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Abstract: This paper begins with a brief review of multivariate time series analy-

sis, covering canonical correlation analysis and scalar components of vector ARMA

models, pioneered by Tiao and his collaborators, and vector ARMAX models in

linear systems theory. It then presents a fast stepwise regression procedure that

includes parsimonious variable selection followed by rank selection in stochastic

regression models. The procedure overcomes a long-standing difficulty with pa-

rameter estimation in these models, the dauntingly large number of parameters in

the matrix of regression coefficients relative to the sample size n. Recent attempts

to address this difficulty have used group lasso and hard thresholding of small

singular values to take advantage of coefficient and rank sparsity. However, the

underlying theory is based on non-random or independent regressors, whereas the

procedure and its underlying theory developed herein are applicable to stochastic

regressors in multivariate time series models.
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1. Introduction

Multivariate time series analysis is one of Professor Tiao’s major areas of

research, to which he has made many seminal contributions. According to Peña

and Tsay (2011, p.420), he “got interested in multiple time series actually through

canonical correlation analysis” of multivariate data in economics, since “economic

data are mostly time series and people are obviously interested in dynamic re-

lationships” among the multiple time series. His work on canonical correlation

analysis started with the question of how autocorrelations or nonstationarity of

economic time series data would affect traditional principal component analysis

that assumes i.i.d. observations. “Now one way is to do principal component

analysis and another one is to think about transformation and try to explain

the relationship with the past,” leading to the canonical analysis (Peña and

Tsay (2011, p.417)). Whereas principal component analysis is often used as

a dimension-reduction technique that attempts to approximate a p-dimensional

random vector by r linear combinations (factors), with r considerably smaller

http://dx.doi.org/10.5705/ss.2014.211t


1412 TZE LEUNG LAI AND KA WAI TSANG

than p, canonical correlation analysis is used by Tsay and Tiao (1985) for identi-

fication of VARMA (vector autoregressive moving average) models, and by Tiao

and Tsay (1989) to determine the orders of the matrix polynomials in a VARMA

process “and, more importantly to reveal the unobserved underlying structure of

a given vector process” through scalar components of a linear transformation of

the original process.

In this paper we apply canonical correlation analysis, or more precisely, the

closely related methodology of reduced rank regression to estimate the coefficient

matrix B = (Bji)1≤j≤p,1≤i≤q in the stochastic regression model

yt = BTxt + ϵt, t = 1, . . . , n, (1.1)

where yt = (yt1, . . . , ytq)
T is the observed output vector at time t, xt = (xt1, . . .,

xtp)
T is assumed to be Ft−1-measurable and ϵt = (ϵt1, . . . , ϵtq)

T represents an un-

observable random error vector that is assumed to form a martingale difference

sequence. In particular, this includes the vector autoregressive VAR(1) model

with xt = yt−1. With this choice of xt, Box and Tiao (1977, pp.355-357) intro-

duce a predictability measure of yt by xt via a linear transformation mTyt. In

particular, for univariate yt, they define the predictability of yt from xt in (1.1) by

the squared correlation coefficient Var(BTxt)/Var(yt). Using mTyt to transform

multivariate yt to the univariate case leads them to consider how m should be

chosen, and the choice that maximizes the predictability corresponds to the first

canonical pair (αTxt,m
Tyt) in canonical correlation analysis; see Reinsel and

Velu (1998, Sec. 2.3 and 2.4) and Lai and Xing (2008, Sec. 9.1 and 9.2), where

the relationship between canonical correlations and reduced rank regression is

also described. For general VAR(k) models, we can also express them, or their

linear transformations (such as differenced versions to handle unit-root nonsta-

tionarity), as stochastic regression models (1.1). However, since our interest is

in reduced rank regression, such representation may not be useful as the rank

constraints reflecting the underlying dynamics should be placed on certain linear

combinations of the parameter matrices; see Lai and Tsang (2014).

Besides applications to economics, multivariate stochastic regression models

(1.1) are also important in control engineering, in which they take the form of

MIMO (multiple input, multiple output) systems, also called multivariate ARX

(autoregressive with exogenous inputs) models:

yt +A1yt−1 + · · ·+Akyt−k = Bdut−d + · · ·+Bhut−h + ϵt, (1.2)

in which d ≥ 1 represents the delay; see Goodwin and Sin (1984), Caines (1988),

and Hannan and Deistler (1988). The MIMO system again contains a large num-

ber of parameters and a model selection to come up with a parsimonious model



MULTIVARIATE STOCHASTIC REGRESSION 1413

has attracted much attention in this area. Model selection in the engineering

literature has primarily focused on determining the order (k, h) of the model;

see Huang and Guo (1990) for a review. One can clearly reduce the number of

parameters even more substantially by putting rank constraints on the Ai and

Bj and making use of certain sparsity features of these matrices.

For the multivariate regression model (1.1), Bunea, She, andWegkamp (2011,

2012) recently studied estimation of B under a low rank constraint and sparsity

(in the sense of many zero entries) of B, when xt are nonrandom and ϵti are

i.i.d. sub-Gaussian. Letting X = (x1, . . . ,xn)
T ∈ Rn×p and Y = (y1, . . . ,yn)

T ∈
Rn×q, they proposed a rank selection criterion (RSC) to estimate the rank of

B by counting the number of singular values of the matrix XB̂OLS that exceed

some threshold H > 0 that depends on q, min(p, n), and the common variance

σ2 of the ϵti, where (XTX)− is the Moore-Penrose inverse of XTX and B̂OLS =

(XTX)−XTY is the least squares estimator. They showed the RSC estimator

r̂ to be consistent even when either p or q, or both, may grow faster than n.

Making use of r̂, they proposed to estimate B by

B̂RCGL = arg min
r(B)≤r̂

{∥Y−XB∥2F + λ∥B∥2,1}, (1.3)

where r(B) denotes the rank of B, ∥A∥F is the Frobenius norm
(
Tr(ATA)

)1/2
,

and ∥B∥2,1 is the sum of the Euclidean norms of the rows of B. Assuming

log p = o(n) and additional conditions on XTX/n, they showed that their rank-

constrained group lasso (RCGL) estimator B̂RCGL is consistent in the sense that

∥(XB̂RCGL − XB)/(nq)∥F
p−→ 0. These results rely heavily on the fact that

the xt are nonrandom or, more generally, that the xt are independent of ϵt so

that we can condition on xt. Their argument cannot be extended to stochastic

regressors xt that depend on the information set Ft−1 involving past observations.

Moreover, the assumption of i.i.d. sub-Gaussian ϵtj is also overly restrictive in

applications to economics and engineering.

The theory for lasso and its variants, including group lasso on which their

results are based, has been developed only for nonrandom xt and it is difficult

to extend the theory to stochastic regressors. Ing and Lai (2011) have proposed

an alternative approach, called the orthogonal greedy algorithm (OGA), by using

forward stepwise regression in conjunction with a high-dimensional information

criterion for sequential variable selection. They have shown that its asymptotic

properties are comparable to lasso and that it also performs favorably in simu-

lation studies. More importantly, because the procedure involves stepwise least

squares regression instead of convex optimization for penalized least squares with

the L1-penalty, the theoretical analysis can be extended to stochastic regression

models, as has recently been shown by Ing and Lai (2014). After extending OGA
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in Section 2.2 to multivariate stochastic regression models, leading to group OGA

as an alternative to group lasso, we develop in Section 2.3 an information crite-

rion for rank selection in multivariate stochastic regression models, providing an

alternative to RSC whose theory requires nonrandom regressors and i.i.d. sub-

Gaussian ϵtj with estimable common variance. Section 2.4 presents an integrated

asymptotic theory of group OGA followed by the new rank selection procedure

in multivariate stochastic regression models satisfying coefficient and rank spar-

sity, as defined in Section 2.1. Simulation studies illustrating the finite-sample

performance of the proposed method are given in Section 3. Section 4 concludes

with further discussion and applications.

2. A Parsimonious Approach to Multivariate Stochastic Regression

2.1. Coefficient and rank sparsity: 2-stage parsimonious procedure

Although the apparent number of parameters in multivariate regression (1.1)

may be daunting when p and q are large, we may not need a correspondingly large

sample size n if the coefficient matrix B is sparse so that it has a relatively small

effective number of parameters. Bunea, She, and Wegkamp (2012) have noted

that two types of sparsity are often assumed in multivariate linear regression,

which they call rank sparse and row sparse regression models. Rank sparsity

means that B can be approximated by a low-rank matrix. If the rank of B is r,

then by the singular value decomposition, we only need to estimate r(p+ q − r)

(which can be much smaller than pq) parameters of B. Row sparsity, here also

called coefficient sparsity, means that only a small number of rows of B (or

columns of BT in (1.1)) are non-zero, that is, few predictors in xt are relevant to

the output vector (i.e., have non-zero regression coefficients for some components

of yt). Assuming both coefficient sparsity and rank sparsity for B, we propose a

2-stage procedure to estimate B in the multivariate stochastic regression model

(1.1).

1. Use the group orthogonal greedy algorithm described in Section 2.2 to select

a subset S of the p predictors, and calculate from Y and XS the least squares

estimator B̂
GOGA

, where Xj denotes the jth column vector of X and XJ

denotes the submatrix of X consisting of the column vectors Xj , j ∈ J ⊂
{1, . . . , p}.

2. Apply the information criterion in Section 2.3 to obtain the rank estimator r̂

of B. Then carry out reduced rank regression (Lai and Xing (2008, p.204))

to obtain the final estimator B̂ = B̂
GOGA

Pr̂, where Pr̂ = Vr̂V
T
r̂ and Vr̂ =

[v1, . . . ,vr̂] consists of the right singular vectors of Ŷ = XSB̂
GOGA

.
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In contrast to the two-stage procedure of Bunea, She, and Wegkamp (2011, 2012)

described in Section 1, our method selects a subset of relevant variables before

estimating the rank of B. This circumvents the difficulties of their RSC in the

case p > n and unknown σ. Another difference is that we use the group orthog-

onal greedy algorithm instead of their group lasso and also a different criterion

for rank selection, for which the theory can be extended to stochastic regression

models.

2.2. Group orthogonal greedy algorithm

In this section we develop a modification of the orthogonal greedy algorithm

(OGA) introduced by Ing and Lai (2011, 2014). This modification, called GOGA

(group orthogonal greedy algorithm), is similar to the modification of lasso by

group lasso (Yuan and Lin (2006)). Let Îk be the set of indices of the input

variables selected by GOGA after k iterations. The QR decomposition (Lai and

Xing (2008, p.6)) of X
Îk

can be used to implement GOGA as follows. First

initialize with U0 = [U0
v]
q
v=1 = Y, Î0 = ∅, and empty matrices Q0 and R0. For

k = 1 to m do:

1. choose îk = argmin1≤i≤p

(
minβ∈Rq ||Uk−1 −Xiβ

T ||2F
)
;

2. update Îk = Îk−1
∪
{̂ik} and compute the QR decomposition

X
Îk

= [X
Îk−1

Xîk
] =

[
Qk−1 qk

] [ Rk−1
...

0 · · · 0 rk

]
= QkRk;

3. update Uk = Uk−1 − qkβ
T
k , where βT

k = qT
kU

k−1;

4. End for, with îkth row of B̂ ∈ Rp×q equal to the kth row of R−1
m [β1 · · ·βm]T

and the other rows equal to 0T .

Here R−1
m [β1 · · ·βm]T can be computed by backward substitution without calcu-

lating the inverse of the upper triangular matrix Rm, and the QR decomposition

is used to implement forward stepwise regression, instead of sequentially orthog-

onalizing the input variables as in Section 2.2 of Ing and Lai (2011). Therefore at

every stage GOGA chooses the input variable that yields the largest reduction in

the squared Frobenius norm of the residual matrix, hence the adjective “greedy”

in its name.

Letm = Kn be a prescribed upper bound on the number of GOGA iterations.

The convergence theory in Section 2.4 suggests terminating the GOGA iterations

after Kn = O({n/ log(pnqn)}1/2) steps or, equivalently, after Kn input variables

have been included in the regression model. As in Ing and Lai (2011) for the

case q = 1, we can further reduce the number of input variables along the GOGA

path by using the “high-dimensional information criterion”
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HDIC(k) = n log
(
(nqn)

−1∥Uk∥2F
)
+ kwn log(pnqn), (2.1)

in which different criteria correspond to different choices of wn. Here Uk, and
hence HDIC(k), can be readily computed at the kth GOGA iteration, and there-
fore selection of k̂n = argmin1≤k≤Kn HDIC(k) along the GOGA path involves
little additional computational cost. In particular, for wn = log n, qnHDIC(k)
corresponds to HDBIC, and qnHDIC(k) with wn equal to a constant c corresponds
to HDAIC, since there are qn univariate regressions in (2.1) and the number of
parameters in B, when there are k input variables, is kqn. Thus, by using (2.1) in
conjunction with the GOGA iterations, the first stage of the two-stage procedure
in Section 2.1 ends with a selected set S consisting of k̂n (instead of Kn) input
variables.

2.3. Information criterion for rank selection

As noted in Section 2.1, we can use reduced rank regression to compute

B(h) = arg min
B∈Rk̂n×q ,r(B)≤h

∥Y−XSB∥2F (2.2)

after obtaining the selected subset of k̂n predictors by GOGA. Lai and Tsang
(2014) propose to use the information criterion

IC(h) = nq log σ̂2(h) + hc(n+ q) log

(
nq

n+ q

)
(2.3)

to choose the rank r̂ = argminh IC(h), where σ̂2(h) = ∥Y − XSB(h)∥2F /(nq),
and have shown r̂ to be consistent for any choice of c in (2.3) under rank sparsity.
They also propose a data-dependent choice to improve finite-sample performance.
A natural modification of cross-validation for time series data is the accumulated
predictive error (APE) criterion introduced by Rissanen (1986); see also Wei
(1992). The idea is to choose c from a grid of values to minimize

APE(c) =

n∑
t=m0+1

∥yt −BT
t−1(r̂(c))x

S
t ∥2, (2.4)

where the transpose of xS
t is the tth row ofXS , Bs(h) is the rank-h estimate based

on {(xS
i ,yi) : i ≤ s}, and m0 is the starting sample size for which Bm0(r̂(c)) is

uniquely defined for all c belonging to the grid.

2.4. Asymptotic theory of 2-stage parsimonious procedure

We give an integrated asymptotic theory for GOGA and the rank selection
criterion (2.3) in the proposed 2-stage procedure under assumptions (C1)−(C3)
on the stochastic regression model (1.1) in which p = pn and q = qn. Let

vj = n−1XT
j Xj , Γ(J) = n−1XT

JXJ , DJ = diag(∥Xj∥, j ∈ J) (2.5)
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for J ⊂ {1, . . . , pn}, where we use ∥x∥ to denote the Euclidean norm (
∑

i x
2
i )

1/2,

∥x∥1 to denote the ℓ1-norm
∑

i |xi|, and λmin(·) to denote the minimum eigenvalue

of a symmetric matrix.

(C1) max1≤#(J)≤Kn
λ−1
min(Γ(J)) = Op(1),

max
1≤#(J)≤Kn,i/∈J

∥Γ−1(J)D−1
J XT

JXi∥1
∥Xi∥

= Op(1).

(C2) supn≥1max1≤i≤qn

∑pn
j=1 |Bji|

√
vj = Op(1), log(pnqn) = o(n).

(C3) ϵt is independent of Ft−1 and supn≥1max1≤i≤qn,1≤t≤nE{exp(θϵti)} < ∞
for |θ| ≤ θ0.

First consider the case q = 1 and i.i.d. xt, for which B is a p×1 vector (therefore

no low-rank approximation is needed) and simple OGA can be used. Ing and Lai

(2011) have assumed (C3) together with ‘population versions’ of (C1) and (C2)

that replace vj , Γ(J), D
−1
J XJ and Xi/∥Xi∥ by their population values, together

with the additional condition

lim sup
n→∞

max
1≤j≤p

E{exp(δu2tj)} < ∞, for some δ > 0, (2.6)

where utj = xtj/σj and σ2
j = Var(xtj), recalling that x1j , . . . , xnj are assumed

to be i.i.d. for every j. Basically they use (2.6) to prove the ‘sample versions’

(C1) and (C2) and also to analyze the conditional mean squared prediction error

CPE = E{(B̂Tx − BTx)2|y1,x1, . . . , yn,xn}. They show that for OGA that

terminates after m iterations, the corresponding CPE that we denote by CPEm,

satisfies

max
1≤m≤Kn

CPEm

(m−1 + n−1m log pn)
= Op(1). (2.7)

In (2.7), m−1 represents the order of the squared bias in using only m input

variables, chosen along the OGA path, to enter the regression model with pn
input variables, and n−1m log pn represents the order of the squared bias. We

can interpret O(n−1) as the variance per regression coefficient and O(log pn)

as the variance inflation factor due to the data-dependent choice of the input

variables; see Ing and Lai (2011, p.1478). As mentioned, the convergence rate

result in (2.7) suggests choosing the proper trade-off between the squared bias

and the variance along the OGA path by using the high-dimensional information

criterion (2.1).

To extend the theory of OGA and HDIC to stochastic regression models, Ing

and Lai (2014) work directly with assumptions (C1) and (C2), as assumption of

the type (2.6) no longer generates exponential bounds for tail probabilities when
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xt are not independent, making it difficult to use moment generating functions

of their sums. They use exponential or moment bounds for self-normalized mar-

tingales to extend the theory of OGA and HDIC to stochastic regressors xt when

the ϵt satisfy (C3). In lieu of the conditional mean squared prediction error, they

consider the empirical squared error and show that it satisfies an analog of (2.7):

max
1≤m≤Kn

n−1
m∑
t=1

(B̂T
mxt −BTxt)

2

(m−1 + n−1m log pn)
= Op(1), (2.8)

where B̂m denotes the OGA estimate after m iterations (i.e., based on m input

variables included sequentially along the OGA path). To further extend to mul-

tivariate stochastic regression models, we include max1≤i≤qn in (C2) and (C3).

Since B in (1.1) is now a pn × qn matrix instead of a pn × 1 vector, the empirical

squared error is (nqn)
−1∥XB̂−XB∥2F , since multivariate regression basically in-

volves qn univariate multiple regressions, one for each output variable. The risk

inflation factor is now log(pnqn), and this explains the condition log(pnqn) = o(n)

in (C2) as an extension of the case qn = 1 considered by Ing and Lai (2011, 2014).

The arguments used by Ing and Lai (2014) to prove (2.8) can be extended to show

that for the GOGA estimate B̂m after m iterations,

max
1≤m≤Kn

(nqn)
−1 ∥XB̂m −XB∥2F

(m−1 + n−1m log(pnqn))
= Op(1). (2.9)

Making use of (2.9), Lai and Tsang (2014) have shown HDBIC to be con-

sistent for strongly sparse models, for which there exists 0 ≤ γ < 1 such that

nγ = o
(
{n/ log(pnqn)}1/2

)
and

lim inf
n→∞

nγ max
1≤i≤qn

{
min

1≤j≤pn,Bji ̸=0
|Bji|

√
vj

}
> 0

in probability. This is an extension of the strong sparsity condition of Ing and

Lai (2011) for the case qn = 1 and i.i.d. xt. Even if the strong sparsity does not

hold, they show that under additional regularity conditions, GOGA with HDAIC

can provide an asymptotically optimal set of input variables to yield a consistent

rank estimator r̂ via the information criterion (2.3), thereby establishing the

asymptotic efficiency of the proposed 2-stage estimator of B under coefficient

and rank sparsity.

3. Simulation Studies

3.1. Comparison of proposed procedure with RCGL

In this section, we report on simulation studies of the performance of the

2-stage parsimonious procedure, first in the case of i.i.d. xt and then in the case

of a VAR(1) model for the xt. For the i.i.d. case, we used the same setting as
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that considered by Bunea, She, and Wegkamp (2012), in which the rows of the

design matrix X ∈ Rn×p are i.i.d. and generated from a multivariate normal

distribution N(0,Σ), with Σjk = ρ|j−k| and ρ = 0.5. We took n = 250, q = 10

and considered p = 100 (< n) and p = 300 (> n). The first p0 = 15 rows

of the coefficient matrix B are “significantly nonzero”, of the form B0B1 with

B0 ∈ Rp0×r, B1 ∈ Rr×q, r = 3 or 8, such that all entries in B0 and B1 are

i.i.d. with the same distribution as Z + 0.1 · sign(Z), where Z ∼ N(0, 1). The

remaining p − p0 rows of B are zero rows. The random errors ϵtj are standard

normal. A simulation study of B̂RCGL in a similar setting has been carried

out by Bunea, She, and Wegkamp (2012), whose rank selection criterion (RSC)

estimates r by counting the number of singular values of XB̂OLS that are greater

than σ
√

2(q + r(X)), where r(X) is the rank of X and σ2 = 1 is the common

variance of ϵtj , that we assume to be known in applying RSC, following Bunea,

She, and Wegkamp (2012) who need this assumption for the case p > n. We used

λ = Cσ
√

λ1(X
TX/n)r̂n(1 + log(p)), suggested in Theorem 3 in Bunea, She, and

Wegkamp (2012), for the regularization parameter for the lasso penalty. Here r̂

is the rank estimate by RSC, λ1(X
TX/n) is the largest eigenvalue of XTX/n,

and C is a constant selected by cross-validation ranging from 0.1 to 10.

For each setting, a training set of n observations (xt,yt) and an independent

data set of size n to be used as test set were generated. For GOGA, we chose

Kn = ⌊10(n/(log pnqn))1/2⌋ and selected the number of predictors between 1

and Kn by the information criterion (2.1) with wn log(pnqn) = log n. Since pnqn
has the same order as n, this reduces (2.1) to the usual BIC. Table 1 gives the

prediction accuracy measured by the mean squared error

MSE =
1

nq
∥XtestB−XtestB̂∥2F (3.1)

using the test data Xtest, and by the mean squared in-sample error

MSIE =
1

nq
∥XB−XB̂∥2F (3.2)

using the training data X. Here MSIE is the same as the empirical squared error

in Section 2.4. In addition, Table 1 gives the mean number of relevant predictors

selected (denoted by ‘correct’), the mean number of predictors selected (denoted

by ‘total’), and the average estimated rank (denoted by r̂). Each result in Table

1 is based on 1,000 simulations. The table shows that RCGL and our proposed

two-stage parsimonious method, abbreviated by 2SP, perform well in selecting all

relevant variables and the rank of B. However, RCGL, which is based on group

lasso, selects other irrelevant predictors and gives biased estimates because of the

penalty term. This explains why RCGL has larger MSE and MSIE than 2SP.
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Table 1. Performance comparison between RCGL and 2SP for iid regressors,
with p = 100, 300; r = 3, 8; n = 250, p0 = 15 and q = 10. The standard
deviation of each value is given in parentheses; ‘correct’ denotes the mean
number of relevant predictors selected by a method and ‘total’ denotes the
total mean number of predictors selected.

n p q r Method MSE MSIE r̂ correct total
250 100 10 3 RCGL 0.06(0.01) 0.06(0.01) 3 (0 ) 15(0) 67.9( 7.1)

2SP 0.03(0.01) 0.03(0 ) 3 (0 ) 15(0) 15 ( 0 )
8 RCGL 0.14(0.02) 0.12(0.01) 7.9(0.3) 15(0) 73.6( 4.2)

2SP 0.07(0.04) 0.06(0.04) 7.9(0.4) 15(0) 15 ( 0 )
250 300 10 3 RCGL 0.14(0.03) 0.12(0.02) 3 (0 ) 15(0) 35.7( 4.8)

2SP 0.03(0.01) 0.03(0.00) 3 (0 ) 15(0) 15 ( 0 )
8 RCGL 0.20(0.04) 0.16(0.03) 7.7(0.4) 15(0) 121.7(10.1)

2SP 0.07(0.06) 0.06(0.05) 7.9(0.4) 15(0) 15 ( 0 )

We next consider the performance of 2SP and RCGL in the stochastic re-

gression model (1.1), in which

xt+1 = Axt +wt+1 (3.3)

is the VAR(1) model, with a random coefficient matrix A that satisfies some

stability restriction to ensure the stationarity of xt, e.g., ∥A∥ < 0.9, where ∥A∥
denotes the spectral norm (λmax(A

TA))1/2. In particular, if we choose the distri-

bution of A to be that of i.i.d. standard normal entries conditional on ∥A∥ < 0.9,

then A can be generated by rejection sampling that rejects a simulated sample

of i.i.d. standard normal variables if they comprise a matrix whose spectral norm

is ≥ 0.9. However, this rejection sampling scheme has high rejection rate and

is very inefficient for high-dimensional A. We address this difficulty by using

an alternative distribution for A that can be generated in the following way.

Again we start by generating a matrix A0 with i.i.d. standard normal entries.

Let λ0
1, . . . , λ

0
p be the eigenvalues of A0 and V = [v0

1, . . . ,v
0
p] be the matrix con-

sisting of the corresponding normalized eigenvectors. Define λ̃i = λ0
i if |λ0

i | ≤ 1

and λ̃i = 1/λ0
i otherwise. Let Ã = (ãij)1≤i,j≤p = Vdiag(λ̃0

1, . . . , λ̃
0
p)V

− and

A1 = (Re(ãij))1≤i,j≤p, where V− is the Moore-Penrose generalized inverse of

V. To ensure stationary we choose the distribution of A to be the conditional

distribution of A1 given that max1≤i≤p |λ1
i | ≤ 0.9. Hence A can be generated by

rejection sampling as before, but applied to A1, and the rejection rate is much

lower than that applied to A0.

The coefficient matrix B in (1.1) was constructed in the same way as in the

i.i.d. setting. We chose n = 250, q = 10, p = 100 or 300 as before. The random

errors wti in wt were assumed to be i.i.d. standard normal. The acceptance

rate of the rejection sampling procedure (described in the preceding paragraph)
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Table 2. Performance comparison between RCGL and 2SP for stochastic
regressors, with p = 100, 300; r = 3, 8; n = 250, p0 = 15 and q = 10. The
standard deviation of each value is given in parentheses; ‘correct’ denotes
the mean number of relevant predictors selected by a method and ‘total’
denotes the total mean number of predictors selected.

n p q r Method MSE MSIE r̂ correct total
250 100 10 3 RCGL 0.59( 1.44) 0.47( 1.13) 3 (0 ) 15(0) 28.4( 7.3)

2SP 0.03( 0.01) 0.03( 0.01) 3 (0 ) 15(0) 15.9( 1.8)
8 RCGL 3.58(10.7 ) 3.07( 9.8 ) 8 (0.2) 15(0) 22.1( 5.7)

2SP 0.07( 0.03) 0.06( 0.03) 7.9(0.3) 15(0) 15.9( 1.8)
250 300 10 3 RCGL 2.35( 5.5 ) 1.8 ( 4.2 ) 3 (0 ) 15(0.2) 34.9(13.6)

2SP 0.04( 0.17) 0.03( 0.08) 3 (0 ) 15(0.1) 16.8( 3.8)
8 RCGL 10.8 (19.67) 9.17(17.2 ) 7.9(0.3) 15(0.1) 29 (13 )

2SP 0.09( 0.61) 0.07( 0.31) 7.9(0.2) 15(0.1) 16.8( 4.1)

Table 3. Number of r̂ ̸= r in 10,000 simulations for RSC and IC.

n p q r Method I.I.D. VAR(1)
250 100 10 3 RSC 0 0

IC 0 0
8 RSC 31 14

IC 61 32
250 300 10 3 RSC 0 0

IC 0 0
8 RSC 108 26

IC 92 49

used to generate A was 0.72 in this simulation study. The prediction accuracy

measured by MSE and MSIE and other performance measures are given in Table

2, each result of which is based on 1,000 simulations. The table shows that the

performance of 2SP for stochastic regressors is similar to its performance for

i.i.d. regressors, but the performance of RCGL is much worse. On the other

hand, RSC still performs well in stochastic regression models, as shown by Table

3. The table, each result of which is based on 10,000 simulations, compares the

performance of the rank estimate in Section 2.3 using IC with that of RSC that

assumes σ = 1 to be known, and shows that both rank estimates perform well

for both i.i.d. and stochastic regressors. In the next section we explain why this

is the case by using the SVD (singular value decomposition) of XSB̂
GOGA

.

3.2. Extensions to conditionally heteroscedastic errors

A stylized feature for many economic and financial time series is conditionally

heteroscedastic errors; see Chapter 6 of Lai and Xing (2008). As noted by Lai and

Tsang (2014), (C3) can be greatly relaxed if moment bounds are used instead
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Table 4. Performance comparison between RCGL and 2SP for stochastic
regressors with heteroscedastic errors, in the case p = 100, 300; r = 3, 8;
n = 250, p0 = 15 and q = 10. The standard deviation of each value is given
in parentheses; ‘correct’ denotes the mean number of relevant predictors
selected by a method and ‘total’ denotes the total mean number of predictors
selected.

n p q r Method MSE MSIE r̂ correct total
250 100 10 3 RCGL 1.15( 3.29) 0.96( 2.82) 3.07(0.26) 15 (0.2) 28 ( 9.2)

2SP 0.08( 0.07) 0.07( 0.07) 3 (0 ) 15 (0.1) 15.9( 2.1)
8 RCGL 5.39( 9.7 ) 4.68( 8.76) 7.9 (0.3 ) 15 (0.1) 21.4( 6 )

2SP 0.18( 0.2 ) 0.17( 0.17) 7.9 (0.4 ) 15 (0 ) 16 ( 2 )
250 300 10 3 RCGL 3.64( 6.73) 2.82( 4.99) 3.1 (0.5 ) 14.9(0.3) 34.9(27.2)

2SP 0.09( 0.23) 0.08( 0.14) 3 (0 ) 15 (0.2) 16.8( 3.8)
8 RCGL 15.1 (21.8 ) 13.1 (19.6 ) 7.7 (0.5 ) 14.9(0.4) 28.4(20.9)

2SP 0.18( 0.16) 0.17( 0.15) 7.9 (0.4 ) 15 (0 ) 16.5( 3.1)

of exponential bounds; in this case, we only require the random errors to be

martingale differences satisfying certain assumptions for the asymptotic theory

of 2SP. In particular, for random errors ϵtj that are generated by GARCH(1,1)

model

ϵtj = σtjztj , σ2
tj = ω + aσ2

t−1,j + bϵ2t−1,j , (3.4)

for 1 ≤ j ≤ q, where ztj are i.i.d. N(0, 1), we have carried out a simulation study

of the performance of 2SP, assuming that ω ∼ Unif(0, 1) and a = b = 0.4. The

long-run variance of the GARCH errors is ω/(1− a− b); see Lai and Xing (2008,

p.147). In case p < n, this can be estimated by σ̂2 = ∥Y−XB̂OLS∥F /(q(n−p)),

as suggested by Engle and Mezrich (1996). The variance estimate σ̂2 is used

by Bunea, She, and Wegkamp (2011) to implement RCGL when the assumed

common variance σ2 of ϵtj is unknown. For p > n, since this variance estimate is

not applicable, we replace σ2 by ω/(1−a−b) to implement RCGL for comparison

with 2SP in the GARCH model (3.4) for the random errors. The prediction

accuracy measured by MSE and MSIE and other performance measures similar

to those in Tables 1 and 2 are given in Table 4, each result of which is based on

1,000 simulations. The table shows that both 2SP and RCGL can still choose

all the relevant predictors and select the rank close to the actual rank, but that

2SP has much smaller MSE and MSIE than RCGL.

4. Discussion and Time Series Applications

There has been much recent interest in low-rank estimators of high-dimensional

matrices in a variety of applications, ranging from matrix completion problems

in web-based personalized recommendation systems to medical imaging and re-

mote sensing; see Candès and Plan (2010), Negahban and Wainwright (2011),
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Rohde and Tsybakov (2011), and the references therein. Penalized least squares

are typically used, with penalty proportional to the nuclear norm of the param-

eter matrix, under coefficient and rank sparsity. Whereas these papers consider

univariate outputs yi whose means are Tr(BxT
i ) (xi here can be a matrix) for

an unknown parameter matrix, Bunea, She, and Wegkamp (2011, 2012) consider

the case of multivariate yi, which is much closer in spirit to the multivariate

time series models considered herein. However, these recent developments are

restricted to nonrandom or independent regressors xt, and does not apply to the

more general stochastic regressors commonly encountered in multivariate time

series models.

We introduce a new approach to multivariate stochastic regression that takes

advantage of coefficient and rank sparsity. Instead of using the rank-constrained

group lasso, as in Bunea, She, and Wegkamp (2012), we use the group orthogonal

greedy algorithm (GOGA) to enter input variables sequentially up to a stopping

time and then to choose along the GOGA path the set of input variables with

which we perform reduced rank regression, with the rank determined by the

information criterion (2.3). Although (2.3) appears to be completely different

from the RSC that uses the threshold σ
√

2(q + r(X)) to cut off smaller singular

values of XB̂OLS (see the first paragraph of Section 3), it is in fact operationally

similar to RSC. To see its connection to RSC, rewrite (2.3) as

IC(h) = nq log

(
Tr(YTY)−

h∑
i=1

µ2
i

)
+ hc(n+ q) log

(
nq

n+ q

)
,

in which the µi are singular values of XSB̂
GOGA. This implies that accepting a

higher rank that is associated with a small µi only diminishes the first summand

of IC(h) slightly but increases the second summand by c(n+ q) log(nq/(n+ q)).

Hence we can regard the criterion (2.3) as if there is a threshold below which

the singular values of XSB̂
GOGA are set to 0, similar to RSC which uses XB̂OLS

instead of XSB̂
GOGA.

The information criterion (2.3) also has some resemblance to, and in fact was

inspired by, that introduced by Bai and Ng (2002) for determining the number of

factors in X. Stock and Watson (1999, 2002) have introduced factor models for

X to forecast Y. The basic idea is that although xt (assumed to be stationary)

may be high-dimensional, the covariance matrix may have a few dominant factors

(principal components associated with the largest eigenvalues), leading Bai and

Ng to develop an information criterion to estimate the number of factors. This

information criterion was subsequently widely used in macroeconomic studies;

see e.g., Bernanke, Bovian, and Eliasz (2005). Since the goal is to forecast yt, it

seems more direct to estimate the number of nonzero singular values of the matrix
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B instead. The advantage of our procedure over the dynamic factor modeling

approach of Stock and Watson in macroeconomic studies are discussed in Lai and

Tsang (2014). This advantage was already observed by Professor Tiao when he

started working in multiple time series modeling. He commented further on the

transformations associated with canonical analysis that he found to reveal more

than one would expect from principal component analysis: “when you have all

these nonstationary things that move in tandem, maybe there are only one or

two underlying components that explain all the growth” (Peña and Tsay (2011,

p.417)). His conjectural foresight subsequently materialized in the development

of cointegration in econometrics via reduced rank regression or canonical analysis

by Johansen (1988, 1991) and Reinsel and Ahn (1992); see Reinsel and Velu

(1998, Sec. 5.2, 5.3 and 5.6).

Noting that VARMA models “contain a dauntingly large number” of pa-

rameters, Tiao and Box (1981, p.805) suggested that “often models of rather low

order can provide adequate approximation” and that “methods of seeking sim-

plification, for example, principal component analysis or canonical analysis (see

Box and Tiao (1977)), will often prove effective.” Our approach has added the

ideas of coefficient sparsity and rank sparsity to come up with estimable models

in more general high-dimensional multivariate stochastic regression. In addition,

Tiao and Box (1981, p.815) suggested that “in modeling as well as analysis of

vector time series one often finds it useful to perform various eigenvalue and

eigenvector analysis”. We have followed their suggestion and used advances in

numerical linear algebra to compute more general singular values and singular

vectors of XB̂OLS in implementing the RCGL procedure of Bunea, She, and

Wegkamp (2012) in Section 3. For the two-stage parsimonious procedure pro-

posed herein, we use the simpler QR decomposition to implement GOGA in the

first stage and an information criterion to estimate the rank in the second stage.
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