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WAVELET ESTIMATION USING BAYESIAN BASIS

SELECTION AND BASIS AVERAGING

Robert Kohn, J. S. Marron∗ and Paul Yau∗

University of New South Wales and ∗University of North Carolina, Chapel Hill

Abstract: Wavelet shrinkage methods are widely recognized as a useful tool for non-

parametric regression and signal recovery, while Bayesian approaches to choosing

the shrinkage method in wavelet smoothing are known to be effective. In this paper

we extend the Bayesian methodology to include choice among wavelet bases (and

the Fourier basis), and averaging of the regression function estimates over different

bases. This results in improved function estimates.
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1. Introduction

Wavelet methods are an interesting approach to nonparametric regression
because they provide a new type of orthogonal series estimator which handles spa-
tially varying smoothness more efficiently than classical linear methods. Mathe-
matical definitions for wavelet methods are given in Section 2, with detailed dis-
cussions given in Donoho and Johnstone (1995) and Donoho, Johnstone, Kerky-
acherian and Picard (1995).

The first wavelet nonparametric curve estimators use simple methods of
shrinkage, but many alternative shrinkage functions are possible. In particular,
Chipman, Kolaczyk and McCulloch (1997) and Clyde, Parmigiani and Vidakovic
(1997) propose Bayesian shrinkage methods and show that they compare favor-
ably to the earlier ones.

While wavelet bases are impressive in terms of adapting to a wide range
of regression functions, no single wavelet basis is uniformly best. This suggests
that improved performance can be obtained by automatic choice of wavelet basis
or averaging over estimates for different bases. Section 4 extends the Bayesian
frameworks of Chipman, Kolaczyk and McCulloch (1997) and Clyde, Parmigiani
and Vidakovic (1997) to include data driven choice of the basis and weighted
averaging over the estimates produced for different bases, using the posterior
probabilities of the bases as weights. The resulting estimators are shown in
Section 5 to perform well in comparison to single basis methods. In addition
to providing important new types of wavelet estimators, our work shows that
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basis choice is a serious issue, and it is not enough to rely on the good overall
performance properties of the best wavelet bases.
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Figure 1. Target regression curve, shown as the heavy dashed line, with
10 simulated estimates (from the Donoho and Johnstone Blocks example
with high noise). Figures 1a and 1b are the simple hard and soft thresholded
estimators. Figure 1c is the Chipman, et al. estimator. Figures 1a–1c use the
Symmlet 8 basis. Figure 1d is the empirical Bayes basis selection estimator.

Figure 1 shows how basis selection improves on the single basis estimators
when the regression function is piecewise constant. Figures 1a–1c give the func-
tion estimates obtained with hard and soft thresholding and the empirical Bayes
estimator of Chipman, Kolaczyk and McCulloch (1997); all three estimators use
the Symmlet 8 basis. The hard thresholding method has spurious spikes which
disappear for soft thresholding, but at the cost of excessive rounding of corners.
The empirical Bayes estimator gives noticeably better performance, but there is
still a disappointing rounding of the corners. The relatively poor performance of
the single basis estimators is more a weakness of the basis than of the shrinkage
method because the Symmlet 8 basis functions are smooth and it is difficult to
reconstruct the sharp corners from high noise data. However, the Haar basis of
step functions gives a much better reconstruction of this signal, although this ba-
sis is inappropriate for smooth signals. Figure 1d shows that our basis selection
method improves on the estimators using just the Symmlet 8 basis by choos-
ing from a suite of bases, which includes the Haar. In this example, the basis
selection method usually chooses the Haar basis, which results in much better
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reconstruction. There is some chance of mis-estimating the correct basis, which
is shown in Figure 1d by one estimate based on the Daubechies 4 basis. The
reconstruction is not perfect because the noise level is moderately high here, but
it is much better than for the single basis methods.

2. Wavelet Basics

Wavelet shrinkage is considered in the context of nonparametric regression,
where it is desired to recover the smooth curve m(x) from noisy observations

yi = m(xi) + εi, i = 1, . . . , n,

with E(εi) = 0. We make the following technical assumptions:
A1 The xi are equally spaced with xi = (i− 1/2)/n.
A2 The sample size n is a power of two with n = 2k.
A3 The errors ε1, . . . , εn are independent N(0, σ2).

These assumptions can be weakened, although there is some cost in doing so
in terms of insight, computational complexity, and tractability of analysis.

Orthogonal series methods for recovering the signal vector m = (m(x1), . . . ,
m(xn))t from the data vector y = (y1, . . . , yn)t are understood easily via spectral
representation. That is, write m as the linear combination

m =
n∑

i=1

βiψi = Ψβ (2.1)

of vectors ψ1, . . . ,ψn that form an orthonormal basis of n-dimensional Euclidean
space. The matrix Ψ has ith column ψi and is orthonormal, and β = Ψtm. Let
w = Ψty and e = Ψε. Then w = β+ e, with e ∼ N(0, σ2I).

The transformed observation vector w is an unbiassed estimator of β and
is useful for estimating β when most of the power of the signal, as measured by
the sum of squares mtm, is captured by a few of the βi. In signal processing
terms this is called good signal compression. For example, this happens using
the Fourier basis when the signal m is smooth and periodic. In this case, most
of the βi in (2.1) can be set to 0; this entails damping most of the noise while
retaining most of the signal, and thus results in good estimates of m.

More generally, we consider the class of shrinkage estimators of m,

m̂ =
n∑

i=1

β̂iψi, (2.2)

where β̂i = ηi(wi) and ηi(wi) shrinks wi towards 0 or even sets β̂i to 0 for small
wi.
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The large amount of current interest in wavelets is due to their ability to do
effective signal compression for both smooth and periodic signals, as well as for
signals that are smooth in most locations, but have some points of nonsmooth-
ness. Wavelet bases effectively compress signals with smoothness varying by loca-
tion because they are adaptive in terms of both scale (this concept is the same as
frequency in Fourier analysis) and location. Because of this dual ability to adapt,
wavelet bases are most conveniently represented using the following double index-
ing notation: j(= j0, . . . , log2(n/2)) indexes scale, and k(= 0, . . . , 2j − 1) indexes
location. The parameter j0 is chosen as small as possible for the given basis.
This index system has a simple correspondence to the indices i = 2j0 + 1, . . . , n
used above via

i↔ (j, k) as i = 2j + k + 1.

These two index systems are used interchangeably in the rest of the paper, with
the choice of indexing made in terms of convenience. While the Fourier basis
does not have a structure requiring double indexing, it is useful to organize it in
this way for the empirical Bayes estimator.

It is also useful to write the wavelet bases in terms of father wavelets ψi,
which are the i = 1, . . . , 2j0 elements of the basis, and the mother wavelets ψj,k,
which correspond to i = 2j0 + 1, . . . , n. The wavelet version of the spectral
representation (2.1) becomes

m =
2j0∑
i=1

βiψi +
log2(

n
2
)∑

j=j0

2j−1∑
k=0

βj,kψj,k.

The shrinkage estimator (2.2) becomes

m =
2j0∑
i=1

β̂iψi +
log2(n

2
)∑

j=j0

2j−1∑
k=0

β̂j,kψj,k,

where β̂i = wi and β̂j,k = ηj(wj,k). Note that the shrinkage functions ηj , j ≥ j0,
depend on the level j, but not on the location k. The father terms, wi, i =
1, . . . , 2j0 , are typically left unthresholded because they represent low frequency
terms that usually contain important components of the signal. Thus the param-
eter j0 controls how many terms are of this type. The hard thresholding estimator
studied by Donoho and Johnstone (1994) has a shrinkage function that can be
expressed as

ηH,j(w) =

{
w for |w| ≥ λσ

0 for |w| < λσ
, for j ≥ j0, (2.3)

for a given value of the threshold λ. The function ηH is plotted in Figure 2 and
shows that ηH zeros small values of w and leaves large values of w untouched.
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The soft thresholding estimator proposed by Donoho and Johnstone (1994)
has the shrinkage function

ηS,j(w) =

{
sgn(w) · (|w| − λσ) for |w| ≥ λσ

0 for |w| < λσ
, for j ≥ j0, (2.4)

and is again independent of k. The function ηS is plotted in Figure 2 and corre-
sponds to moving the w terms λσ units towards the origin. We write the hard
and soft thresholding estimators as m̂H and m̂S .

The hard and soft thresholding estimators considered in all examples in
this paper have j0 = 5, with n = 1024. This choice of j0 gives good overall
performance in our simulations.

The error standard deviation σ is usually unknown, but a good estimator of σ
is obtained by using a robust scale estimate based on the highest frequency terms
wj,k, as suggested by Donoho and Johnstone (1994). Following their suggestion,
our scale estimate is based on the median absolute deviation from the median
(normalized by dividing by the corresponding standard normal term), which we
write as σ̂.

We consider two choices of the threshold value λ. Donoho and Johnstone
(1994) proposed the denoising threshold,

λD =
√

2 ln n, (2.5)

which corresponds to the largest size of Gaussian pure noise terms, and is well
suited for use with ηH . For ηS a somewhat smaller threshold value is more
appropriate, which results in more terms in the model to counter the shrinkage
effect. Donoho and Johnstone (1994) proposed a minimax optimal value, called
λMO.

Detailed analyses, and additional insights, about hard and soft threshold-
ing are in Marron, Adak, Johnstone, Neumann and Patil (1998). A number of
variations on these thresholding schemes are suggested in the literature, but the
choice among them is unclear.

3. Bayesian Shrinkage

3.1. Introduction

We consider two Bayesian estimators of the vector m based on wavelets.
The first is an empirical Bayes estimator in which the prior is determined from
the data. The second is what we call a “calibrated” Bayes estimator because
the parameters of the prior are determined by calibrating the posterior distribu-
tion against some variable selection criterion. Our empirical Bayes approach is
almost identical to that of Chipman, Kolaczyk and McCulloch (1997), while the
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calibrated prior approach is based on the work of George and Foster (1997) and
is similar to that used by Clyde, Parmigiani and Vidakovic (1997).

For both approaches, let γi = 1 if the basis vector ψi is included in the
model (2.1) and let γi = 0 if it is not. Let γ = (γ1, . . . , γn). For a given γ we
have from (2.1) that m is a linear function of those vectors ψi for which γi = 1.
Let πi = p(γi = 1) be the prior probability that ψi is included in the model and
let π = (π1, . . . , πn).

3.2. Estimation using empirical (data based) priors

For γi = 1 the prior for βi is N(0, c2i ). For wavelets we use the double index
notation and choose ci = cjk and πi = πjk to depend on the scale j only, so that

cj = ||ψj,k||1 × maxi=1,...,n |yi|/3,
πj = #{k : |yj,k| >

√
2 log n}/2j ,

(3.1)

where ||ψj,k||1 is the L1 norm of the basis vectors at scale j; we note that all ψj,k

have the same norm for a given level j. This prior is essentially that of Chipman,
Kolaczyk and McCulloch (1997) and a motivation for the choice of cj and πj in
(3.1) is given in Appendix 1. We use the posterior mean of βi as its estimate
and note the wi are independent given σ2; this means that E(βi|y, σ2, πi, ci) =
E(βi|wi, σ

2, πi, ci). We can show that

E(βi|wi, σ
2, πi, ci) = ηEB,i(wi), (3.2)

where

ηEB,i(w) =
πiσc

2
iw

πiσ(c2i + σ2) + (1 − πi)(c2i + σ2)3/2 exp
(
− w2

2σ2

(
c2i

c2i +σ2

)) . (3.3)

We use the notation ηEB,i to signify that the empirical Bayes estimator works in
the same way as the threshold functions (2.3) and (2.4). This is demonstrated
in Figure 2 which plots the shrinkage function (3.3) for several values of the
hyperparameter ci. For moderate values of ci, the function ηEB,i behaves like
the hard thresholding function ηH ; it essentially zeros out small coefficients and
keeps large coefficients unchanged. The key difference between ηEB and ηH

occurs at intermediate values of w; in this range ηEB is a smoother function
of w, i.e., small changes in w create small changes in ηEB,i(w). An attractive
feature of the Bayesian approach is that it provides a natural set of choices for
the shrinkage function through the choice of prior.

For the Fourier basis we found it convenient to estimate the cj and πj by
grouping as for the wavelet bases, even though the Fourier basis does not have a
structure that requires double indexing. We are investigating other methods of
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obtaining an empirical Bayes prior for the Fourier basis that is also suitable for
basis selection and basis averaging.

The empirical Bayes estimator (3.3) assumes that the error variance σ2 is
known. In practice it is usually unknown and needs to be estimated from the data.
We follow Chipman, Kolaczyk and McCulloch (1997) and plug in an estimate
σ̂2 for σ2 as we did for the hard and soft thresholding estimators. We write this
estimator as m̂EB.

Alternatively, we can place a prior on σ2, for example the noninformative
prior p(σ2) ∝ 1/σ2, and obtain the posterior mean estimate of β with σ2 inte-
grated out. However, it is now necessary to use a Markov chain Monte Carlo
method (see Clyde, Parmigiani and Vidakovic) to estimate the posterior means
because a closed form expression is not available for them. The disadvantage of
using Markov chain Monte Carlo is that it is appreciably slower than using the
plug-in approach.
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Figure 2. Shrinkakge functions for σ = 1, hard ηH with λ = 1 shown as the
thick black dashed line, soft ηS with λ = λMO/λH (for n = 1204, to make
visually comparable with ηH) shown as the thick dot-dashed line, and the
empirical Bayes ηEB,i for ci = 4l, l = −1, 0, 1, . . . , 10, πi = 0.5 and σ = 1
shown as the thin lines.

3.3. Estimation using calibrated priors

George and Foster (1997) emphasize the importance of the choice of priors in
variable selection in regression. They show how the choice of unknown parameters
in the prior can be calibrated against frequentist variable selection criteria and
F-statistics. We follow their approach, but use posterior odds ratios to calibrate
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the parameters of the prior. A related approach based on F-values is given by
Clyde, Parmigiani and Vidakovic (1997).

For γi = 1 we take the prior for βi ∼ N(0, σ2c2i ). The posterior odds ratio
that γi = 1 vs γi = 0, for given values of σ2, ci and πi, is

Oi =
p(γi = 1|wi, σ

2, ci, πi)
p(γi = 0|wi, σ2, ci, πi)

;

Oi can be expressed as

Oi =
1√

1 + c2i

exp

(
w2

i c
2
i

2σ2(1 + c2i )

)
πi

1 − πi
.

A Bayesian equivalent of hard thresholding is to select γi = 1 if Oi > 1, and to
set γi = 0 otherwise. With some algebra we obtain that Oi > 1 is equivalent to(

wi

σ

)2

>
1 + c2i
c2i

{
log(1 + c2i ) + 2 log

(
πi

1 − πi

)}
.

One way of choosing ci and πi is to equate the Bayesian decision to hard
thresholding, in which case we take(

wi

σ

)2

>
1 + c2i
c2i

{
log(1 + c2i ) + 2 log

(
πi

1 − πi

)}
= 2 log n. (3.4)

Because ci and πi cannot be determined simultaneously from (3.4), we take πi =
0.5 without loss of generality, giving ci ≈ n.

We now give a more general strategy for choosing the prior. Take πi = 0.5
and ci = c for all i. Let

Q =
n∏

i=1

p(Oi < 1|σ, c).

Then Q is the probability that Oi < 1 simultaneously for all i, that is, Q is the
probability that we take the regression functionm identically equal to zero under
the Bayesian decision rule. It is not difficult to show that ifm is identically equal
to zero then

Q = {2Φ(tc) − 1}n, (3.5)

where tc = 1+c2

c2 log(1 + c2) and Φ is the standard normal cdf.
If we take Q = 0.8 then tc ≈ 2 log n which gives the hard thresholding rule.

However, we can set Q at any level and solve for c. Experimentally, we found
that setting Q = 0.9 or even 0.98 works quite well. Let

cQ = exp
(
0.5 × Φ−1{(Q1/n + 1)/2}

)
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be the (approximate) solution of (3.5) for a given Q. Using c = cQ and πi = 0.5,
the posterior mean of βi can be obtained as in Section 3.2. For a given value of
Q we write the calibrated Bayes estimator of m as

m̂Q
CB = E(m|y, cQ, σ2).

If the error variance σ2 is unknown, then a plug-in estimate is used as in Section
3.2.

4. Basis Selection and Basis Averaging

In addition to giving natural shrinkage functions, as demonstrated in the last
section, the Bayesian approach provides a simple method for choosing between
different wavelet bases or averaging the curve estimate over different bases. Here
we consider a choice among the Symmlet 8, Daubechies 4, Haar and Fourier
bases.

Let B denote a generic basis and assign it prior probability p(B), taken to be
uniform over these four bases (i.e., p(B) = 1

4) in all examples here. The resulting
posterior probability is

p(B|y, σ2) ∝ p(w|σ2, B)p(B)

and

p(w|σ2, B) =
n∏

i=1

p(wi|σ2, B) = exp

(
n∑

i=1

ln p(wi|σ2, B

)
, (4.1)

because the wi are independent conditional on σ2. The expression on the right
in (4.1) is computationally more stable than the expression in the middle. Each
of the densities p(wi|σ2, B) is evaluated directly using

p(wi|σ2, B) = p(wi|σ2, B, γi = 0)(1 − πi) + p(wi|σ2, B, γi = 1)πi.

We assume that if σ2 is unknown, then its estimate is plugged in. If a prior
distribution is put on the unknown σ2 then it is necessary to use a Markov
chain Monte Carlo method such as Gibbs sampling to compute p(w|B) with σ2

integrated out because the wi are independent only conditional on σ2. In our
experiments, the results using the Gibbs sampler were essentially the same, in the
sense that the main comparisons came out the same way, as those obtained using
a plugged in estimate of σ2. Although some fast algorithms are available to carry
out Gibbs sampling when σ2 is unknown, the computation time is substantially
less when using a plugged-in estimate.

Using the posterior probabilities for each basis we can form two estimators
of m. The first is the estimator using the most probable basis as determined
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by the posterior probabilities. The second is a weighted average of the posterior
mean estimates over the four bases, using the posterior probabilities as weights.
We use the notation m̂EB,B and m̂EB,A for the empirical Bayes estimator using
the best (most probable) basis and the basis averaged estimator, respectively,
where

m̂EB,A =
n∑

j=1

m̂j
EBp(Bj|w)

and m̂j
EB is the posterior mean estimate of m for basis Bj. We use similar

notation for the calibrated Bayes estimator. That is, for a given Q, m̂Q
CB,B is the

posterior mean estimate using the best basis and m̂Q
EB,A is the basis averaged

estimator.

5. Simulation Comparison

5.1. Introduction

This section reports the results of a simulation study comparing the perfor-
mance of single basis estimators, both Bayesian and non-Bayesian, with estima-
tors using basis selection and basis averaging. We use the Symmlet 8 basis for
those experiments in which it is necessary to choose a single “best” basis because
it is a good all-round performer as shown by the simulation results in Section
5.4, which is in accordance with wavelet folklore about these bases.

Figure 3 plots the twelve target curves used in the simulation. The first ten
are used by Marron, Adak, Johnstone, Neumann and Patil (1998), the 11th is
the zero function representing no mean structure, and the 12th is a mixture of
two Gaussian densities representing a smooth function which requires a variable
bandwidth estimator. This choice of targets induces a weighting scheme which
has an impact on the simulation results reported below, but we feel the induced
weights are reasonable for assessing the estimation methods. The design points
are n = 1024 equally spaced points on [0, 1], and independent Gaussian noise is
added to yield the simulated observations yi = m(xi) + εi. Two noise levels are
used; σ = 0.02 (low noise), and σ = 0.1 (high noise). Visual impression of these
two noise levels is given by the lower right panels of Figure 3. The low noise is
close to that often used in the wavelet examples of Donoho and Johnstone.

The performance of an estimator m̂ is conveniently summarized by the Av-
erage Squared Error

ASE =
1
n

n∑
i=1

{m̂(xi) −m(xi)}2 .

For each setting, the various estimators and their ASE values were computed
for each of 1000 replicate pseudo data sets. These ASE’s are summarized by
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their average ASE (AASE) over the 1000 replicates. The error criterion ASE is
known to be somewhat different from visual impression, so we tried the visual
error criterion of Marron and Tsybakov (1995) in some of these cases, but the
main lessons are similar.

 

#1 Step #2 Wave #3 Blip #4 Blocks #5 Bump

#6 HeavSi #7 Doppl #8 Angles #9 Parabs #10 TShSin

#11 Const #12 Gauss

Figure 3. 12 target regression curves, plus step with n = 1024 pseudo obser-
vations show low, σ = 0.02, and high, σ = 0.1, Gaussian noise.

Because of the relatively large number of estimators studied, overall sum-
marization can obscure the main ideas. Hence we present our results in several
parts, designed to address three issues of interest. Section 5.2 studies whether
Bayesian methods are worthwhile. Section 5.3 studies the gain available from
basis selection and basis averaging. Section 5.4 compares the performance of the
empirical Bayes approach to the calibrated Bayes approach for the four bases.

For each part, and for each of the 24 settings (12 target curves and 2
noise levels), the estimators in that part are compared through the proportion
(AASE/AASEbest)− 1, where AASEbest is the estimator having smallest AASE
for that part and setting. This proportion is the main entry of each of the tables
in Appendix 2. The accompanying entries in parentheses in each table reflect the
simulation uncertainty by giving an estimate of the standard errors of each main
entry in the table. To keep the tables manageable, we give the standard error
estimates for the high noise case only. The estimates for the low noise case are
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similar qualitatively. Figures 4 to 6 summarize the tables. The figures show the
performance of each estimator relative to others being studied in that part, for
each of the 24 settings, by classifying the corresponding table entries into one of
the following five categories.
1. Best: either the best overall AASE, or else within Monte Carlo variability

(defined as 2 standard errors) of the best.
2. Excellent: AASE within 10% of the best for that setting.
3. Very Good: AASE between 10% and 20% of the best for that setting.
4. Acceptable: AASE farther than 20% from the best for that setting, but less

than 100% from the best.
5. Poor: AASE more than 100% from the best.

The figures show the number of times (over the 24 settings) the estimator
falls into each category, relative to the other members in that group.

5.2. Fixed basis Bayesian methods

Figure 4 compares some earlier wavelet estimators with the empirical Bayes
estimator, and the calibrated Bayes estimators taking Q = 0.90 and 0.98. All
estimators use the Symmlet 8 basis. The figure summarizes Table 1 in Appendix
2.
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Figure 4. Comparison of classical and Bayesian methods using the Symmlet
8 basis. EB is empirical Bayes, CB is calibrated Bayes. 1 is best and 5 is
worst.
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Figure 4 shows that the empirical Bayes method is the best of the 6 estimators
and that generally the Bayesian estimators perform favourably relative to the other es-
timators. The favourable performance of the Bayesian estimators is consistent with the
results of Chipman, Kolaczyk and McCulloch (1997) and Clyde, Parmigiani and Vi-
dakovic (1997). As observed in Marron, Adak, Johnstone, Neumann and Patil (1998),
hard thresholding is somewhat better overall than soft thresholding in the sense of
AASE. We were surprised by the poor performance of Sure Shrink, but do not believe
there is a problem with our implementation, since we used the SUREShrink function
SUREThresh.m in WaveLab (http://playfair.stanford.edu/∼wavelab).

000

000

111

111

222

222

333

333

444

444

5

5

5

5

5

5

5

5

5

5

5

5

101010

101010

151515

151515

202020

202020

Figure 5. Comparison of the empirical Bayes estimator using the Symmlet
8 basis and the empirical Bayes estimators using basis selection and basis
averaging.

5.3. Basis selection

Figure 5 and Table 2 compare the empirical Bayes and calibrated Bayes
estimators using the Symmlet 8 basis with the corresponding estimators using
basis selection and basis averaging. For the calibrated Bayes estimator we use
Q = 0.9 because it performs better overall than Q = 0.98 as evident from Figures
4 and 6 and Tables 1, 3 and 4. The empirical Bayes method with basis averaging
performs best overall with empirical Bayes with basis selection second. The
empirical Bayes estimator using the Symmlet 8 basis does well for those functions
for which it is the correct basis, but it can perform poorly for those functions
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for which it is not. In particular, Figure 5 and Table 2 emphasize the big gains
made by basis selection and basis averaging.
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Figure 6. Comparison of empirical Bayes (EB) and calibrated (CB) Bayes
approaches for individual bases.

5.4. Empirical Bayes vs calibrated Bayes for individual bases

Figure 6 studies the performance of empirical Bayes and calibrated Bayes
for the four different bases. The figure summarizes the results in Tables 3 and
4 of Appendix 2. Rows in Figure 6 correspond to different Bayesian approaches
and columns correspond to different bases. Comparing across rows shows that
the empirical Bayes approach is generally somewhat better than the calibrated
Bayes approach, and the calibrated Bayes approach with Q = 0.90 is generally a
little better than the calibrated Bayes approach with Q = 0.98. This is why the
calibrated Bayes method with Q = 0.90 is chosen in Figure 5. An exception is the
Fourier basis where the calibrated Bayes estimator withQ = 0.98 outperforms the
calibrated Bayes estimator with Q = 0.90. Comparison of columns, especially
in the bottom row, confirms the conventional ideas about wavelet bases: the
Symmlet 8 gives generally solid all-around performance. But perhaps less well
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known is our result that, in quite a few of these examples, the Symmlet 8 basis
can be much worse than other bases.
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Appendix

1. Motivating the empirical Bayes prior

To make the paper self contained we follow Chipman, Kolaczyk and McCul-
loch (1997) and motivate the empirical Bayes prior in (3.1). To motivate the
choice of cj , we note that by Hölder’s inequality

|βj,k| ≤ ‖ψj,k‖1 · max
i=1,...,n

|mi| .

A rough approximation to maxi=1,...,n |mi| is maxi=1,...,n |yi|. In the spirit of the
mean plus or minus three standard deviations capturing most of the mass of the
Gaussian distribution, 3cj is an approximate bound on |βj,k| making N(0, c2j ) a
reasonable prior for βj,k. The probability πj is the empirical probability of a term
at scale j being larger than λD, the denoising threshold defined at (2.5). The
Bayesian shrinkage estimator can be viewed as an update of the hard thresholded
method. A slight difference with the hard and soft thresholded estimators is that
for this Bayesian estimator, thresholding is applied to all coefficients, including
the father coefficients (although this typically does not make a difference, since
usually πj = 1 for the important large scale coefficients). We experimented
with other values, but found these to be quite effective. Chipman, Kolaczyk
and McCulloch (1997) also include another hyperparameter τ , but we have not
included it because it usually had no important effect unless set to extreme values
which resulted in poorer performance.

2. Tables of Results

Tables 1 to 4 present, for each estimator and each setting, (AASE −
AASEbest)/AASEbest; AASEbest is the AASE for that estimator having small-
est AASE for that setting within a table. The numbers in brackets are the
corresponding standard errors. To keep the size of the tables manageable, we
present the standard errors only for the high noise case. The stanadard errors
for the low noise case are qualitatively similar. Tables 3 and 4 present the results
of Section 5.4 and should be viewed as one table.
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Table 1. Comparison of Bayesian and non-Bayesian estimators using the
Symmlet 8 basis. The numbers in brackets are standard error estimates for
the high noise case.

CB, Q=0.90, CB, Q=0.98, Emp. Bayes, hard thresh soft thresh sure shrink

Symm8 Symm8 Symm8 Symm8 Symm8 Symm8

step, lo 0.0582 0.1824 0.0000 0.0877 0.5524 3.0952

step, hi 0.1877 0.3429 0.0000 0.0161 0.0306 0.0912

( 0.0052) ( 0.0056) ( 0.0045) ( 0.0045) ( 0.0042) ( 0.0048)

wave, lo 0.4771 0.8519 0.0000 0.3392 1.3339 9.2133

wave, hi 0.1021 0.0842 0.0000 0.0846 0.0655 0.1839

( 0.0040) ( 0.0034) ( 0.0040) ( 0.0058) ( 0.0044) ( 0.0066)

blip, lo 0.0014 0.1399 0.0000 0.0406 0.5059 1.5220

blip, hi 0.2238 0.4181 0.0000 0.1658 0.1903 0.2555

( 0.0088) ( 0.0103) ( 0.0068) ( 0.0079) ( 0.0060) ( 0.0073)

bloc, lo 0.1414 0.3493 0.0000 0.2529 0.7371 6.1121

bloc, hi 0.2877 0.4550 0.0000 0.1646 0.0550 0.2148

( 0.0042) ( 0.0048) ( 0.0033) ( 0.0035) ( 0.0029) ( 0.0065)

bump, lo 0.1453 0.3515 0.0000 0.2094 0.6682 2.6104

bump, hi 0.1934 0.3336 0.0000 0.1672 0.0155 0.0370

( 0.0036) ( 0.0039) ( 0.0032) ( 0.0033) ( 0.0026) ( 0.0039)

hvsi, lo 0.1778 0.3475 0.1097 0.0263 0.0000 0.0387

hvsi, hi 0.0991 0.1018 0.0000 0.2306 0.2413 0.4141

( 0.0064) ( 0.0054) ( 0.0061) ( 0.0092) ( 0.0070) ( 0.0102)

dopp, lo 0.0021 0.1245 0.0000 0.1101 0.3682 1.0172

dopp, hi 0.1208 0.2416 0.0000 0.2678 0.3635 0.4275

( 0.0054) ( 0.0062) ( 0.0046) ( 0.0056) ( 0.0055) ( 0.0076)

angl, lo 0.2204 0.3385 0.0000 0.0032 0.0335 0.2981

angl, hi 0.3664 0.5085 0.0119 0.0000 0.0263 0.1921

( 0.0100) ( 0.0119) ( 0.0071) ( 0.0081) ( 0.0062) ( 0.0091)

para, lo 0.1513 0.2597 0.0000 0.0428 0.3136 0.6968

para, hi 0.1708 0.2363 0.0000 0.3988 0.3129 0.4172

( 0.0072) ( 0.0071) ( 0.0069) ( 0.0085) ( 0.0071) ( 0.0097)

tshs, lo 0.1575 0.2187 0.0000 0.1242 0.4297 0.7106

tshs, hi 0.2428 0.3423 0.0000 0.1619 0.1753 0.3475

( 0.0097) ( 0.0107) ( 0.0078) ( 0.0091) ( 0.0071) ( 0.0102)

cons, lo 0.2951 0.0041 0.0000 3.0086 3.2318 4.1586

cons, hi 0.2921 0.0000 0.1422 3.0922 3.3220 4.2559

( 0.0234) ( 0.0171) ( 0.0209) ( 0.0407) ( 0.0311) ( 0.0453)

gaus, lo 0.1409 0.1745 0.0000 0.1026 0.4256 0.6343

gaus, hi 0.1554 0.1373 0.0000 0.1984 0.2268 0.4122

( 0.0066) ( 0.0053) ( 0.0066) ( 0.0096) ( 0.0074) ( 0.0108)
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Table 2. Comparison of Bayesian estimators using the Symmlet 8 basis, basis
selection and basis averaging. The numbers in brackets are standard error
estimates for the high noise case.

Emp. Bayes, Emp. Bayes, Emp. Bayes, CB, Q=0.90, CB, Q=0.90, CB, Q=0.90,

Symm8 Basis sel. Basis avg. Symm8 Basis sel. Basis avg.

step, lo 10.0771 0.0000 0.0000 10.7214 0.1477 0.1477

step, hi 3.3981 0.0997 0.0997 4.2234 0.0000 0.0000

( 0.0200) ( 0.0133) ( 0.0133) ( 0.0230) ( 0.0124) ( 0.0124)

wave, lo 4.9807 0.0000 0.0000 7.8342 0.0351 0.0351

wave, hi 9.2726 0.0000 0.0000 10.3211 0.1848 0.1848

( 0.0409) ( 0.0200) ( 0.0200) ( 0.0409) ( 0.0306) ( 0.0306)

blip, lo 0.0779 0.0022 0.0000 0.0793 0.0785 0.0656

blip, hi 0.0000 0.0809 0.0253 0.2238 0.3219 0.2502

( 0.0068) ( 0.0069) ( 0.0069) ( 0.0088) ( 0.0087) ( 0.0090)

bloc, lo 2.9481 0.0000 0.0000 3.5062 0.1054 0.1054

bloc, hi 0.2295 0.0116 0.0000 0.5832 0.2162 0.2030

( 0.0041) ( 0.0049) ( 0.0046) ( 0.0052) ( 0.0072) ( 0.0067)

bump, lo 0.1097 0.0000 0.0000 0.2710 0.1838 0.1836

bump, hi 0.0460 0.0150 0.0000 0.2483 0.2333 0.2266

( 0.0033) ( 0.0038) ( 0.0038) ( 0.0037) ( 0.0045) ( 0.0044)

hvsi, lo 0.0001 0.0004 0.0000 0.0615 0.0615 0.0615

hvsi, hi 0.0000 0.0870 0.0615 0.0991 0.4621 0.4563

( 0.0061) ( 0.0066) ( 0.0067) ( 0.0064) ( 0.0099) ( 0.0100)

dopp, lo 0.0000 0.0000 0.0000 0.0021 0.0021 0.0021

dopp, hi 0.0000 0.0000 0.0000 0.1208 0.1208 0.1208

( 0.0046) ( 0.0046) ( 0.0046) ( 0.0054) ( 0.0054) ( 0.0054)

angl, lo 0.0551 0.0406 0.0000 0.2876 0.2089 0.1658

angl, hi 0.0000 0.1100 0.0375 0.3503 0.4903 0.4032

( 0.0070) ( 0.0077) ( 0.0081) ( 0.0099) ( 0.0099) ( 0.0111)

para, lo 0.0000 0.0018 0.0007 0.1513 0.1513 0.1513

para, hi 0.0000 0.0104 0.0063 0.1708 0.1736 0.1725

( 0.0069) ( 0.0073) ( 0.0072) ( 0.0072) ( 0.0074) ( 0.0073)

tshs, lo 0.0000 0.1559 0.1254 0.1575 0.1654 0.1648

tshs, hi 0.1771 0.1097 0.0546 0.4629 0.0004 0.0000

( 0.0091) ( 0.0106) ( 0.0108) ( 0.0114) ( 0.0099) ( 0.0099)

cons, lo 2.2641 0.1226 0.0000 3.2274 0.7810 0.6822

cons, hi 1.6149 0.1610 0.0000 1.9583 0.2404 0.1772

( 0.0479) ( 0.0405) ( 0.0354) ( 0.0536) ( 0.0491) ( 0.0462)

gaus, lo 0.0000 0.0554 0.0363 0.1409 0.2649 0.2173

gaus, hi 0.0437 0.0603 0.0000 0.2059 0.2841 0.2116

( 0.0068) ( 0.0081) ( 0.0082) ( 0.0068) ( 0.0105) ( 0.0110)
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Table 3. Comparison of single basis Bayesian estimators. The numbers in
brackets are the standard error estimates for the high noise case. The table
is continued in table 4.

CB, Q=0.90, CB, Q=0.90, CB, Q=0.90, CB, Q=0.90, CB, Q=0.98, CB, Q=0.98,

Haar Daub4 Symm8 Fourier Haar Daub4

step, lo 0.1906 4.5474 11.1594 118.2406 0.0000 5.1432

step, hi 0.0000 2.1775 4.2234 9.8014 0.0490 2.5934

( 0.0124) ( 0.0197) ( 0.0230) ( 0.0290) ( 0.0126) ( 0.0221)

wave, lo 50.1419 25.7619 7.8414 0.0359 55.9800 28.8413

wave, hi 50.8575 33.0783 13.1985 0.4859 57.4023 36.2924

( 0.1618) ( 0.1127) ( 0.0512) ( 0.0383) ( 0.1809) ( 0.1298)

blip, lo 1.6256 0.0632 0.0813 12.0845 1.9453 0.1863

blip, hi 0.4848 0.2413 0.2238 2.4523 0.6255 0.4107

( 0.0074) ( 0.0078) ( 0.0088) ( 0.0097) ( 0.0081) ( 0.0084)

bloc, lo 0.1054 1.9624 3.5062 14.1679 0.2589 2.4679

bloc, hi 0.1763 0.7051 0.6027 0.8690 0.3530 0.9610

( 0.0047) ( 0.0059) ( 0.0053) ( 0.0063) ( 0.0052) ( 0.0065)

bump, lo 0.5322 0.1838 0.2715 2.7888 0.7795 0.3904

bump, hi 0.4834 0.2351 0.2657 0.8487 0.6822 0.4011

( 0.0045) ( 0.0040) ( 0.0038) ( 0.0044) ( 0.0049) ( 0.0046)

hvsi, lo 2.1987 0.1013 0.1797 1.5860 2.5466 0.2817

hvsi, hi 2.6043 0.8429 0.0991 0.4644 3.0835 0.9059

( 0.0161) ( 0.0072) ( 0.0064) ( 0.0099) ( 0.0180) ( 0.0067)

dopp, lo 3.7246 0.8232 0.0021 4.0631 4.4628 1.0769

dopp, hi 2.3685 1.3441 0.1208 2.6409 2.8030 1.6365

( 0.0096) ( 0.0075) ( 0.0054) ( 0.0103) ( 0.0110) ( 0.0083)

angl, lo 2.9786 0.1796 0.3341 0.5063 3.5721 0.3181

angl, hi 1.6537 0.3251 0.3503 0.5114 1.9194 0.4595

( 0.0115) ( 0.0091) ( 0.0099) ( 0.0094) ( 0.0127) ( 0.0098)

para, lo 3.6651 0.6136 0.1513 0.4892 4.2784 0.7593

para, hi 1.8548 0.6147 0.1708 1.6217 2.2170 0.7843

( 0.0138) ( 0.0099) ( 0.0072) ( 0.0167) ( 0.0157) ( 0.0109)

tshs, lo 9.7622 2.0998 0.1575 0.1654 11.0479 2.5843

tshs, hi 5.2259 2.0632 0.7526 0.1974 5.8689 2.5355

( 0.0211) ( 0.0201) ( 0.0136) ( 0.0119) ( 0.0242) ( 0.0230)

cons, lo 1.7828 1.7851 4.8834 1.2977 0.4937 0.4851

cons, hi 1.4115 1.4562 4.2627 1.1156 0.3172 0.3104

( 0.0758) ( 0.0752) ( 0.0953) ( 0.0863) ( 0.0467) ( 0.0466)

gaus, lo 3.9090 0.6801 0.1409 0.3836 4.5741 0.8343

gaus, hi 0.8357 0.2698 0.2362 1.0253 0.9173 0.3476

( 0.0102) ( 0.0106) ( 0.0070) ( 0.0147) ( 0.0123) ( 0.0117)
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Table 4. Comparison of single basis Bayesian estimators. The numbers in
brackets are standard error estimates for the high noise case. This table is a
continuation of table 3

CB, Q=0.98, CB, Q=0.98, Emp. Bayes, Emp. Bayes, Emp. Bayes, Emp. Bayes,

Symm8 Fourier Haar Daub4 Symm8 Fourier

step, lo 12.5864 132.8428 0.0374 4.7550 10.4910 115.9567

step, hi 4.9062 10.8879 0.0997 1.8549 3.3981 8.3799

( 0.0245) ( 0.0326) ( 0.0133) ( 0.0183) ( 0.0200) ( 0.0248)

wave, lo 10.0849 0.0000 40.2423 19.8853 4.9856 0.0008

wave, hi 12.9688 0.0000 33.6587 24.1176 11.8836 0.2542

( 0.0440) ( 0.0265) ( 0.1228) ( 0.1069) ( 0.0513) ( 0.0251)

blip, lo 0.2308 13.6217 1.0504 0.0000 0.0798 11.4359

blip, hi 0.4181 2.7788 0.2795 0.0346 0.0000 1.8427

( 0.0103) ( 0.0110) ( 0.0076) ( 0.0061) ( 0.0068) ( 0.0085)

bloc, lo 4.3273 16.0946 0.0000 1.7203 2.9481 13.6969

bloc, hi 0.8110 1.1306 0.0000 0.2167 0.2446 0.4785

( 0.0060) ( 0.0076) ( 0.0042) ( 0.0047) ( 0.0041) ( 0.0047)

bump, lo 0.5004 3.3952 0.3609 0.0000 0.1102 2.6429

bump, hi 0.4145 1.0452 0.1623 0.0000 0.0606 0.5844

( 0.0041) ( 0.0048) ( 0.0038) ( 0.0034) ( 0.0034) ( 0.0039)

hvsi, lo 0.3497 1.9347 1.7985 0.0000 0.1115 1.3660

hvsi, hi 0.1018 0.6011 1.5799 0.5243 0.0000 0.1313

( 0.0054) ( 0.0107) ( 0.0110) ( 0.0077) ( 0.0061) ( 0.0061)

dopp, lo 0.1245 4.8131 2.8549 0.6490 0.0000 3.7428

dopp, hi 0.2416 3.1320 1.5719 0.8470 0.0000 1.8523

( 0.0062) ( 0.0121) ( 0.0072) ( 0.0065) ( 0.0046) ( 0.0076)

angl, lo 0.4632 0.6458 2.3965 0.0000 0.0932 0.4103

angl, hi 0.4907 0.6759 1.1405 0.0679 0.0000 0.0705

( 0.0118) ( 0.0100) ( 0.0097) ( 0.0078) ( 0.0070) ( 0.0075)

para, lo 0.2597 0.6400 3.1199 0.4730 0.0000 0.3513

para, hi 0.2363 2.1644 1.1755 0.2208 0.0000 0.6852

( 0.0071) ( 0.0203) ( 0.0105) ( 0.0087) ( 0.0069) ( 0.0115)

tshs, lo 0.2187 0.1975 8.0715 1.3652 0.0000 0.1473

tshs, hi 0.8928 0.2469 3.7925 1.0481 0.4101 0.0000

( 0.0151) ( 0.0122) ( 0.0168) ( 0.0130) ( 0.0110) ( 0.0099)

cons, lo 3.5615 0.0000 0.8219 0.7351 3.5427 0.2964

cons, hi 3.0729 0.0000 1.2241 1.1693 3.6519 0.4805

( 0.0697) ( 0.0580) ( 0.0733) ( 0.0728) ( 0.0852) ( 0.0596)

gaus, lo 0.1745 0.4274 3.4715 0.5461 0.0000 0.3495

gaus, hi 0.2169 1.3331 0.6860 0.0000 0.0700 0.4148

( 0.0057) ( 0.0178) ( 0.0085) ( 0.0088) ( 0.0070) ( 0.0101)
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