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Abstract: In missing data analysis, multiple robustness is a desirable property

resulting from the calibration technique. A multiply robust estimator is consistent if

any one of the multiple data distribution models and missingness mechanism models

is correctly specified. So far in the literature, multiple robustness has only been

established when data are missing at random (MAR). We study how to carry out

calibration to construct a multiply robust estimator when data are missing not at

random (MNAR). With multiple models available, where each model consists of two

components, one for data distribution for complete cases and one for missingness

mechanism, our proposed estimator is consistent if any one pair of models are

correctly specified.
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1. Introduction

Missing data problems are commonly seen in practice. Depending on the na-

ture of missingness, there are three mechanisms that are widely adopted in the

literature: missing completely at random (MCAR), missing at random (MAR),

and missing not at random (MNAR) (Rubin (1976)). For MCAR, the missingness

depends on neither the observed nor the missing values; for MAR, the missing-

ness depends on the observed but not on the missing values; and for MNAR, the

missingness depends on both the observed and the missing values. As the miss-

ingness mechanism becomes more complex, statistical analysis becomes more

difficult. For MCAR, a complete-case analysis ignoring subjects with missing

data leads to consistent estimation, and usually gives the best solution in terms

of efficiency. Extensive research has been done in the case of MAR, yielding a

rich collection of effective methods and interesting results. Much less has been

done for MNAR, largely due to the unknown dependence of the missingness on

unobserved values, although in many observational studies MNAR is the most

likely mechanism.
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Calibration is a method originally developed in the sampling survey litera-

ture (Deville and Särndal (1992)), where it was used to calibrate the sampling

weight so that the weighted average of some auxiliary variables based on the sam-

pled subjects is equal to the known population average. In the survey context

calibration has been studied a lot (e.g., Chen and Sitter (1999); Lundström and

Särndal (1999); Wu and Sitter (2001); Wu (2003); Chang and Kott (2008); Kim

(2009, 2010); Kim and Park (2010); Tan and Wu (2015)). The application of

calibration to missing data analysis has attracted considerable research interests

recently and has produced many interesting results (e.g., Tan (2006, 2010); Qin

and Zhang (2007); Chen, Leung and Qin (2008); Qin, Shao and Zhang (2008);

Han and Wang (2013); Chan and Yam (2014); Han (2014, 2016a,b)). In par-

ticular, the estimators in Han and Wang (2013), Chan and Yam (2014) and

Han (2014, 2016a,b) are multiply robust, in that they are consistent if any one

of the multiple missingness mechanism models and/or data distribution models

is correctly specified. Such a robustness property is a significant improvement

over the well-known double robustness (e.g. Scharfstein, Rotnitzky and Robins

(1999); Bang and Robins (2005); Tsiatis (2006)).

So far multiple robustness has been established and studied only when data

are MAR. In this paper, for the estimation of the mean of a response variable

that is MNAR, we show how to carry out calibration so that multiple robustness

can be achieved. Here each model consists of two components, one for the data

distribution for complete cases and one for the missingness mechanism. The two

components together characterize the whole data distribution. When multiple

models are available, our proposed estimator is consistent if any one is correctly

specified. Estimating the mean is a common problem in both sampling survey

and causal inference, and thus our proposed method is of practical importance.

This paper is organized as follows. Section 2 introduces the notation and

gives a review of calibration under MAR. Section 3 covers calibration under

MNAR and establishes the multiple robustness property of our proposed esti-

mator. Section 4 contains some simulation results. Some discussion is given in

Section 5.

2. Notation and Review of Calibration Under MAR

Let Y denote the response of interest, X a vector of auxiliary variables that

are always observed, and R the indicator of observing Y (i.e., R = 1 if Y is

observed and R = 0 if Y is missing). The quantity of interest is µ0 = E(Y ).
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MCAR means that the selection probability P (R = 1|Y,X) is a constant, MAR

means that P (R = 1|Y,X) = P (R = 1|X) only depends on the fully observedX,

and MNAR means that P (R = 1|Y,X) depends on both Y and X. We use π(X)

and π(Y,X) to denote P (R = 1|Y,X) under MAR and MNAR, respectively. The

observed data are n independent and identically distributed copies of (R,RY,X).

Let m =
∑n

i=1Ri be the number of complete cases. Without loss of generality,

assume that these complete cases are i = 1, . . . ,m.

The original calibration estimator in Deville and Särndal (1992) has a weight-

ing structure
∑m

i=1 ŵiYi, with the weight ŵi derived through

min
w1,...,wm

m∑
i=1

π(Xi){nwi − π(Xi)
−1}2 subject to

m∑
i=1

wiXi =
1

n

n∑
i=1

Xi.

The calibration constraint above makes the weighted average of X based on

complete cases equal to the unweighted average of X based on the whole sample,

which consistently estimates the population mean of X. The weight ŵi is derived

by minimizing the above discrepancy between wi and the inverse probability

weight 1/{nπ(Xi)} subject to the calibration constraint. Many variations of

calibration have been proposed in the sampling survey literature, some with

different optimization criteria (e.g. Chen and Sitter (1999); Kim (2009, 2010);

Tan and Wu (2015)) and some with calibration variables being certain functions

of X (e.g. Wu and Sitter (2001)). Most of these variations impose two additional

constraints: wi > 0 and
∑m

i=1wi = 1.

Calibration in missing data literature has two major variations. The first

one derives ŵi through

max
w1,...,wm

m∏
i=1

wi subject to wi > 0,

m∑
i=1

wi = 1,

m∑
i=1

wih(Xi) =
1

n

n∑
i=1

h(Xi),

(2.1)

where h(X) comprises user-specified functions of X (e.g. Qin and Zhang (2007);

Qin, Shao and Zhang (2008); Han and Wang (2013); Chan and Yam (2014); Han

(2014, 2016a,b)). Due to the positivity and sum-to-one constraints, wi can be

viewed as an empirical likelihood (EL) on complete cases. The formulation in

(2.1) is the same as that of an EL problem (Owen (1988, 2001)); Qin and Lawless

(1994)). The second major variation considers an additional EL on incomplete

cases (Chen, Leung and Qin (2008); Tan (2010)):

max
w′

is,v
′
js

m∏
i=1

wi

n∏
j=m+1

vj subject to
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wi > 0,

m∑
i=1

wi = 1, vj > 0,

n∑
j=m+1

vj = 1,

m∑
i=1

wih(Xi) =

n∑
j=m+1

vjh(Xj). (2.2)

Han (2014) gave a justification of the compatibility of the constraints in (2.1)

and (2.2) in the following way. Let w(X) = 1/π(X) and v(X) = 1/{1− π(X)}.
It is easy to verify that

E (w(X) [h(X)− E{h(X)}] |R = 1) = 0, (2.3)

E (v(X) [h(X)− E{h(X)}] |R = 0) = 0.

Then constraints in (2.1) and (2.2) are simply the empirical version of these

equalities with expectations replaced by sample averages.

One interesting result produced by calibration is multiple robustness. Sup-

pose that multiple models π(j)(X;α(j)), j = 1, . . . , J , for π(X) and multi-

ple models a(k)(X;γ(k)), k = 1, . . . ,K, for E(Y |X) are postulated. Han and

Wang (2013) proposed to derive ŵi the same way as in (2.1) with h(X) =

{π(1)(α̂(1)), . . . , π(j)(α̂(J)), a(1)(γ̂(1)), . . . , a(K)(γ̂(K))}T, where α̂(j) and γ̂(k) are

estimators of α(j) and γ(k), respectively. The resulting estimator of µ0, denoted

by µ̂mr, is multiply robust, in that it is consistent if any one of the J +K mod-

els is correctly specified. Multiple robustness significantly improves over double

robustness on protecting estimation consistency against possible model misspec-

ifications, since doubly robust estimators take J = K = 1.

In addition to multiple robustness, like other calibration-based estimators

with weights derived from (2.1) or (2.2), µ̂mr always falls into the parameter

space of µ due to it being a convex combination of the observed Y . This is

called the sample boundedness property (Robins et al. (2007); Tan (2010)) and

is especially desirable when Y is binary. Another merit of µ̂mr is its insensitivity

to near-zero values of π(j)(α̂(j)). The maximization in (2.1) makes the occurrence

of extreme weights unlikely even if some estimated values of π(X) are close to

zero. Some numerical evidence of the superior performance of µ̂mr in this case

can be found in Han (2014).

3. Calibration and Multiple Robustness Under MNAR

3.1. Calibration under MNAR

It is seen that, under MAR, the calibration variables used to derive µ̂mr are
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models for π(X) and models for E(Y |X). Under MNAR, models for π(Y,X) can

no longer serve as calibration variables because Y is missing for some subjects, but

models for E(Y |X) still can. However, the estimator with models for E(Y |X)

as calibration variables will no longer be consistent even if one model is correctly

specified, since the proof of consistency in this case requires MAR assumption

(Han and Wang (2013)).

Another look at the calibration in (2.1) when h(X) is taken to be models

for E(Y |X) reveals that the third constraint in (2.1) is essentially
m∑
i=1

wiE
(k)(Y |Xi, Ri = 1)

=
1

n

n∑
i=1

{
RiE

(k)(Y |Xi, Ri = 1) + (1−Ri)E
(k)(Y |Xi, Ri = 0)

}
, (3.1)

with E(k)(·) the expectation under the k-th model, because MAR implies that

E(Y |X), E(Y |X, R = 1) and E(Y |X, R = 0) are all equal. Now under MNAR,

we propose to use the calibration constraint as in (3.1).

Modelling E(Y |X, R = 0) as needed by (3.1) is difficult since Y is not

observed for subjects with R = 0. One possible solution is to use the fact that

f(Y |X, R = 0) ∝ f(Y |X, R = 1)
1− π(Y,X)

π(Y,X)

(e.g., Kim and Yu (2011)) to obtain a model for f(Y |X, R = 0) by modelling

f(Y |X, R = 1) and π(Y,X). Suppose there are multiple pairs of models avail-

able: {f (k)(Y |X, R = 1;γ(k)), π(k)(Y,X;α(k))}, k = 1, . . . ,K, each of which de-

termines a model for f(Y |X, R = 0). Here f (k)(Y |X, R = 1;γ(k)), k = 1, . . . ,K,

have to be different, because two models with the same f (k)(Y |X, R = 1;γ(k))

but different π(k)(Y,X;α(k)) will lead to (3.1) with the same left-hand side but

different right-hand sides.

The γ(k) can be easily estimated through a complete-case analysis by maxi-

mizing
∏m

i=1 f
(k)(Yi|Xi, Ri = 1;γ(k)). More attention is needed to the estimation

of α(k) due to possible identification problem: the α(k) may not be identifiable

from the observed data without further assumptions on the data generating pro-

cess. One general result ensuring identification is to assume that X contains

an “instrumental” or “shadow” variable, that, conditional on the rest of X, is

associated with Y but independent of R (Wang, Shao and Kim (2014); Miao and

Tchetgen Tchetgen (2016); Shao and Wang (2016)). Instead of repeating the

detailed result and the exact conditions, which can be found in Wang, Shao and

Kim (2014), we make a direct assumption on identification.
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Assumption 1. The α(k) are identifiable.

Under Assumption 1, the estimation of α(k) can follow some existing meth-

ods (Rotnitzky and Robins (1997); Rotnitzky, Robins and Scharfstein (1998);

Chang and Kott (2008); Wang, Shao and Kim (2014); Miao and Tchetgen Tch-

etgen (2016); Shao and Wang (2016)) by solving equations
∑n

i=1{Ri/π
(k)
i (α(k))−

1}h(Xi) = 0 derived based on the fact that E[{R/π(Y,X)−1}h(X)] = 0. When

the user-specified h(X) has dimension larger than that of α(k), the equations

may be solved by the generalized method of moments (Hansen (1982)) or the EL

method.

Let γ̂(k) and α̂(k) denote estimators of γ(k) and α(k), respectively. Un-

der each f (k)(Y |X, R = 1; γ̂(k)), an estimator of E(Y |X, R = 1), denoted

by a
(k)
1 (X; γ̂(k)), is readily available. On the other hand, although a model

f (k)(Y |X, R = 0; γ̂(k), α̂(k)) has been completely determined by {f (k)(Y |X, R =

1; γ̂(k)), π(k)(Y,X; α̂(k))}, directly deriving a closed-form estimator of E(Y |X, R =

0) is generally difficult, since f (k)(Y |X, R = 0; γ̂(k), α̂(k)) may not be a well-

known distribution and calculating its expectation may involve complicated in-

tegrals. An easy way to estimate E(Y |X, R = 0) is to take L random draws

Ŷ
(1)
0 , . . . , Ŷ

(L)
0 from f (k)(Y |X, R = 0; γ̂(k), α̂(k)) and then use a

(k)
0 (X; γ̂(k), α̂(k),

L) = L−1
∑L

l=1 Ŷ
(l)
0 as the k-th estimator. Our proposed estimator of µ0 is

µ̂ =
∑m

i=1 ŵiYi, where ŵi are derived through

max
w1,...,wm

m∏
i=1

wi subject to wi > 0,

m∑
i=1

wi = 1,

m∑
i=1

wia
(k)
1 (Xi; γ̂

(k))=
1

n

n∑
i=1

{
Ria

(k)
1 (Xi; γ̂

(k)) + (1−Ri)a
(k)
0 (Xi; γ̂

(k), α̂(k), L)
}
,

k = 1, . . . ,K. (3.2)

In general, unlike the MAR case, there is no easy way to justify the com-

patibility of constraints in (3.2) for a particular set of K models. To avoid this

challenging problem, we make the following assumption on compatibility.

Assumption 2. There exists w(X) > 0, possibly depending on the K pairs of

models, such that

E
[
w(X){E(k)(Y |X, R = 1)− E(k)(Y )}|R = 1

]
= 0, k = 1, . . . ,K. (3.3)

Here (3.3) is an analog of (2.3), now under MNAR. While (2.3) is ensured

by simply taking w(X) = 1/π(X) (Han (2014)), there does not seem to be an

obvious w(X) to ensure (3.3) under MNAR. For our proposed method, however,
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the exact expression for such a w(X) is not needed due to the EL formulation,

and thus we simply assume its existence as in Assumption 2. Mathematically,

(3.3) assumes the existence of a positive function w(X) that is orthogonal to K

given functions of X, E(k)(Y |X, R = 1) − E(k)(Y ), k = 1, . . . ,K, and such an

existence is not uncommon in the Hilbert space of all square-integrable functions

of X. Under Assumption 2, the constraints in (3.2) are empirical versions of

(3.3); see (3.6).

Based on the EL theory, the solution to (3.2) is given by

ŵi =
1

m

1

1 + ρ̂Tĝi(α̂, γ̂, L)

with

1 + ρ̂Tĝi(α̂, γ̂, L) > 0, i = 1, . . . ,m, (3.4)

where ρ̂ is the Lagrange multiplier solving

1

m

m∑
i=1

ĝi(α̂, γ̂, L)

1 + ρTĝi(α̂, γ̂, L)
= 0, (3.5)

ĝ(α̂, γ̂, L) =



a
(1)
1 (X; γ̂(1))− 1

n

∑n
j=1

{
Rja

(1)
1 (Xj ; γ̂

(1))

+(1−Rj)a
(1)
0 (Xj ; γ̂

(1), α̂(1), L)
}

...

a
(K)
1 (X; γ̂(K))− 1

n

∑n
j=1

{
Rja

(K)
1 (Xj ; γ̂

(K))

+(1−Rj)a
(K)
0 (Xj ; γ̂

(K), α̂(K), L)
}


.

Directly solving (3.5) for ρ̂ is not a good option as (3.5) typically has multiple

roots, yet it is the ρ̂ satisfying (3.4) that is needed. A better way for numerical

implementation is as follows. Let Fn(ρ) = −m−1
∑m

i=1 log{1 + ρTĝi(α̂, γ̂, L)},
a strictly convex function of ρ. Under (3.3) it can be shown that Fn(ρ) has a

unique minimizer, at least when n is large (Han (2014)). The stationary equation

∂Fn(ρ)/∂ρ = 0 for this minimizer turns out to be (3.5), and this minimizer must

satisfy (3.4) because of the log function in Fn(ρ). Therefore, the ρ̂ needed can

be derived by minimizing Fn(ρ). This is a convex minimization problem and is

easily implemented using the Newton-Raphson algorithm. Refer to Chen, Sitter

and Wu (2002) and Han (2014) for a detailed description of the algorithm. Chen,

Sitter and Wu (2002) also showed that this algorithm always converges.
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3.2. Multiple robustness

The proposed estimator µ̂ is multiply robust, in the sense that it is consistent,

as n → ∞ and L → ∞, if any one of the K pairs of models {f (k)(Y |X, R =

1;γ(k)), π(k)(Y,X;α(k))} is correctly specified. To see this, let the correct pair be

{f (1)(Y |X, R = 1;γ(1)), π(1)(Y,X;α(1))} without loss of generality. As n → ∞
and L→∞,

1

n

n∑
i=1

{
Ria

(k)
1 (Xi; γ̂

(k)) + (1−Ri)a
(k)
0 (Xi; γ̂

(k), α̂(k), L)
}

p−→ E
{
RE(k)(Y |X, R = 1) + (1−R)E(k)(Y |X, R = 0)

}
= P (R = 1)E

{
E(k)(Y |X, R = 1)|R = 1

}
+ P (R = 0)E

{
E(k)(Y |X, R = 0)|R = 0

}
= P (R = 1)E(k)(Y |R = 1) + P (R = 0)E(k)(Y |R = 0)

= E(k)(Y ). (3.6)

Therefore, we have

µ̂ =

m∑
i=1

ŵiYi

=

m∑
i=1

ŵi

{
Yi − a(1)1

(
Xi; γ̂

(1)
)}

+
1

n

n∑
i=1

{
Ria

(1)
1

(
Xi; γ̂

(1)
)

+ (1−Ri)a
(1)
0

(
Xi; γ̂

(1), α̂(1), L
)}

=
1

m

m∑
i=1

Yi − a(1)1

(
Xi; γ̂

(1)
)

1 + ρ̂Tĝi (α̂, γ̂, L)

+
1

n

n∑
i=1

{
Ria

(1)
1

(
Xi; γ̂

(1)
)

+ (1−Ri)a
(1)
0

(
Xi; γ̂

(1), α̂(1), L
)}

p−→ E

{
Y − E(1) (Y |X, R = 1)

1 + ρT∗ g(X)

∣∣∣∣R = 1

}
+ E(1)(Y ) = µ0,

where ρ∗ is the probability limit of ρ̂ and

g(X) =

 E(1)(Y |X, R = 1)− E(1)(Y )
...

E(K)(Y |X, R = 1)− E(K)(Y )

 .

Thus µ̂ is a consistent estimator of µ0.
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Theorem 1. Under Assumptions 1 and 2 and the regularity conditions in the Ap-

pendix, as n→∞ and L→∞, if any one of the K pairs of models {f (k)(Y |X, R

= 1;γ(k)), π(k)(Y,X;α(k))} is correctly specified, then µ̂
p−→ µ0.

The above multiple robustness result under MNAR is slightly different from

that under MAR. Under MAR, a model for f(Y |X) (or equivalently for f(Y |X, R

= 1)) and a model for π(X) contribute independently to consistency. Under

MNAR, a model for f(Y |X, R = 1) and a model for π(Y,X) work as a pair to

make joint contribution to consistency, and only when the whole pair is correctly

specified is the resulting estimator consistent. By construction, µ̂ is a convex

combination of the observed Y , and thus is always in the parameter space.

Deriving the asymptotic distribution of µ̂ is challenging, since in general we

do not know which model is correctly specified. In addition, advanced empirical

processes theory is needed to deal with the implicit dependence of the random

draws on the nuisance parameters γ(k) and α(k) (e.g., Wang and Robins (1998);

Robins and Wang (2000)). Dealing with these challenges is beyond the scope of

this paper. In practice, the standard error of µ̂ can be calculated by bootstrap-

ping, the effectiveness of which is demonstrated in the next section.

4. Simulation Study

In this section we report on the finite sample performance of the proposed

estimator. The construction of a simulation model is a delicate issue in our case.

To demonstrate multiple robustness, closed form expressions of f(Y |X, R = 1)

and π(Y,X) need to be available so that we can postulate correct models, but

generating data from a distribution corresponding to pre-fixed f(Y |X, R = 1)

and π(Y,X) seems challenging. Therefore, we choose to fix the data generating

model first, and then mathematically derive f(Y |X, R = 1) and/or π(Y,X).

The derivation involves calculating integrals and leads to closed form expressions

only under carefully chosen data generating models.

We considered an auxiliary variable X ∼ N(0, 1). Given X, Y followed a

generalized logistic distribution with density

f(Y |X) =
2 exp(−(Y − 1−X −X2))

{1 + exp(−(Y − 1−X −X2))}3
, −∞ < Y <∞,

and E(Y ) = 3. The missingness was generated by R|Y,X ∼ Bernoulli(π(Y,X))

with π(Y,X) = {1+exp(1+X+X2−Y )}−1, for which 33% of the subjects were

with Y missing. For this particular data generating process, it is easy to verify

that
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f(Y |X,R = 1) =
3 exp(−(Y − 1−X −X2))

{1 + exp(−(Y − 1−X −X2))}4
, −∞ < Y <∞.

We considered two models for f(Y |X,R = 1): a correct one

f (1)(Y |X,R = 1;γ(1)) =
3 exp

{
−
(
Y − γ(1)1 − γ

(1)
2 X − γ(1)3 X2

)}
[
1 + exp

{
−
(
Y − γ(1)1 − γ

(1)
2 X − γ(1)3 X2

)}]4
and an incorrect one f (2)(Y |X,R = 1;γ(2)) being the density of a Normal distri-

bution with mean γ
(2)
1 + γ

(2)
2 X2 and standard deviation γ

(2)
3 . We also considered

two models for π(Y,X): a correct one π(1)(Y,X;α(1)) = {1 + exp(α
(1)
1 +α

(1)
2 X +

α
(1)
3 X2 + α

(1)
4 Y )}−1 and an incorrect one π(2)(Y,X;α(2)) = {1 + exp(α

(2)
1 +

α
(2)
2 Y )}−1. In our simulation, existing estimation methods (e.g. Rotnitzky,

Robins and Scharfstein (1998); Wang, Shao and Kim (2014)) frequently pro-

duced α̂(1) and α̂(2) with erroneously large norm, making most of the estimated

values of π(Y,X) equal to 1. This poor performance might be that, due to cau-

tious selection of the data generating model in order that f(Y |X,R = 1) and

π(Y,X) have closed form expressions, the parameters α(1) and α(2) may be non-

identifiable. Thus we fixed α(1) at its true value (1, 1, 1,−1)T and α(2) at an

arbitrary value (−2, 0.2)T. All methods under comparison were derived based

on these fixed values. Fixing some parameter values in a model for π(Y,X) is a

common practice in sensitivity analysis (e.g. Rotnitzky, Robins and Scharfstein

(1998)).

In total we had K = 4 models,

model 1 :
{
f (1)

(
Y |X,R = 1;γ(1)

)
, π(1)

(
Y,X;α(1)

)}
,

model 2 :
{
f (2)

(
Y |X,R = 1;γ(2)

)
, π(1)

(
Y,X;α(1)

)}
,

model 3 :
{
f (1)

(
Y |X,R = 1;γ(1)

)
, π(2)

(
Y,X;α(2)

)}
,

model 4 :
{
f2
(
Y |X,R = 1;γ2

)
, π(2)

(
Y,X;α(2)

)}
,

and model 1 is correctly specified. Since the models used to calculate µ̂ need to

have different f (k)(Y |X,R = 1;γ(k)), we had four possible combinations when

choosing more than one model from the above four to calculate µ̂: {model 1,

model 2}, {model 1, model 4}, {model 2, model 3}, and {model 3, model 4}.
To make comparison, we also computed the inverse probability weighted esti-

mator µ̂
(k)
ipw = n−1

∑n
i=1RiYi/π

(k)
i (α̂(k)) and the imputation estimator µ̂

(k)
im =

n−1
∑n

i=1{RiYi + (1−Ri)a
(k)
0 (Xi; γ̂

(k), α̂(k), L)}. We took n = 200 and n = 500

and summarized the results based on 1,000 replications. Given X, Y was gen-



CALIBRATION AND MULTIPLE ROBUSTNESS UNDER MNAR 1735

Table 1. Simulation results based on n = 200 and 1,000 replications. The number in the
name of each estimator indicates which one(s) among the 4 models is (are) used. The
results have been multiplied by 100.

L = 5 L = 10 L = 20
Estimator Bias RMSE MAE Bias RMSE MAE Bias RMSE MAE
IPW-1 0 23 15
IPW-2 41 68 35
IM-1 −8 18 13 −8 18 12 −8 18 12
IM-2 −50 54 49 −50 54 49 −50 54 50
IM-3 41 44 41 41 44 41 41 44 41
IM-4 65 67 65 65 67 64 65 67 65
MR-1 −7 19 13 −8 19 13 −8 19 13
MR-2 −28 40 26 −27 42 26 −28 40 26
MR-3 41 44 41 41 44 41 41 44 41
MR-4 64 67 65 64 67 64 64 67 65
MR-12 12 31 20 12 31 20 12 32 21
MR-14 −8 23 14 −8 23 14 −8 23 14
MR-23 50 54 50 50 54 50 50 54 50
MR-34 40 43 40 40 43 41 40 43 41

RMSE: root mean square error. MAE: median absolute error. IPW: the inverse
probability weighted estimator. IM: the imputation estimator. MR: the proposed
estimator.

Table 2. Simulation results based on n = 500 and 1,000 replications. The number in the
name of each estimator indicates which one(s) among the 4 models is (are) used. The
results have been multiplied by 100.

L = 5 L = 10 L = 20
Estimator Bias RMSE MAE Bias RMSE MAE Bias RMSE MAE
IPW-1 0 15 11
IPW-2 39 49 36
IM-1 −8 13 9 −8 13 9 −8 13 9
IM-2 −51 52 50 −51 53 51 −51 52 51
IM-3 41 42 41 41 42 41 41 42 41
IM-4 65 66 65 65 66 65 65 66 65
MR-1 −8 14 9 −8 14 9 −8 13 10
MR-2 −35 44 33 −35 42 33 −35 43 33
MR-3 41 42 41 41 42 41 41 42 41
MR-4 65 66 65 65 66 65 65 66 65
MR-12 12 24 17 13 23 17 13 23 17
MR-14 −8 15 10 −8 15 10 −8 15 10
MR-23 51 53 51 51 53 51 51 53 51
MR-34 41 42 41 42 47 41 41 42 41

RMSE: root mean square error. MAE: median absolute error. IPW: the inverse
probability weighted estimator. IM: the imputation estimator. MR: the proposed
estimator.
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Table 3. Performance of the bootstrapping method based on n = 200, L = 5 and 500
replications. The bootstrapping resampling size is 100. The number in the name of each
estimator indicates which one(s) among the 4 models is (are) used.

Estimator Bias SE-EMP SE-B CP-B (%)
MR-1 −0.07 0.19 0.18 91.8
MR-2 −0.28 0.28 0.28 84.4
MR-3 0.41 0.17 0.16 24.2
MR-4 0.64 0.20 0.19 6.2
MR-12 0.12 0.27 0.27 92.2
MR-14 −0.07 0.22 0.24 95.6
MR-23 0.51 0.21 0.22 28.6
MR-34 0.41 0.17 0.16 25.8

SE-EMP: empirical standard error; SE-B: averaged bootstrapping
standard error; CP-B: coverage probability of the 95% confidence
interval based bootstrapping standard errors.

erated using the R package “glogis”. Random draws from the distribution

f (k)(Y |X,R = 0; γ̂(k), α̂(k)) were generated using the R package “distr”. Ta-

bles 1 and 2 contain the simulation results based on n = 200 and n = 500,

respectively.

Since no parameters were estimated for the inverse probability weighted es-

timator, IPW-1 and IPW-2 can serve as the benchmark for comparison. Esti-

mators IM-1, MR-1, MR-12 and MR-14 used the correct model 1, and thus were

all consistent. This is confirmed by their small bias. The small bias of MR-

12 and MR-14 demonstrates the multiple robustness of our proposed estimator.

Estimators that do not use the correct model 1 are inconsistent, and this is con-

firmed by the corresponding large bias. The simulation results also show that the

number of random draws L does not have a dramatic impact on the numerical

performance.

Table 3 contains results on the performance of the bootstrapping method

in calculating the standard error. We took n = 200 and the bootstrapping

resampling size to be 100. To save computational time, we took L = 5 and carried

out 500 replications. It is seen that, for each estimator, the empirical standard

error and the averaged bootstrapping standard error are very close. In addition,

for the consistent estimators MR-1, MR-12 and MR-14 the coverage probabilities

of the 95% bootstrapping-based confidence intervals are very close to the nominal

level. These observations suggest the effectiveness of the bootstrapping method

in calculating the standard error of the proposed estimator.
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5. Discussion

Multiple robustness is a desirable property, as it significantly improves the

robustness of estimation consistency against possible model misspecifications. In

this paper, when data are missing not at random, we have proposed a multiply

robust estimator constructed based on calibration.

Theoretically, the number of models postulated has no effect on the multiple

robustness, as long as this number stays fixed as the sample size varies. On the

other hand, its effect on efficiency is very difficult to study, if not totally impos-

sible, for two reasons. In the current case of MNAR, a closed form expression for

the asymptotic variance is difficult to derive; even in the case of MAR where the

asymptotic variance is available (e.g., Han and Wang (2013); Han (2014)), the

efficiency is affected not only by the number of models but also by the particular

functional form of those models. In general, it may be impossible to compare

efficiency based on different models because of its complex dependence on them.

The numerical performance deteriorates as a large number of models are simul-

taneously accounted for, since the dimension of the Lagrange multiplier ρ is large

in this case. Therefore, we recommend that each model be carefully constructed

and used to derive the proposed estimator.

This paper considered estimating the mean of a response. It is of interest to

extend the current method to regression analysis with missing response and/or

covariates.
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Appendix

Assume that, for k = 1, . . . ,K, (1) the parameter spaces Ak and Gk for

α(k) and γ(k), respectively, are compact; (2) π(k)(Y,X;α(k)) and f (k)(Y |X, R =

1;γ(k)) are continuous in α(k) and γ(k), respectively; (3) E{log f(Y |X, R =

1)} <∞ and E{supγ(k)∈Gk | log f (k)(Y |X, R = 1;γ(k))|} <∞; (4) the Kullback–

Leibler distance between f(Y |X, R = 1) and f (k)(Y |X, R = 1;γ(k)), viewed as a

function of γ(k), has a unique minimum in Gk; (5) π(Y,X) is bounded away from

0; (6) E[supα(k)∈Ak ||{R/π(k)(Y,X;α(k))− 1}h(X)||] <∞, where h(X) is user-
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specified for estimating α(k); (7) the quadratic form of E[{R/π(k)(Y,X;α(k))−
1}h(X)] with the weighting matrix being the inverse of the covariance matrix

of {R/π(k)(Y,X;α(k)) − 1}h(X), viewed as a function of α(k), has a unique

minimum in Ak; (8) a
(k)
1 (X;γ(k)) and a

(k)
0 (X;γ(k),α(k), L) are continuous in

γ(k) and (γ(k),α(k)), respectively; (9) E{supγ(k)∈Gk |a(k)1 (X;γ(k))|} < ∞ and

E{supγ(k)∈Gk,α(k)∈Ak |a(k)0 (X;γ(k),α(k), L)|} <∞; (10) E[supρ∈P log{1+ρTg(α,

γ, L)}|R = 1] < ∞ where P is the parameter space for ρ and is compact; (11)

E[supγ(k)∈Gk,α(k)∈Ak,ρ∈P{Y − a
(k)
1 (X;γ(k))}/{1 + ρTg(α,γ, L)}|R = 1] <∞.

Remark: (1)-(4) ensure the convergence in probability of γ̂(k) (White (1982));

(1), (2) and (5)-(7) ensure the convergence in probability of α̂(k) (Hall (2005));

(1), (2) and (8)-(11) ensure the weak law of large numbers needed in the proof

of Theorem 1 (Newey and McFadden (1994); Schennach (2007)).
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