, we performed
a simulation of the results of the forward selection using the “5 + + + −−”
parameter configuration of Table 2, and noted at the final step whether any
parameters became insignificant. Out of 10,000 simulations, only 5 times was
a variable found insignificant at the final step. Thus, it appears reasonable to
restrict attention to forward selection only, and not consider backstepping, when
performing Bonferroni-corrected adjustments with SSDs.

Another possibility, suggested by a referee, is to perform all-subsets style
regression, using a criterion such as AIC or its finite-sample variants, to select a
subset of variables, then to evaluate the significance of the resulting coefficients
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while allowing for multiplicity and selection effects. One could calculate via
resampling the distribution of the minimum p-value for tests of H0 : βi1 = · · · =
βij = 0 over all subsets {i1, . . . , ij} having cardinality, say, six or less. (Note,
the min p-value must be used here, not maximum F , since the distributions
of the F ’s for different subset sizes are not comparable). The data could be
simulated from the complete null hypothesis, and the minimum p-value could
be computed from an all-subsets regression procedure. This adjusted p-value
then would be a reasonable indicator of whether at least one of the selected
β’s is non-zero. The procedure seems computationally laborious, particularly
since all subsets must be evaluated for each resampled data set. Additionally,
the operating characteristics would need to be explored via simulation analysis,
which would make the computational aspect virtually impossible. Nevertheless,
this could be a promising avenue worth further exploration.

Finally, when choosing a SSD, it is particularly important that correlations
be low, since large correlations can dramatically affect the likelihoods of both
Type I and Type II errors. Consequently, the popular “E(s2)” criterion which
averages all correlations, will make sense for comparing two SSDs only when the
two SSDs share the same maximal correlations.
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