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Abstract: It is important to study the interaction between risk factors in molecular

epidemiology studies. To improve the power for the detection of interaction, some

statistical testing procedures have been proposed in the literature by incorporating

certain assumptions on the underlying joint distribution of two risk factors. For ex-

ample, the well known case-only test used in genetic epidemiology studies is derived

under the assumption of independence between the two risk factors. However, such

testing procedures could have detrimental effects on both false positive and false

negative rates when assumptions are not met. We propose a parametric copula

function to model the joint distribution while leaving the marginal distributions for

the two risk factors unspecified. A unified approach is proposed to estimate/test

the interaction effect. This approach is very flexible and can be applied to study

the interaction between risk factors that are continuous or discrete. A simulation

study finds that the proposed test is generally more powerful than the traditional

robust test derived under the standard logistic regression, and without specifying

the relationship between the two risk factors. The performance of the proposed

approach is comparable with the case-only test when the two risk factors are in-

deed independent in the control population. Unlike the case-only test, the proposed

test can still maintain the type I error rate when the independence assumption is

not valid. The application of the proposed procedure is demonstrated through two

cancer epidemiology studies.

Key words and phrases: Case-only design, gene-environment interaction, gene-gene

interaction, pseudo likelihood.

1. Introduction

In epidemiology studies, it is usually of interest to evaluate whether there is

any interaction between two risk factors for the disease of interest. For instance,

in genetic epidemiology studies, it is important to study gene-gene and gene-

environment interactions in order to better understand the etiology underlying

the disease development. The case-control design is in wide use. Under such a

retrospective design, information on risk factors and other covariates is collected

at fixed numbers of cases and controls. It is well known that the prospective like-

lihood based on a logistic regression model can be used to estimate the log odds
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ratio parameters due to the equivalence of the prospective and retrospective max-

imum likelihood estimates (Cornfield (1956); Prentice and Pyke (1979)). For the

same reason, the prospective likelihood model can also be used to study the inter-

action by evaluating the coefficient of the product term of two risk factors. The

standard logistic regression model is optimal for the assessment of the interaction

when the joint distribution of two risk factors is fully nonparametric. However,

this standard logistic regression method ignores the relationship between the risk

factors and thus could loss power for detecting interaction if such information is

available. Piegorsch, Weinberg, and Taylor (1994) proposed a case-only method

for detecting interaction that is valid when the disease is rare enough and the two

risk factors are independent in the general population, but this method does not

allow for the adjustment of additional covariates. Umbach and Weinberg (1997)

extended the case-only method to account for categorical covariates. Chatter-

jee and Carroll (2005) developed a general semiparametric method to detect

gene-environment or gene-gene interaction by incorporating the independence

assumption for the the risk factors. However, it has been shown that methods

derived under the independence assumption can lead to serious inflation in type I

error or loss of power if that assumption is not met in the application, and should

be used with great caution when the independence assumption is in doubt. To

relax the independence assumption, Mukherjee and Chatterjee (2008) proposed

an empirical Bayes-type shrinkage estimator by combining the estimate from the

standard logistic regression model with the one derived under the independence

assumption.

In this paper, we develop a novel approach for detecting interaction by mod-

eling the joint distribution of two risk factors in the control population (or equiv-

alently, the general population if the disease is rare) through a copula model

(Nelsen (1999)) while leaving the marginal distributions of the risk factors un-

specified. Some authors have modeled the relationship between the risk factors

in the general population (Chatterjee and Carroll (2005); Lin and Zeng (2009)),

but the parameters might be nearly unidentifiable, as mentioned in their papers,

while ours avoids the identifiability problem. The proposed model is very gen-

eral and covers the scenario in which the two risk factors are independent in the

control population. The theory underlying our approach is due to Sklar (1959),

stating that there exists a unique copula function characterizing the joint dis-

tribution of any two continuous random variables. For discrete-continuous and

discrete-discrete settings, we assume that the discrete risk factors are ordinal

and can be derived through (unobservable) continuous random variables. Our

approach can thus be used to study the interaction of two risk factors that are

either continuous or discrete.

The rest of this paper is organized as follows. In Section 2, the logistic re-

gression model and the copula model are described for continuous-continuous,
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discrete-continuous, and discrete-discrete risk factors. In Section 3, a two-stage

approach is developed for estimating unknown parameters under each setting,

where the first stage is to estimate the marginal distributions of the risk fac-

tors and the second stage is to maximize the pseudo likelihood function with

marginal distributions fixed as those estimated in the first stage. In Section 4,

some large sample properties of the pseudo maximum likelihood estimator are

established and a bootstrap-based procedure is proposed for estimating the asso-

ciated variance-covariance matrix of the pseudo maximum likelihood estimators,

then one can construct a confidence interval and a Wald test statistic for the

interaction. In Sections 5 and 6, the proposed approach is illustrated with a

simulation study and two applications. Some final conclusions and remarks are

given in Section 7. Proofs are relegated to the appendices.

2. Model Assumption

We consider two risk factors for a disease of interest. The risk factors can be

either continuous or discrete. Let X and Y denote the risk factors if continuous-

continuous, X∗ and Y if discrete-continuous, and X∗ and Y ∗ if discrete-discrete.

We first focus on the continuous-continuous case, then generalize the arguments

to the other two cases.

A logistic regression model relating disease status D and the two risk factors

X and Y is

Pr(D = 1|X = x, Y = y) =
exp(α∗ + βx+ γy + ξxy)

1 + exp(α∗ + βx+ γy + ξxy)
, (2.1)

where α∗ is the intercept, β and γ are the main effects, and ξ is the interaction

effect. If f0(x, y) denotes the joint density function of (X,Y ) in the control

population, then the joint density function of (X,Y ) in the case population can

be written as (Qin and Zhang (1997))

f1(x, y) = exp(α+ βx+ γy + ξxy)f0(x, y), (2.2)

where α = α∗ + log{Pr(D = 0)/Pr(D = 1)}. As f1(x, y) is a density function,

we have exp(−α) =
∫∫

exp(βx+ γy + ξxy)f0(x, y)dxdy so that

f1(x, y) =
exp(βx+ γy + ξxy)f0(x, y)∫∫
exp(βx+ γy + ξxy)f0(x, y)dxdy

. (2.3)

Based on (2.3), the distribution of (X,Y ) in cases can be treated as a re-weighted

version of their distribution in controls, with weight exp(α+ βx+ γy + ξxy).

If one assumes that X and Y are independent in the control population,

then, under the null hypothesis of no interaction effect, X is also independent of

Y in the case population. Therefore, to test interaction effect, one can apply the
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Pearson chi-square test to the case data. This is the so-called case-only method.

If independence is in doubt, the application of a copula model is a natural

choice to model the dependence. In the following, we specify the joint density

function f0(·, ·) through a copula function.

In the continuous-continuous case, we assume that X and Y are continuous

random variables with marginal distribution functions in the control population

of FX(x) and FY (y), respectively. By Sklar’s theorem (Sklar (1959)), we can

take the joint distribution function of (X,Y ) as

F0(x, y) = C(FX(x), FY (y); θ), (2.4)

where C(u, v; θ) is a copula function known up to a parameter vector θ of finite

dimension. The joint density function of (X,Y ) in the control population is then

f0(x, y) = c(FX(x), FY (y); θ)fX(x)fY (y), (2.5)

where c(x, y; θ) = ∂2C(x, y; θ)/∂x∂y, and fX(x) = ∂FX(x)/∂x and ∂FY (y)/∂y

are, respectively, the marginal density functions of X and Y in the control pop-

ulation.

In the discrete-continuous case, we can adopt the approach of de Leon and

Wu (2011) and assume that there is a continuous random variable underlying

the discrete risk factor. In detail, suppose that the discrete risk factor X∗ is an

ordinal random variable taking a finite number of values, say 1, . . . ,K, and that

Y is a continuous random variable with distribution function FY (y). We assume

that there exists an underlying continuous random variable X with distribution

function FX(x) and that, for −∞ = c0 < c1 < · · · < cK < cK+1 = ∞,

X∗ = k, if ck < X ≤ ck+1 for k = 0, 1, . . . ,K. (2.6)

If the joint distribution function of (X,Y ) is C(FX(x), FY (y); θ), then the joint

density function of (X∗, Y ) in the control population is

f
(1)
0 (x∗, y) = {C2(FX(ck+1), FY (y); θ)− C2(FX(ck), FY (y); θ)} fY (y) if x∗ = k

(2.7)

for k = 0, 1, . . . ,K and −∞ < y < ∞, where C2(u, v; θ) = ∂C(u, v; θ)/∂v and

fY (y) = ∂FY (y)/∂y. The joint density function of (X∗, Y ) in the case population

is

f
(1)
1 (x∗, y) =

f
(1)
0 (x∗, y) exp(βx∗ + γy + ξx∗y)∑K

k=0

∫
f
(1)
0 (k, y) exp(βk + γy + ξky)dy

. (2.8)

In the discrete-discrete case, we further assume that Y ∗ is an ordinal ran-

dom variable taking a finite number of values, say 1, . . . , L, that there exists an
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underlying continuous random variable Y with distribution function FY (y), and

that for −∞ = d0 < d1 < · · · < dL < dL+1 = ∞,

Y ∗ = l, if dl < Y ≤ dl+1 for l = 0, 1, . . . , L. (2.9)

If the joint distribution function of (X,Y ) is C(FX(x), FY (y); θ), then the joint

density function of (X∗, Y ∗) in the control population is

f
(2)
0 (x∗, y∗) = C(FX(ck+1), FY (dl+1); θ)− C(FX(ck), FY (dl+1); θ)

−C(FX(ck+1), FY (dl); θ) + C(FX(ck), FY (dl); θ), (2.10)

if (x∗, y∗) = (ck, dl) for k = 0, 1, . . . ,K and l = 0, 1, . . . , L. The joint density

function of (X∗, Y ∗) in the case population is

f
(2)
1 (x∗, y∗) =

f
(2)
0 (x∗, y∗) exp(βx∗ + γy∗ + ξx∗y∗)∑K

k=0

∑L
l=0 f

(2)
0 (ck, dl) exp(βck + γdl + ξckdl)

. (2.11)

Remark 1. In the discrete-continuous case, the joint density functions f
(1)
0 (x∗, y)

and f
(1)
1 (x∗, y) depend on the threshold values {c1, . . ., cK} only through {FX(c1),

. . ., FX(cK)} which can be estimated, see the next section. Therefore, we do not

need to estimate these threshold values. The same is true for the discrete-discrete

case, because f
(2)
0 (x∗, y∗) and f

(2)
1 (x∗, y∗) depend on {c1, . . . , cK ; d1, . . . , dL} only

through the estimable probabilities {FX(c1), . . . , FX(cK);FY (d1), . . . , FY (dK)}.

3. Parameter Estimation

The estimation of regression coefficients β, γ, and ξ is complicated by the

presence of the high-dimensional nuisance parameters FX and FY . We adopt a

pseudo-likelihood based approach, with FX and FY being estimated in the first

stage. The pseudo likelihood method has been well developed for some widely

used models, for instance, the parametric model used for a pseudo-likelihood

estimation procedure (Gong and Samaniego (1981)), the copula model for multi-

variate data under a cross-sectional design (Genest, Ghoudi, and Rivest (1995)),

and the bivariate survival model (Shih and Louis (1995)).

The detailed parameter estimation procedures for the various cases are pre-

sented in the next subsections.

3.1. Continuous-continuous case

Let the observed risk factors for cases and controls be, respectively, {(x1i,
y1i), i = 1, . . . , n1} and {(x0i, y0i), i = 1, . . . , n0}, and the pooled data be {(xi, yi),
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i = 1, . . . , n(= n1 + n0)}. The log likelihood is

ln(β, γ, ξ, θ, FX , FY ) =
n∑

i=1

{
log fX(xi) + log fY (yi) + log c(FX(xi), FY (yi); θ)

}
+

n1∑
i=1

{
(βx1i + γy1i + ξx1iy1i) log

∫∫
c(FX(x), FY (y); θ)

− exp(βx+ γy + ξxy)dFX(x)dFY (y)
}
. (3.1)

This is difficult to maximize with respect to all the unknown parameters. Instead,

we adopt a two-stage algorithm. The first stage is to estimate FX and FY without

any constraint on their joint distribution. If the resulting estimators are F̂X and

F̂Y , the second stage maximizes ln(β, γ, ξ, θ, F̂X , F̂Y ) with respect to (β, γ, ξ, θ).

Let the resulting pseudo-MLE be (β̂, γ̂, ξ̂, θ̂).

We consider two types of estimates for FX and FY . One method uses the

empirical distribution functions for the control samples; these have some nice

large sample properties but do not use the information in the case data. The

other is a semiparametric method that utilizes both case and control data and is

intuitively more efficient. The idea is to estimate the marginal distribution func-

tions based on empirical likelihood estimate at each observation. The detailed

algorithm for this is described as follows.

(i) Maximize

n1∑
i=1

(α+ βx1i + γy1i + ξx1iy1i)−
n∑

i=1

log{n0 + n1 exp(α+ βxi + γyi + ξxiyi)}

over (α, β, γ, ξ). Let the resulting estimator be (α̃, β̃, γ̃, ξ̃).

(ii) Obtain the empirical maximum likelihood estimator of pi=Pr(xi, yi|control):
p̂i = {n0 + n1 exp(α̃+ β̃xi + γ̃yi + ξ̃xiyi)}−1.

(iii)Estimate FX and FY by F̂X(x) =
∑n

i=1 p̂iI(xi ≤ x) and F̂Y (y) =
∑n

i=1 p̂iI(yi
≤ y), respectively.

Qin and Zhang (1997) showed that F̂ (x, y) =
∑n

i=1 piI(xi ≤ x, yi ≤ y) is

consistent for F0(x, y). Therefore, F̂X(·) and F̂Y (·) are consistent for FX(·) and
FY (·), respectively, and the resulting log pseudo likelihood ln(β, γ, ξ, F̂X , F̂Y ) can

be used for estimating/detecting the interaction effect.

The MLE (α̃, β̃, γ̃, ξ̃) and (α̂, β̂, γ̂, ξ̂) can be easily obtained by the Newton-

Raphson algorithm and nonlinear optimization algorithms.
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3.2. Discrete-continuous case

Let the observed risk factors for cases and controls be {(x∗1i, y1i), i=1, . . . , n1}
and {(x∗1i, y1i), i = 1, . . . , n0}, respectively, and the pooled data be {(x∗i , yi),
i = 1, . . . , n(= n1 + n0)}. The log likelihood is

ln(β, γ, ξ, θ, FX , FY ) =

n∑
i=1

log f0(x
∗
i , yi) +

n1∑
i=1

[
(βx∗1i + γy1i + ξx∗1iy1i)

− log
K∑
k=0

∫
y
f0(k, y) exp(βk + γy + ξky)dy

]
, (3.2)

where f0(·, ·) is defined at (2.7). Now (3.2) depends on FX only through FX(c1),

. . ., FX(cK), but it also depends on the high-dimensional parameter FY , making

it difficult to maximize directly. One could adopt a two-stage approach as above.

But our preliminary numerical study shows that this approach is numerically

unstable due to the estimation of FX (at c1, . . . , cK) in the second stage. Instead,

in the second stage we fix FX at the estimator F̂X (evaluated at c1, . . . , cK)

obtained in the first stage as in the continuous-continuous case, then maximize

the log pseudo likelihood ln(β, γ, ξ, θ, F̂X , F̂Y ) with respect to (β, γ, ξ, θ) to get

the pseudo-MLE (β̂, γ̂, ξ̂, θ̂). Here, the estimator F̂X(ck) is F̂X∗(k), obtained as

in the continuous-continuous case by treating FX∗ as a continuous distribution

function that depends on k instead of the threshold value ck.

3.3. Discrete-discrete case

Let the observed risk factors for cases and controls be, respectively, {(x∗1i, y∗1i),
i = 1, . . . , n1} and {(x∗1i, y∗1i), i = 1, . . . , n0}, the pooled data be {(x∗i , y∗i ),
i = 1, . . . , n(= n1 + n0)}. The log likelihood is

ln(β, γ, ξ, θ, FX , FY ) =

n∑
i=1

log f0(x
∗
i , y

∗
i ) +

n1∑
i=1

[
(βx∗1i + γy∗1i + ξx∗1iy

∗
1i)

− log
K∑
k=0

L∑
l=0

f0(k, l) exp(βk + γl + ξkl)

]
, (3.3)

where f0(·, ·) is defined at (2.10). The log likelihood (3.3) depends on FX only

through FX(c1), . . . , FX(cK), and FY only through FY (d1), . . . , FY (dL). There-

fore, intuitively, one can maximize (3.3) with respect to all unknown parameters

directly. Again, since this maximization can be difficult in practice, we adopt a

two-stage approach. In the first stage we obtain the estimators F̂X (at c1, . . . , cK)

and F̂Y (at d1, . . . , dL) based on a prospective likelihood as in the continuous-

continuous case, and in the second stage we maximize the log pseudo likelihood
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ln(β, γ, ξ, θ, F̂X , F̂Y ) with respect to (β, γ, ξ, θ). Let the resulting pseudo-MLE

be (β̂, γ̂, ξ̂, θ̂).

4. Large Sample Properties and Testing Procedure

We focus on the continuous-continuous case since the other cases can be

addressed similarly.

In Supplementary Material S1, under some regularity conditions on F0X ,

F0Y , and C(x, y; θ), we show that there exists a local maximizer of the pseudo

likelihood that is consistent for the true value of (β, γ, ξ, θ), and that this pseudo-

MLE is asymptotically normally distributed with expectation 0 and a variance-

covariance matrix given there. By virtue of the asymptotic normality, given the

variance-covariance matrix of the pseudo-MLE, the (1 − α) × 100% confidence

limit for ξ is ξ̂ ± z1−α/2ŝe(ξ̂) and the Wald test statistic for H0 : ξ = 0 takes the

form ξ̂{ŝe(ξ̂)}−1, where z1−α/2 is the upper α-quantile of the standard normal

distribution and ŝe(ξ̂) is an estimated standard error of ξ̂.

In the Supplementary Material S1 one sees that the estimation of the variance-

covariance matrix of the pseudo-MLE is quite complicated, even more compli-

cated if FX and FY are estimated by the algorithm in Subsection 3.1. Here,

we consider two versions of the bootstrap. One is the nonparametric bootstrap

that separately resamples case data and control data with replacement; the other

is a semiparametric bootstrap based on the empirical distributions for the case

group and the control group estimated from the retrospective likelihood (Qin and

Zhang (1997)). In the semiparametric bootstrap method, since each subject in

the pooled sample can be sampled for both cases and controls, the method fully

uses all samples; it is more suitable than the nonparametric bootstrap method

when n0 or n1 is relatively small. The detailed algorithm of the semiparametric

bootstrap method is as follows.

(i) From (xi, yi), i = 1, . . . , n, randomly generate n0 risk factors (x
(0)
i , y

(0)
i ) for

controls, i = 1, . . . , n0, with weight p̂i = {n0+n1 exp(α̃+β̃xi+γ̃yi+ξ̃xiyi)}−1

for (xi, yi), and n1 risk factors (x
(1)
i , y

(1)
i ) for cases, i = n0 + 1, . . . , n, with

weight q̂i = exp(α̃+ β̃xi+ γ̃yi+ ξ̃xiyi){n0+n1 exp(α̃+ β̃xi+ γ̃yi+ ξ̃xiyi)}−1

for (xi, yi). Here (α̃, β̃, γ̃, ξ̃) is the maximum likelihood estimator of (α, β,

γ, ξ) without constraint, as defined in Subsection 3.1.

(ii) Obtain the pseudo maximum likelihood estimator (β̌, γ̌, ξ̌, θ̌) using resampled

data {(x(0)1 , y
(0)
1 ), . . . , (x

(0)
n0 , y

(0)
n0 ), (x

(1)
1 , y

(1)
1 ), . . . , (x

(1)
n1 , y

(1)
n1 )}.

(iii)Repeat (2.1) and (2.2) for B times to obtain some copies of (β̌, γ̌, ξ̌, θ̌), say

(β̌b, γ̌b, ξ̌b, θ̌b), b = 1, . . . , B.
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(iv) Estimate the variance-covariance matrix of the pseudo maximum likelihood

estimator (β̂, γ̂, ξ̂, θ̂) using the sample variance-covariance matrix of (β̌b, γ̌b,

ξ̌b, θ̌b), b = 1, . . . , B.

Because (β̂, γ̂, ξ̂, θ̂) is asymptotically normal, a moderate number of resam-

plings can generate a good approximation of the variance of (β̂, γ̂, ξ̂, θ̂), as shown

in the subsequent simulation study with B = 200.

5. A Simulation Study

In the simulation study, we considered the Gaussian copula model (Li (2000))

C(x, y; θ) = Φθ(Φ
−1(x),Φ−1(y)), (5.1)

where Φ−1(x) is the inverse function of the standard normal distribution function

and Φθ(x, y) is the joint distribution function of the bivariate normal with means

0, variances 1, and correlation coefficient θ. We have

c(x, y; θ) =
ϕθ(Φ

−1(x),Φ−1(y))

ϕ(Φ−1(x))ϕ(Φ−1(y))
and C2(x, y; θ) = Φ

(
Φ−1(x)− θΦ−1(y)

(1− θ2)1/2

)
,

(5.2)

where ϕ(x) is the standard normal density function and ϕθ(x, y) = ∂2Φθ(x, y)/

∂x∂y. The first equation in (5.2) follows from the definition and the derivation

of the second is given in Supplementary Material S2.

The risk factors (X,Y ) in the control population were generated from the bi-

variate normal distribution with the copula function C(x, y; θ). For the discrete-

continuous and discrete-discrete cases, the probability function of X∗ was Pr(X∗

= k) = 1/4, k = 0, 1, . . . , 3, and for the discrete-discrete case, the probability

function of Y ∗ was the same as that of X∗.

We considered three values of θ: 0, 0.2, and −0.2. The main effects were

fixed at β = γ = 0.5. The interaction effect ξ either 0 for all the three cases or

0.25 for the continuous-continuous case and 0.5 for the discrete-continuous and

discrete-discrete cases. For each combination of θ and ξ, we generated 106 risk

factors for controls: {(Xi, Yi), i = 1, . . . , 106}, {X∗
i , i = 1, . . . , 106} according to

(2.6), and {Y ∗
i , i = 1, . . . , 106} according to (2.9). We used a biased sampling

technique (Cochran (1977); Nair and Wang (1989)) to generate the case data.

For instance, in the discrete-continuous case, we generated risk factors for cases

from

Pr(X∗
i , Yi|Di = 1) =

exp(0.5X∗
i + 0.5Yi + ξX∗

i Yi)∑106

i=1 exp(0.5X
∗
i + 0.5Yi + ξXiYi)

. (5.3)

With the 106 observations, we randomly sampled 200 observations for controls

and randomly sampled 200 observations for cases with weights (5.3). The sim-

ulation results were based on 2000 generated datasets. Then we applied the
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Table 1. Interaction estimate/test results in the continuous-continuous case.

ξ θ Proposed Logistic Case-only
Bias SE SEE CP Wald1 Wald2 Pearson

0 0.0 0.004 0.104 0.102 0.938 0.064 0.050 0.057
0 0.2 0.032 0.105 0.106 0.943 0.056 0.048 0.826
0 −0.2 −0.018 0.103 0.103 0.947 0.061 0.054 0.816
0.25 0.0 0.027 0.109 0.108 0.958 0.754 0.578 0.945
0.25 0.2 0.070 0.111 0.116 0.892 0.835 0.556 1.000
0.25 −0.2 −0.006 0.107 0.105 0.937 0.636 0.571 0.092

ξ, the interaction effect; θ, the correlation coefficient of marginal distributions;
Bias, mean estimated ξ minus the ξ; SE, standard error of estimated ξ; SEE, mean
estimated standard error of estimated ξ; CP, coverage probability of confidence
interval; Wald1 and Wald2, Wald test; Pearson, Pearson chi-square test.

Table 2. Interaction estimate/test results in the discrete-continuous case.

ξ θ Proposed Logistic Case-only
Bias SE SEE CP Wald1 Wald2 Pearson

0 0.0 0.005 0.096 0.096 0.949 0.051 0.054 0.048
0 0.2 0.010 0.100 0.100 0.948 0.055 0.049 0.645
0 −0.2 −0.006 0.097 0.097 0.962 0.052 0.052 0.698
0.5 0.0 0.049 0.164 0.156 0.937 0.936 0.802 0.997
0.5 0.2 0.063 0.162 0.164 0.938 0.925 0.722 1.000
0.5 −0.2 0.009 0.146 0.140 0.942 0.961 0.883 0.951

ξ, the interaction effect; θ, the correlation coefficient of marginal distribution;
Bias, mean estimated ξ minus the ξ; SE, standard error of estimated ξ; SEE, mean
estimated standard error of estimated ξ; CP, coverage probability of confidence
interval; Wald1 and Wald2, Wald test; Pearson, Pearson chi-square test.

proposed approach, the standard logistic regression method, and the Pearson

chi-square test for independence using the case data to each simulated dataset.

In the proposed approach, we estimated the standard errors of pseudo-MLEs

based on 200 semiparametric bootstrap samples.

For the proposed approach, the average value of the pseudo-MLE of ξ̂ minus

the true ξ (Bias), the empirical standard error (SE) of ξ̂, the mean estimated stan-

dard error (SEE) of ξ̂, and the coverage probability (CP) of the 95% confidence

interval of ξ are reported in Tables 1, 2, and 3 for the continuous-continuous case,

the discrete-continuous case, and the discrete-discrete case, respectively. The

type I error rates and powers at 0.05 level for the proposed approach (Wald1), the

standard logistic regression method (Wald2), and the case-only method (Pearson)

are also reported in Tables 1−3.

In most situations, the biases are small, the estimated standard errors are

close to the empirical standard errors, and the coverage probabilities are close
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Table 3. Interaction estimate/test results in the discrete-discrete case.

ξ θ Proposed Logistic Case-only
Bias SE SEE CP Wald1 Wald2 Pearson

0 0.0 −0.002 0.093 0.092 0.942 0.050 0.048 0.046
0 0.2 −0.005 0.093 0.094 0.965 0.048 0.056 0.479
0 −0.2 −0.005 0.089 0.091 0.953 0.05 0.050 0.550
0.5 0.0 −0.053 0.254 0.241 0.902 0.469 0.437 0.543
0.5 0.2 −0.045 0.276 0.256 0.884 0.441 0.414 0.995
0.5 −0.2 −0.038 0.217 0.223 0.921 0.549 0.511 0.920

ξ, the interaction effect; θ, the correlation coefficient of marginal distributions;
Bias, mean estimated ξ minus the ξ; SE, standard error of estimated ξ; SEE, mean
estimated standard error of estimated ξ; CP, coverage probability of confidence
interval; Wald1 and Wald2, Wald test; Pearson, Pearson chi-square test.

to the nominal level 95%. In a few situations, absolute biases are greater than

0.05. Both the proposed approach and the logistic regression method have well-

controlled type I error rates (ξ = 0). The type I error rates of the case-only

method are also under control when the risk factors X and Y are indeed inde-

pendent (θ = 0), but the type I error rates are dramatically inflated when X

and Y are correlated (θ ̸= 0). Under the alternative hypothesis (ξ ̸= 0), the

proposed test is uniformly more powerful than the logistic regression method,

with relative power gains ranging from 11% to 50% in the continuous-continuous

case, from 8% to 28% in the discrete-continuous case, and from 6.5% to 7.4% in

the discrete-discrete case. When the independence assumption is met, the power

of the proposed approach is slightly lower than the case-only method which is

the most powerful test under the independence assumption. However, when the

independence assumption is not met, the case-only method can lose substan-

tial power. For instance, in the continuous-continuous case with ξ = 0.25 and

θ = −0.2, the power for the case-only method is 0.092, dramatically lower than

0.636 for the proposed approach.

We also considered different marginal distributions for the two risk factors,

normal and uniform. The results are similar to those in Tables 1-3 and are not

presented here.

Finally, we conducted a sensitivity analysis by misspecifying the copula func-

tion in the continuous-continuous case. We considered the Clayton, Frank, and t

(with 10 degrees of freedom) copula functions. The parameters characterizing the

copula functions were chosen such that the correlation coefficients were around

0.24, and the marginal distributions of the risk factors were again standard nor-

mal. The other settings were the same as those for Table 1. The corresponding

results are presented in Table 4. When the true copula function was Clayton
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Table 4. Interaction estimate/test results for non-Gaussian copula functions.

Copula θ ξ Proposed Logistic Case-only
Bias SE SEE CP Wald1 Wald2 Pearson

Clayton 0.23 0 −0.011 0.103 0.104 0.947 0.053 0.052 0.073
0.23 0.25 0.002 0.111 0.106 0.933 0.670 0.583 0.976

Frank 0.24 0 −0.001 0.104 0.102 0.931 0.069 0.055 0.088
0.24 0.25 0.012 0.103 0.106 0.950 0.711 0.566 0.982

t10 0.24 0 0.084 0.115 0.113 0.889 0.112 0.048 0.344
0.24 0.25 0.239 0.134 0.115 0.533 0.982 0.628 1.000

Copula, true copula function; Proposed, the proposed approach with copula func-
tion specified to be Gaussian; ξ, the interaction effect; θ, the correlation coefficient
of marginal distributions; Bias, mean estimated ξ minus the true of ξ; SE, stan-
dard error of estimated ξ; SEE, mean estimated standard error of estimated ξ; CP,
coverage probability of confidence interval; Wald1 and Wald2, Wald test; Pearson,
Pearson chi-square test.

or Frank, the proposed approach produces minor bias in estimates, and well-

controlled type I error rates and coverage probabilities. When the true copula

function was t, the proposed approach produced relatively larger biases, inflated

type I error rates, and poorer coverage probabilities.

6. Applications

6.1 Prostate cancer example

The dataset is from a nested case-control study (Ahn et al. (2008)) within

the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO),

where cases and controls were frequency matched by age at cohort entry, time

since initial screening, and calendar year of cohort entry. In this study, the ef-

fect of some risk factors on the prostate cancer were examined. We considered

two continuous risk factors: vitamin D level [25(OH)D concentrations] and body

mass index (BMI). After removing individuals with extreme 25(OH)D concen-

trations, 749 case patients and 781 control subjects remained. The vitamin D

measure determined by 25(OH)D concentrations (nmol/L) strongly depended on

the season when the blood was drawn, so we removed this seasonal variation pat-

tern using locally weighted scatterplot smoothing (Cleveland, Grosse, and Shyu

(1991)). Let B and V denote the normalized values of BMI and the adjusted

25(OH)D concentrations with seasonal pattern removed, respectively. We mod-

eled the relationship between the disease status D and (B, V ) by the logistic

regression model

Pr(D = 1|B, V ) =
exp(α+ βB + γV + ξBV )

1 + exp(α+ βB + γV + ξBV )
.
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Table 5. Analysis results for SNP rs12913946 in lung cancer data set.

Parameter Estimate SE Z-value P-value
θ −0.036 0.024 −1.503 0.137
β −0.239 0.112 −2.143 0.033
γ 1.183 0.094 12.557 3.65×10−36

ξ 0.238 0.088 2.722 6.5× 10−3

To test the interaction effect ξ = 0, we applied the standard logistic regres-

sion, the case-only, and the proposed copula-model methods. In the proposed ap-

proach, we assumed that the copula characterizing the joint distribution was the

Gaussian copula (5.1) with correlation coefficient parameter θ, and the standard

errors of the pseudo-MLEs were obtained with 1,000 semiparametric bootstrap

samples. The pseudo-MLE of θ was −0.207 (p-value = 1.8 × 10−10), showing

a very significant negative correlation between BMI and vitamin D level. The

resulting estimates of ξ from the proposed approach and the standard logistic

regression method were 5.8× 10−3 (p-value = 0.916) and 4.2× 10−2 (p-value =

0.443), respectively, both of which indicated the absence of the interaction. On

the other hand, the case-only method gave a p-value of 4.2 × 10−8, indicating

a very statistically significant but most likely false positive finding of the inter-

action as the independence assumption was clearly violated. When the age at

cohort entry, the time since initial screening, and the calendar year of cohort

entry were further adjusted for in the standard logistic regression, we obtained

very similar result, with the interaction effect being 4.4×10−2 (p-value = 0.422).

6.2. Lung cancer example

In recent genome-wide association studies (GWAS), a few chromosome re-

gions (e.g., chromosomes 15q25, 5p15, and 6p21) have been identified to be as-

sociated with lung cancer (Hung et al. (2008)); Amos et al. (2008); Thorgeirsson

et al. (2008); McKay et al. (2008); Wang et al. (2008); Rafnar et al. (2009);

and Landi et al. (2009)). Among these chromosome regions, the chromosome

15q25 region was shown to be associated with both lung cancer and smoking

behavior. It is of great interest to test whether there is interaction between the

genetic variants in the 15q25 region and smoking on the risk of lung cancer. We

used the data from Environment and Genetics in Lung Cancer Etiology Study

(EAGLE; Landi et al. (2009)), and focused on the genotypes on 39 relatively

common single-nucleotide polymorphisms (SNPs) within the 15q25 region and

smoking intensity, measured by the average number of packs of cigarette per day

(CPD). The numbers of individuals were 460 for CPD < 0.5, 965 for 0.5 ≤ CPD

< 1, 1393 for 1 ≤ CPD < 2, and 256 for CPD ≥ 2. We evaluated the interaction

between CPD and each of the 39 SNPs.
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We modeled the relationship between the lung cancer status D and any of

the genetic variants (coded by G, the number of minor alleles) and CPD measure

C by the logistic regression model

Pr(D = 1|G,C) =
exp(α+ βG+ γC + ξGC)

1 + exp(α+ βG+ γC + ξGC)
.

In the proposed approach, we assumed a Gaussian copula (5.1) for the joint

distribution of CPD and the continuous variable underlying the SNP genotype.

For our analysis, we only considered those subjects with a smoking history,

and focused on the SNP rs12913946 which had the most significant interaction

effect with CPD from the standard logistic regression analysis (p-value=0.042)

and the case only method (p-value = 0.011). This left 1,738 lung cancer cases

and 1,336 controls. We applied the proposed approach to study this interaction

with standard errors of pseudo-MLEs being obtained with 1,000 semiparametric

bootstrap samples. The pseudo-MLE of the interaction effect ξ was 0.238 (stan-

dard error = 0.088) with a two-sided p-value of 6.5× 10−3 that was smaller than

the one obtained by the standard logistic regression. More detailed results are

summarized in Table 5. Clearly, further investigation is needed to validate this

interaction.

7. Discussion

The majority of common diseases result from complex interplay of genetic

and environmental risk factors. It is important to study gene-gene and gene-

environment interactions in order to better understand the mechanism underly-

ing the disease development. We develop a copula-model based semiparametric

test for interaction detection. Our proposed approach strikes a balance between

robustness and efficiency by modeling the correlation between the two risk factors

while keeping their marginal distributions fully unspecified.

We have found the efficiency gain of the proposed approach is much higher

when both factors are continuous than when they are both discrete, this being

related to the numbers of degrees of freedom of associated tests.

Simulation results show that the copula approach provides valid results even

if the underlying copula model is misspecified mildly. As a precaution, in appli-

cations one has to make sure that the copula model is not terribly misspecified.

Although we only consider two risk factors in the current manuscript, the

proposed approach may be extended to more than two risk factors.

Supplementary Material

Supplementary material is provided for the consistency and the asymptotic

normality of the pseudo-MLE, and for a proof of the second equation in (5.2).
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