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Abstract: This paper shows that any two-level factorial design that has no partial

aliasing must be a 2k−p design or replicates of a 2k−p design. This is a special

case of a more general result regarding q-level factorial designs, where q is a prime

power, under a certain parameterization of the factorial effects.
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1. Regular and Non-regular Designs

Factorial designs are widely used in industrial experiments. The most popu-
lar ones are 2k−p fractional factorial designs. A 2k−p design is a fraction of the 2k

full factorial design, generated by p generators (Box, Hunter and Hunter (1978,
p.383). Its aliasing structure is explicitly described by the defining contrast group
(Wu and Hamada (2000)) generated by the p generators. Conventionally, many
authors refer to these designs as regular designs in contrast to the designs that
cannot be generated through this method. Among designs not of 2k−p type are
most of the Plackett-Burman designs and John’s 3/4 fractions (John (1971)).
Some authors refer to these designs as irregular fractions (Montgomery (2000)).
A formal definition of regular fractional qk−p designs, where q is a prime power,
can be found in Dey and Mukerjee (1999). Such a fraction is also generated by
p generators.

A very important feature of 2k−p designs is that two factorial effects are ei-
ther estimated independently or are fully aliased. Such a property is not found
in two-level orthogonal arrays not of 2k−p type, including most of the Plackett-
Burman designs. For those designs, some factorial effects are partially aliased.
Wu and Hamada (2000) gave another definition of regular design based on this
property since it is essential to the application of the designs and the correspond-
ing data analysis strategy. They call a design regular if for this design any two
factorial effects either can be estimated independently or are fully aliased. Those
that do not have this property are called non-regular. They choose the term
“non-regular” over “irregular” because the latter sounds negative. Based on this
definition, 2k−p designs are regular designs and other known two-level orthogonal
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designs are non-regular. However, it is unclear whether these two definitions of
regular designs are equivalent. That is, whether or not a two-level orthogonal de-
sign without partial aliasing must be a 2k−p design. Theoretically, this question
is rather fundamental. Practically, one might be interested in orthogonal designs
without partial aliasing at run sizes other than powers of 2 if such designs exist.

For qk−p regular designs in which q > 2, the factorial effects are not always
independent depending on the parameterization system. Wu and Hamada (2000)
point out that 3k−p designs “can be treated as regular designs or non-regular
designs ... If the orthogonal component system is used, a 3k−p design is a regular
design ... If the linear-quadratic system is used ... some effects in the system
have absolute correlation between 0 and 1 and so the corresponding 3k−p design
should be treated as a non-regular design”.

The main purpose of this paper is to show that the two definitions of regular
designs are equivalent for two-level factorial designs. For qk−p factorial designs,
it is also true under orthogonal component decomposition.

2. The Main Result

Fontana, Pistone and Rogantin (2000) proved that a two-level factorial design
that has no replicates must be of 2k−p type if it has no partial aliasing. However,
their proof does not apply directly to the designs with replicated runs. The main
purpose of this paper is to show that all two-level factorial designs without partial
aliasing must be a 2k−p design or replicates of a 2k−p design. Therefore, the two
definitions mentioned above are equivalent. Furthermore, the result presented
here is for general q-level factorial designs, where q is a prime power, of which
the two-level designs are special cases.

Before the main theorem is presented, consider indicator functions that are
an essential tool in the proof. They were first introduced by Fontana, Pistone
and Rogantin (2000) to represent fractional factorial designs. Ye (2003) further
extended them to more general case that allows replicates. The following defini-
tion is given for the general q-level designs but can be easily extended to more
general mixed-level designs.

Definition 1. Let D be a full qk design and let A be a design such that ∀ a ∈ A,
a ∈ D but a might be repeated in A. The indicator function of A is a function
defined on D, such that

F (x) =

{
rx if x ∈ A,

0 if x /∈ A,

where rx is the number of appearances of point x in design A.

Traditionally, the levels of a q-level design are coded to be elements of the
additive group Zq. Bailey (1982) used an equivalent coding system based on
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the multiplicative group of the roots of unity. Let the q levels of a factor be

1, ei 2π
q , . . . , e

i
(q−1)2π

q , i.e., evenly spaced solutions of zq = 1 on the unit circle in
the complex plane C. It is easy to see that when q = 2, they reduce to −1 and 1.
Following the convention, the solutions of zq = 1 are denoted by ωj = ei 2πj

q . The
indicator function of a q-level factorial design can be represented as a polynomial
on C

k.
Define functions Zt(z) =

∏k
i=1 zti

i for t ∈ T , where T is the k-fold product
Zq ×Zq · · ·×Zq. Note that T is a k-dimensional vector space on Zq, where vector
addition and scalar multiplication in T are defined as usual. For vectors t1 and
t2, we denote t1 + t2(mod q) by t1 + t2 whenever there is no confusion. For
convenience, denote (q − 1)t by −t. Note that Z0 is the constant function and,
for t �= 0, {Zt, Z2t, . . . , Z(q−1)t} is a set of contrasts corresponding to a factorial
effect, which has q− 1 degrees of freedom. For example, the main effect of factor
z1 corresponds to {z1, z

2
1 , . . . , zq−1

1 }. Since {Zt, t ∈ T } forms a basis of D, the
indicator function of a design A, which has n runs and k factors, has a unique
representation of the form

FA(z) =
∑
t∈T

btZt(z). (1)

In particular, b0 = n/qk and

bt/b0 =
∑
z∈A

Zt(z)/n =
∑
z∈A

Z−t(z)/n. (2)

Since indicator functions only take integer values, FA(z) = FA(z). By comparing
the coefficients, it is easy to see that bt = b−t. Note that in (2) and throughout
this paper,

∑
z∈A denotes the summation over all design points in A: if z ∈ D

repeats r times in A, it is summed r times.
Let A be a regular qk−p design that is generated by p generators G1, . . . , Gp.

Each generator is a monomial

Gi(z1, . . . , zk) =
k∏

j=1

z
sj

j ,

where 0 ≤ s1, . . . , sk < q. Without loss of generality, all design points z ∈ A
satisfy Gi(z) = 1 for i = 1, . . . , p. It can be easily verified that the indicator
function of A has the following polynomial form:

FA(z) =
1
qp

p∏
i=1

q−1∏
j=1

(Gi(z) − ωj). (3)
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For a design point z /∈ A, there must exist a generator Gi0 such that Gi0(z) �= 1,
i.e., Gi0(z) = ωj0 for some j0 �= 0; hence the right side of (3) is 0. On the other
hand, for a design point z0 ∈ A, Gi(z0) = 1 for all i = 1, . . . , p. Therefore the
right hand of (3) is (1

q
(
q−1∏
j=1

(1 − ωj)
)p

,

which equals 1 since

q−1∏
j=1

(1 − ωj) = lim
z→1

zq − 1
z − 1

= lim
z→1

(1 + z + z2 + · · · + zq−1) = q.

This proves (3).
Consider contrasts Zt1 and Zt2 . They are estimated independently if

∑
z∈A

Zt1(z)Zt2(z) =
∑

z∈A Zt1(z)Zt2(z) = 0, i.e., bt1−t2/b0 = 0; they are fully aliased
if (1/n)

∑
z∈A Zt1(z)Zt2(z) = ω, where ω is a root of zq = 1. In the later case,

‖bt1−t2/b0‖ = 1. Since
∏q−1

j=1(z−ωj) = ((zq − 1)/(z − 1)) = 1+z+z2+· · ·+zq−1,
the indicator function of a regular fractional factorial design (3) can be written
as

FA(z) =
1
qp

p∏
i=1

(1 + Gi(z) + Gi(z)2 + · · · + Gi(z)q−1). (4)

From the above equation, the coefficients of FA satisfy bt/b0 = 0 or 1.
The general definition of regular designs allows the generating relations to

be Gi(z) = ωji . In such cases, the indicator function of the design can be written
as

FA(z) =
1
qp

p∏
i=1

ωji
Gi(z)q − 1
Gi(z) − ωji

. (5)

It is not hard to show that in (5), (bt/b0)q = 1 or bt/b0 = 0 for all t ∈ T . The
proof is omitted here as it is not essential for this paper.

Now, we are ready to present and prove the main theorem of the paper.

Theorem 2. Let A be an n×k q-level factorial design and FA(z) =
∑

t∈T btZt(z)
be its indicator function. If ‖bt/b0‖ = 1 or bt/b0 = 0 for all t ∈ T , then A is a
qk−p design or replicates of a qk−p design.

Proof. Let L = {t ∈ T , bt �= 0}. Consider a factorial contrast Zt, t ∈ L. Notice
that

∑
z∈A Zt(z) = n(b−t/b0). Hence

∑
z∈A

(
Zt(z)
b−t/b0

− 1) =
∑

z∈A Zt(z) − n(b−t/b0)
(b−t/b0)

= 0. (6)



A NOTE ON REGULAR FRACTIONAL FACTORIAL DESIGNS 1073

Since Zt takes its value only among the ωj’s, it is easy to see that �(Zt/(b−t/b0))
≤ 1 on A and the equality holds if and only if Zt/(b−t/b0) ≡ 1 on A. Therefore,
from (6), Zt ≡ b−t/b0 on A. Consider t1, t2 ∈ L. We have Z−ti ≡ bti/b0 on A
and ‖bti/b0‖ = 1 for i = 1, 2. Notice that

b(t1+t2)

b0
=

1
n

∑
z∈A

Z−(t1+t2)(z) =
1
n

∑
z∈A

Z−t1(z)Z−t2(z) = (
bt1
b0

)(
bt2
b0

).

Therefore, t1 + t2 ∈ L. Hence the subset L is closed under addition and forms a
subgroup of T . Let l be the cardinality of L. For z ∈ A, consider

FA(z) =
∑
t∈L

btZt(z) = b0
∑
t∈L

(bt/b0)Zt(z)

= b0
∑
t∈L

Z−t(z)Zt(z) = b0l. (7)

From the above equation, FA ≡ lb0 = ln/qk on A. Because FA(x) only takes
positive integers on A, both l and n must be powers of q. Let l = qp. Then the
subgroup L has p generators. When nl/qk = 1, n = qk−p and the design is a
qk−p design with qp generating words in L. When nl/qk = r > 1, FA(z) = r on
A. The design is r replicates of a qk−p design defined by the defining words in
L. In this case, n = rqk−p.

For a two-level design A, if
∑

x∈A XI(x)XJ (x)/n equals 0 or ±1 for all
factorial contrasts XI and XJ , then A must be a 2k−p type design or replicates of
such a design. Therefore, there is no two-level design of run size other than powers
of 2 that has only full aliasing, unless the design is replicates of a 2k−p fractional
factorial design. For example, a 20 by 3 orthogonal design must contain partial
aliasing unless it is a 23−1 design replicated five times. A 20 by 4 orthogonal
design must contain partial aliasing because there is no 24−2 design of resolution
III or higher.

3. Concluding Remarks

The main objective of this paper is to show that two definitions of regu-
lar designs, one from a construction perspective, the other from a data analysis
perspective, are equivalent for two-level factorial designs. This is shown to be
a special case of a general result of q-level designs, where q is a prime power.
However, the result regarding q-level designs only applies to a special decompo-
sition in which the q levels are evenly spaced on the unit circle in C. For other
decomposition systems, such as the linear-quadratic system, the two definitions
are not equivalent.
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