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Abstract: This paper will illustrate how a number of educational testing models may
be formalized as constrained (using inequality and equality constraints) latent class

models. The parameters of these models will be estimated using an application of
the Gibbs sampler. The goodness of fit of these models will be determined using
(pseudo) likelihood ratio tests evaluated via posterior predictive P-values. The
feasibility of both the estimation and testing procedures will be illustrated via the
analysis of a number of simulated data sets.
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1. Constrained Latent Class Models

Unconstrained latent class models (ULCM) may be used to explain the re-
sponses xij ∈ {0, 1} of i = 1, . . . , N persons to j = 1, . . . , J items. The ULCM
assumes that q = 1, . . . , Q latent classes (it is unknown to which class each person
belongs) with class-specific response probabilities explain the dependencies ob-
served among the item responses. Goodman (1974) and Haberman (1974) were
the first to present the ULCM and algorithms to obtain maximum likelihood
estimates of its parameters.

The likelihood function of the ULCM is given by

L(ω, π1, . . . , πQ|x1, . . . ,xN ) =
N∏

i=1

[ Q∑
q=1

Pq(xi)ωq

]
,

where, ω = [ω1, . . . , ωQ] denotes the proportion of persons in each of the latent
classes, πq = [πq1, . . . , πqJ ], xi = [xi1, . . . , xiJ ],

Pq(xi) =
J∏

j=1

π
xij

qj (1 − πqj)(1−xij )

denotes the probability of response vector xi in class q, and πqj denotes the
probability of response 1 to item j in class q. In this paper a flat prior (also
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called constant, vague or uninformative prior) is used for the parameters of the
ULCM, i.e., Pr(ω, π1, . . . , πQ) = 1. Consequently, the posterior distribution of
the parameters of the ULCM is proportional to the likelihood function:

Post(ω, π1, . . . , πQ|x1, . . . ,xN ) α L(ω, π1, . . . , πQ|x1, . . . ,xN ) Pr(ω, π1, . . . , πQ)

=
N∏

i=1

[ Q∑
q=1

Pq(xi)ωq

]
. (1.1)

In a sense ULCM are exploratory models. The user must search for and
(if at all possible) interpret the structure in the estimates of the class-specific
probabilities. Several authors have proposed constrained or confirmatory latent
class models (CLCM). Heinen (1993), pp. 74-112 gives an overview of CLCM.
To name but a few: Lindsay, Clogg and Grego (1991) restrict the class-specific
probabilities using a logistic function to obtain the latent class equivalent of the
Rasch model; Formann (1985) discusses constraining (some of) the class-specific
probabilities to a constant or to each other, and, linear restrictions on the class-
specific probabilities; and, Croon (1990) uses inequality constraints to construct
a latent class model with ordered latent classes.

An advantage of CLCM is that the user can translate a theory about the
response process into constraints on the class-specific probabilities, estimate the
model parameters and, using a goodness-of-fit test, confront the theory with the
data. In Section 2 of this paper it will be shown how several interesting models
can be constructed using constraints of the following types (let c and d denote
constants):

πqj = cqj; (1.2)

ωq = dq; (1.3)

πqj > cqj, and, πqj < cqj ; (1.4)

and, for q �= q′ and/or j �= j′,

πqj > πq′j′ + cqj , and, πqj < πq′j′ + cqj ; (1.5)

πqj > πq′j′ × cqj , and, πqj < πq′j′ × cqj ; (1.6)

and,
ωq > ωq′ , and, ωq < ωq′ . (1.7)

Subsequently the set of constraints and the value of Q used to construct a ULCM
(here constraints will be used to make the model identifiable, see Section 3.2) or
CLCM will be denoted by H, since this set constitutes a hypothesis with respect
to the response process. In the software used for this paper all constraints may
be combined with the exception of (1.3) and (1.7).
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Croon (1990, 1991) uses (constrained) maximum likelihood to estimate the
parameters of a CLCM built using constraint (1.5) with all constants equal to
zero. Although his estimation procedure performs well, he reports problems
with the computation of standard errors of the estimates. In Section 3 it will
be illustrated that the Gibbs sampler is an excellent and easy-to-use tool for
parameter estimation, the computation of posterior standard deviations, and the
computation of the posterior distribution of class membership for each person, if
constraints like (1.2) through (1.7) have to be taken into consideration.

The goodness of fit of ULCM and CLCM is almost always determined using
likelihood ratio tests (see, for example, Goodman (1974), Formann (1985)). The
likelihood ratio test has several drawbacks. Its distribution is not approximately
chi-squared when models with different numbers of latent classes are compared
(see, for example, Heinen (1993), p. 73), and is rather unpredictable with sparse
data (Holt and Macready (1989)). Furthermore, using constraints (1.2) through
(1.7), the appropriate number of degrees of freedom for a chi-squared approxi-
mation to its finite sample distribution is unclear.

Rubin and Stern (1993) present a likelihood ratio test for the comparison
of models with different numbers of latent classes. The P-value for this test
statistic is evaluated using the posterior predictive distribution of the statistic
(Rubin (1984), Meng (1994), Gelman, Meng and Stern (1996)). In Section 4 a
likelihood ratio and a pseudo likelihood ratio test will be presented that can be
used to compare the fit of ULCM and CLCM to the fit of a saturated multinomial
model for the frequencies (see Section 4.1) involved in the (pseudo) likelihood of
the ULCM and CLCM. Both tests will be evaluated using posterior predictive
P-values.

In Section 5 simulated data sets will be used to illustrate estimation of the
parameters of the CLCM using the Gibbs sampler. Furthermore differences be-
tween likelihood ratio and pseudo likelihood ratio tests will be illustrated. An
example will be presented in Section 6. The paper will be concluded with a short
discussion in Section 7.

2. Applications to Educational Testing

Using (1.2) through (1.7) several models can be constructed that may be of
use in educational testing. Croon (1991) constrained the class-specific probabil-
ities using

π1j < · · · < πQj, for j = 1, . . . , J. (2.1)

Since, for each item, the response probabilities are increasing with class number,
the latent classes that result are ordered. The result is a unidimensional item
response model with weak assumptions (the higher the number of the latent class,
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the higher the probability of a positive response) about the response process,
i.e., class 1 contains the persons of low ability, and class Q the persons of high
ability. This model can be seen as the latent class formalization of the Mokken
model assuming monotone homogeneity (MH) (Mokken and Lewis (1982), Croon
(1991)).

Let the items be ordered according to the proportion of positive responses
given in the sample, i.e., j = 1 denotes the item with the highest proportion and
j = J the item with the lowest proportion. Then, (2.1) in combination with

πq1 > · · · > πqJ , for q = 1, . . . , Q, (2.2)

renders an item response model in which both the latent classes and the items
are ordered. Within each latent class the item-specific probabilities are ordered
according to the proportion of positive responses observed in the sample, i.e.,
item 1 is the easiest item and item J the most difficult. The resulting model can
be seen as the latent class formalization of the Mokken model asuming double
monotonicity (DM) (Mokken and Lewis (1982)). Further information about the
Mokken model can be found in Mokken (1996) and Molenaar (1996).

Hoijtink and Molenaar (1997) obtain latent classes that are ordered in two
dimensions. Since (for each dimension) the class-specific probabilities are in-
creasing with the number of the class for the dimension at hand, the resulting
model can be interpreted as a two-dimensional item response model with weak
assumptions (the higher the class number on either dimension, the higher the
probability of a positive response) on the response process.

Yamamoto (1989) presents a latent class model with two latent classes. The
persons in the first class respond according to the Rasch model, the persons in
the second class are unscalable and are assumed to respond randomly. Using
constraints (2.1) and (2.2) for the first Q classes, and adding class Q+1 without
restrictions on the class-specific response probabilities, Yamamoto’s model can
be translated into our framework.

Sometimes abilities consist of a number of components. Reading proficiency
probably consists of three components: micro abilities, i.e., knowledge of words;
meso abilities, i.e., interpretation of sentences; and, macro abilities, i.e., the
ability to relate sentences. If it is assumed that none of the persons in the sample
suffer from deficiencies with respect to either component of reading proficiency,
constraints like (2.1) might be used to obtain a model that assigns persons to
different ability levels. However, sometimes persons may be deficient with respect
to one of the components. a deficiency with respect to macro abilities may be
modelled using, for example, two latent classes in addition to (2.1). For items
measuring micro or meso abilities the class-specific probabilities of the first extra
class are restricted to be smaller than those of the second extra class, i.e., the
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persons in the first class are of lower ability than the persons in the second class.
For items measuring the deficient macro abilities the class specific probabilities
in both extra classes may be restricted to be smaller than, for example, .20.

The last example concerns a latent class model that can be used to investigate
the hypothesis of whether the population of students consists of three classes:
those with a preference for languages and history (q = 1); those with a preference
for natural sciences (q = 2); and, those with a preference for social and behavioral
sciences (q = 3). Using ten statements (j = 1, 2, 3 with respect to languages and
history, j = 4, 5, 6, 7 with respect to the natural sciences, and j = 8, 9, 10 with
respect to social and behavioral sciences) the preferences of the students are
measured. If the hypothesis is correct, the following CLCM should provide an
adequate description of the data (the response 1 indicates a positive attitude to
the science involved in the statement):

π1j > π1j′ , for j = 1, 2, 3, and, j′ = 4, . . . , 10, (2.3)

π2j > π2j′ , for j = 4, 5, 6, 7, and, j′ = 1, . . . , 3, 8, . . . , 10, (2.4)

and,
π3j > π3j′ , for j = 8, 9, 10, and, j′ = 1, . . . , 7. (2.5)

The examples given above give only an impression of the CLCM that can
be formulated using constraints (1.2) through (1.7). In the next section it will
be explained how the Gibbs sampler may be used to estimate the parameters of
the CLCM, and to obtain the posterior distribution of class membership for each
person in the sample.

3.1. An algorithm for parameter estimation based on the Gibbs sam-
pler

In this section it will be explained how the parameters of the ULCM and
CLCM can be estimated using an application of the Gibbs sampler analogous
to the one described in Hoijtink and Molenaar (1997), which is based on an
algorithm presented by Zeger and Karim (1991). See Casella and George (1992)
for an introduction to the Gibbs sampler, and Gelfand and Smith (1990), Tanner
(1993), and Tierney (1994) who discuss and describe Markov chain Monte Carlo
methods, the general family to which the Gibbs sampler belongs.

The Gibbs sampler can be used to obtain a (dependent) sample from the
posterior distribution of the parameters of the ULCM and CLCM. This sample
is obtained using a three-step iterative procedure (iterations will be numbered
m = 1, . . . ,M) in which each parameter (or group of parameters) is sampled
from its posterior distribution conditional on the current values of all the other
parameters. The sample will be used for three purposes. It is needed for the
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computation of posterior predictive P-values, it will be used to compute expected
a posteriori estimates (also known as posterior means) and posterior standard
deviations for each of the parameters in the model, and it will be used to compute
the posterior distribution of class membership for each person.

3.2. Initial values and identification issues

The user has to provide initial values (indexed m = 0) for the class weights
and the class-specific probabilities. Any set of values that is in agreement with the
constraints imposed upon the class-specific probabilities and the class weights can
be used. Note that the latter is only possible if the constraints are not mutually
conflicting.

Two conditions are necessary (see, Goodman (1974) for a sufficient con-
dition) to avoid identification problems in ULCM. Goodman (1974) (see also
Heinen (1993), p. 71) shows that the number of parameters (with dichotomous
data Q(J + 1) − 1) to be estimated should not be larger than the number of
independent frequencies (different response vectors) observed in the data matrix
(with dichotomous data at most 2 to the power J minus 1). Furthermore, each
latent class should be uniquely labelled, i.e., the classes should not be mutually
exchangeable. For ULCM the latter can be achieved using for example

ω1 < · · · < ωQ, (3.2.1)

which ensures that the latent classes are ordered according to the size of the class
weights, or,

π11 < · · · < πQ1, (3.2.2)

which ensures that the latent classes are ordered according to the size of the
class-specific probabilities for item 1.

Note that the ULCM is only barely identified if any of the elements in either
(3.2.1) or (3.2.2) are approximately equal in size (this implies that the corre-
sponding latent classes are virtually exchangeable). In such a situation one is
well advised to fix one of the parameters involved at a reasonable value, or, add
additional constraints (for example, one might combine (a part of) (3.2.1) with
(a part of) (3.2.2)). In Section 3.4 an example of this phenomenon will be given.

To avoid identification problems in CLCM the labelling of the classes has to
be unique. The same kind of problems and solutions noted for ULCM apply to
CLCM. The restriction that the number of parameters has to be smaller than
the number of independent frequencies in the data matrix does not necessarily
hold for CLCM. It should be noted, however, that a restriction on the number
of parameters is still rather sensible (if only to obtain a model that gives a
parsimonious description of the data).
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3.3. The three steps of the Gibbs sampler

Step 1. Sample the class memberships

For i = 1, . . . , N, sample class membership θm
i , which can attain the values

1, . . . , Q (θi is a discrete random variable), from

Post(θi|ωm−1, πm−1
1 , . . . , πm−1

Q ,xi) = Pm−1
θi

(xi)ωm−1
θi

/
[ Q∑

θi=1

Pm−1
θi

(xi)ωm−1
θi

]
,

which is a multinomial distribution with probabilities Post(θi|·). Note that
Pθi

(xi) denotes the probability of response vector xi given membership of class
θi.

Step 2. Sample the class-specific probabilities

The class-specific probabilities have to be sampled in a fixed order. For each
latent class (the classes are ordered according to the size of q) the class-specific
probabilities will be sampled according to the size of j. Each πm

qj is sampled from
Post(πqj |θm, x1j , . . . , xNj , L, U), where θm = [θm

1 , . . . , θm
N ]. The admissible range

of values for the probability at hand depends on lower bound L and upper bound
U . These bounds are determined after an inspection of the constraints to which
the class-specific probability that has to be sampled is subjected. Constraints
involving another class-specific probability are evaluated using the current value
of that class-specific probability (the value from iteration m−1 if the probability
has not yet been sampled in iteration m, the value from iteration m otherwise).
More specifically, L and U are the largest lower bound and the smallest upper
bound, respectively, resulting from constraints of the types (1.2), (1.4), (1.5),
and (1.6), involving the class-specific probability at hand.

This posterior is given by a truncated beta distribution with parameters
sm
qj + 1 and Nm

q − sm
qj + 1, where Nm

q denotes the number of persons allocated to
class q in Step 1 of iteration m, and sm

qj denotes the number of persons allocated
to class q in Step 1 of iteration m that respond positively to item j. Note, that
the conditional posterior depends only on L, U , the current class membership
of each person, and the responses to item j. Note furthermore, that the prior
distribution of all parameters, and thus of the class-specific probability at hand
is constant (see Section 1).

Using inverse probability sampling (see, Gelman, Carlin, Stern and Ru-
bin (1995), pp. 302-303), it is easy to sample from a truncated beta distribu-
tion:
(a) Sample a random number ν from a uniform distribution on the interval [0, 1],
(b) Compute the proportions α and γ of the posterior of πqj that are not admis-

sible due to L and U :

α =
∫ L

0
Beta(πqj|sm

qj + 1, Nm
q − sm

qj + 1)dπqj ,
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and,

γ =
∫ 1

U
Beta(πqj|sm

qj + 1, Nm
q − Sm

qj + 1)dπqj ,

where Beta(·|·) is the density of a β-distributed random variable,
(c) Compute πm

qj such that it is the deviate associated with the νth percentile of
the admissible part of the posterior of πqj:

α + ν(1 − α − γ) =
∫ πm

qj

0
Beta(πqj|sm

qj + 1, Nm
q − sm

qj + 1)dπqj .

Step 3. Sample the class weights

Without constraints (1.3) and (1.7) ωm is sampled from Post(ω|θm) subject
to the constraint

Q∑
q=1

ωq = 1.0. (3.3.1)

This posterior is given by a Dirichlet distribution with parameters Nm
1 + 1, . . .,

Nm
Q + 1. Note that the conditional posterior of the class weights depends only

on the current class membership of each person. Note also that the prior of
the parameters of the latent class model is constant, and thus that the prior
of ω is constant (see Section 1). The class weights are sampled simultaneously
using algorithm DIR-2 from Narayanan (1990) which automatically accounts for
(3.3.1). In the first step of DIR-2 for q = 1, . . . , Q, a random variable zm

q is
sampled from a gamma distribution with parameters Nm

q + 1 and 1. In the
second step z = [z1, . . . , zQ] is normed to obtain ω:

ωm
q = zm

q /
Q∑

q=1

zm
q ,

for q = 1, . . . , Q.

It is relatively easy to adjust Narayanan’s procedure such that (1.7) is ac-
counted for, i.e., sample zm

q for q = 1, . . . , Q from a truncated Gamma distribu-
tion with parameters Nm

q +1 and 1, lower bound L′ and upper bound U ′, where L′

and U ′ are the largest lower bound and the smallest upper bound, respectively,
implied by constraint (1.7) involving the class weight at hand. If for example
ω1 < ω2, then zm

1 is sampled with upper bound zm−1
2 and zm

2 is sampled with
lower bound zm

1 . Using an inverse probability sampling procedure as described
in Step 2 it is easy to sample from a truncated Gamma distribution.

To account for constraint (1.3) the first step of DIR-2 is only executed for the
classes whose weights are not fixed at some value. To obtain the corresponding
class weights, each zq has to be divided by

∑Q
q=1 zm

q . However, this quantity
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is unknown since the zq corresponding with the constrained class weights are
unknown. The required summation can be written as a sum of an unknown and
a known part:

Q∑
q=1

zm
q =

∑
q∈con

zm
q +

∑
q∈unc

zm
q , (3.3.2)

where ‘con’ denotes the set of weights that are constrained using (1.3), and ‘unc’
denotes the set of weights that are unconstrained. The unknown part (the first
summation on the right hand side of (3.3.2)) can be be computed from

∑
q∈con

ωq +
∑

q∈unc

[
zm
q /(

∑
q∈con

zm
q +

∑
q∈unc

zm
q )

]
= 1.0, (3.3.3)

which is an equation with only one unknown:
∑

q∈con zm
q . Note that (3.3.3) states

that the sum of the constrained and unconstrained class weights equals 1.0.

3.4. Convergence

A comprehensive review and evaluation of convergence diagnostics is given by
Cowles and Carlin (1996). They conclude that none of the diagnostics is perfect
and advise using a combination of them. It appears that further developments
are needed before convergence diagnostics can be completely relied upon. In each
example to be presented in this paper, the Gibbs sampler was run for M = 110000
iterations. Since this is a huge number of iterations, it is possible that the Gibbs
sampler has converged and visited all modes of the posterior. However, since
latent class models are complicated, it may be that there are still some important
modes that have been missed.

The first 10000 iterations of the Gibbs sampler are discarded (these serve as a
burn-in period). Furthermore, to save time during the computation of posterior
estimates (see Section 3.5) and P-values (see Section 4.2), only every 50th of
the subsequent iterations is retained. This leaves c = 1, . . . , C, or more precise,
c = 1, . . . , 2000 iterations.

To give an indication of the behavior of the Gibbs sampler, the remain-
ing 2000 iterations will be summarized in two ways: the expected a posteriori
estimate of each parameter and its posterior standard deviation, computed for
four consecutive sequences of 500 iterations of the remaining 2000 iterations,
will be presented; and, the marginal posterior density of each parameter com-
puted from c = 1, . . . , 1000 will be compared with the density computed from
c = 1001, . . . , 2000. In Section 5 examples will be given.

Identification problems of the kind discussed in Section 3.2 are easily detected
if the Gibbs sampler is used as described above. Suppose that the latent class
model presented in Table 1 holds in the population. If the restriction ω1 < ω2
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is used, both latent classes are virtually exchangable (since ω1 = ω2 ) and the
ULCM is barely identified. This phenomenon may be detected via an inspection
of the output rendered by the Gibbs sampler. As can be seen in Table 1, the
class-specific probabilities are initially on the average .2 for class 1 and .8 for
class 2, but at some point in the iterative process this will change, i.e., in class 1
probabilities of approximately .8 and in class 2 probabilities of approximately .2.
In this case it would be better to make the model identifiable using, for example,
the restriction π11 < π21.

Table 1. Hypothetical example of virtually exchangeable latent classes.

Parameters ω1 π11 π12 π13 ω2 π21 π22 π23

Population Values .50 .20 .20 .20 .50 .80 .80 .80
c = 1 .45 .19 .22 .22 .55 .82 .81 .75
c = 2 .46 .22 .23 .19 .54 .82 .75 .78
c = 3 .43 .16 .25 .19 .57 .81 .78 .77
c = 4 .44 .24 .18 .18 .56 .83 .81 .81
c = 5 .49 .18 .18 .22 .51 .78 .82 .85

...
c = 350 .42 .83 .77 .78 .58 .17 .22 .21
c = 351 .44 .81 .79 .82 .56 .19 .21 .17
c = 352 .49 .78 .82 .79 .51 .22 .18 .21
c = 353 .47 .79 .81 .78 .53 .21 .18 .20
c = 354 .43 .80 .85 .79 .57 .20 .22 .19

...

3.5. Posterior classifications, estimates and covariance matrix

Using ξ and ξ′ as generic symbols to represent any of the parameters in (1.1),
the expected a posteriori (EAP(ξ)) estimates, and each of the elements from the
posterior covariance matrix of the parameters (Cov (ξ, ξ′)) are given by

EAP(ξ) ≈
C∑

c=1

ξc/C, (3.5.1)

and

Cov (ξ, ξ′) ≈
C∑

c=1

(ξcξ′c/C) −
C∑

c=1

(ξc/C)
C∑

c=1

(ξ′c/C), (3.5.2)

respectively. The ≈ in (3.5.1) and (3.5.2) reflects that the accuracy, with which
the summations in (3.5.1) and (3.5.2) approximate the integrals over uni- and
bivariate marginals of (1.1), depends on the size of C.

For c = 1, . . . , 2000, Step 1 of the procedure described in Section 3.3 assigns
each person to one of the Q latent classes. The resulting frequency distribution
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can, for each person, be used for classification purposes. One might conclude for
example that the posterior probability that a person prefers natural sciences is
.90, or, that it is not clear whether a person prefers natural sciences, languages
and history, or psychology and sociology, since the corresponding posterior prob-
abilities are .32, .35 and .33 respectively.

4.1. (Pseudo) Likelihood ratio tests

The fit of the ULCM and the CLCM will be evaluated using a likelihood
ratio test and a pseudo likelihood ratio test. Both tests compare the fit of the
CLCM with the fit of a multinomial model for the frequencies that are used in
the (pseudo) likelihood of the CLCM.

The likelihood ratio (LR) test (see, for example, Formann (1985)) is given
by

LR(X, ξ) = −2
P∑

p=1

N(xp) log[M(xp|ξ)/N(xp)], (4.1.1)

where X = [x1, . . . ,xN ], P denotes the number of different response vectors xp

that are possible (with dichotomous data 2 to the power J), and N(·) the number
of response vectors xp observed in the data matrix for which LR is computed.
The expected number of response vectors xp in the data matrix for which LR is
computed is given by

M(xp|ξ) = N
Q∑

q=1

Pq(xp)ωq. (4.1.2)

Since ξ is unknown, (4.1.2) cannot be computed. However, in the next section it
will be shown that this problem can be solved if LR is evaluated as a discrepancy
measure. For a more general discussion of discrepancy measures see Meng (1994)
and Gelman, Meng, and Stern (1996).

As will be illustrated in Section 5, LR is rather sensitive to the presence of
outliers in the data even if the set of restrictions H provide a good description of
the response process. The posterior predictive P-values (see, Section 4.2) used for
the evaluation of LR might indicate misfit due to the presence of outliers (persons
whose response vectors are rather unlikely given the class-specific probabilities
of each latent class). Sometimes one can incorporate outliers in the model, an
example is the model of Yamamoto (1989) discussed in Section 2. On other
occasions one just wants to know if the model holds for most of the sample
without having to bother about a (relatively) small number of outliers. The
latter is achieved using the following pseudo likelihood ratio (PLR) test which is
sensitive with respect to misspecifications of the restrictions in H and the number
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of latent classes Q used, but is robust with respect to outliers:

PLR(X, ξ) = −2 log(PLH/PLM )

= −2
∑
j �=j′

1∑
v=0

1∑
w=0

N(Xj =v,Xj′ = w) log
[M(Xj =v,Xj′ =w|ξ)

N(Xj =v,Xj′ =w)

]
, (4.1.3)

where PLH denotes the pseudo likelihood (see, for example, Gourieroux, Monfort
and Trognon (1984)) of the ULCM or CLCM, and PLM the pseudo likelihood of
the corresponding multinomial model:

PLH =
∏
j �=j′

1∏
v=0

1∏
w=0

[M(Xj = v,Xj′ = w|ξ)/N ]N(Xj=v,Xj′=w);

and

PLM =
∏
j �=j′

1∏
v=0

1∏
w=0

[N(Xj = v,Xj′ = w)/N ]N(Xj=v,Xj′=w).

The pseudo likelihood ratio test involves, for each pair of items, a comparison
of N(Xj = v,Xj′ = w) (the observed number of persons responding v to item j

and w to item j′ in the data matrix) with the corresponding expected number of
persons:

M(Xj = v,Xj′ = w|ξ) = N
Q∑

q=1

Pq(Xj = v,Xj′ = w)ωq. (4.1.4)

Note that the comment following (4.1.2) also applies to (4.1.4). Note also that

Pq(Xj = v,Xj′ = w) = πv
qj(1 − πqj)(1−v)πw

qj′(1 − πqj′)(1−w).

In contrast to the likelihood ratio test which uses all the information in the
response vectors x, the pseudo likelihood ratio test uses only the information
available in pairs of item responses. The result is a test statistic that is more
robust against outliers (illustrations follow in Section 5.2): it is virtually impos-
sible to give responses to a pair of items that are outliers, there will always be
many persons in the sample that respond 1 to both items, that respond 0 to both
items, or respond 1 to one of the items; on the other hand a response vector can
easily be an outlier, e.g., a person responding 1 to nine out of ten items while
none of the other persons in the sample respond 1 to more than six items.

4.2. Posterior predictive P-values

Rubin (1984) presents a Bayesian method to investigate goodness of fit.
Meng (1994), and Gelman, Meng and Stern (1996) extend the method presented
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by Rubin. One of their results is the discrepancy measure. The posterior predic-
tive P-value for a discrepancy measure is given by

P = Pr{D(Xrep, ξ) ≥ D(X, ξ)|X,H}, (4.2.1)

i.e., the probability that (what Meng (1994) calls) the discrepancy measure D(·)
(which is a function of data and parameters) computed for a replication of the
data matrix Xrep and ξ, is equal to or exceeds the value computed for the ob-
served data matrix X and ξ. Here D(·) may be the likelihood ratio test (4.1.1)
which leads to P = Pr{LR(Xrep, ξ) ≥ LR(X , ξ)|X,H}, or the pseudo likelihood
ratio test (4.1.3) which leads to P = Pr{PLR(Xrep, ξ) ≥ PLR(X, ξ)|X,H}. The
P-value is computed over the joint posterior distribution of the replicated data
and ξ conditional on the observed data X and H:

f(Xrep, ξ|X ,H) = f(Xrep|ξ)Post(ξ|X ,H).

The interested reader is referred to Meng (1994) and Gelman, Meng and
Stern (1996) for a discussion of discrepancy measures. In Section 5 some expe-
riences with discrepancy measures based on the likelihood ratio tests introduced
in the previous section will be presented.

The probability in (4.2.1) may be evaluated using a three-step simulation
procedure:
Step 1: The procedure described in Section 3.3 is used to sample c = 1, . . . , C

parameter vectors ξc from Post(ξ|X,H).
Step 2: For c = 1, . . . , C a replication of the data matrix, denoted by Xc, is

simulated conditional upon each of the sampled parameter vectors ξc.

Each simulation consists of two steps.
— First, each of N persons is assigned to one of the Q latent classes.

This is achieved using a sample of size N from a multinomial distri-
bution with probabilities ωc.

— Second, for each person the item responses are simulated using the
class-specific probabilities corresponding to the class q to which per-
son i was assigned. To do this, for i = 1, . . . , N and j = 1, . . . , J,

πc
qj is compared with νc

ij (a random number sampled from a uniform
distribution on the interval [0,1]). If πc

qj > νc
ij , x

c
ij = 1, otherwise

xc
ij = 0.

Step 3: The discrepancy measure is computed for corresponding pairs of repli-
cated and observed data matrices. The posterior predictive P-value
can then be approximated using the proportion of times that D(Xc, ξc)
is equal to or exceeds the corresponding D(X, ξc). The quality of the
approximation depends on C.
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5.1. The estimation procedure illustrated with simulated data

In this section a number of simulated data sets will be analysed to illustrate
some features of the estimation and testing procedures proposed in Sections 3 and
4. The first three columns of Table 2 (repeated in Table 3) give the population
parameters used to simulate two data sets. Table 2 presents the expected a
posteriori estimates (3.5.1) obtained using the ULCM with restriction (3.2.1), the
MH-model (2.1), and the DM-model (2.1) combined with (2.2), to analyse the
first data set (J = 10, N = 250). Table 3 presents the estimates obtained using
the ULCM and the MH-model to analyse the second data set (J = 10, N = 500).

Table 2. Expected a posteriori estimates for three models (N = 250). the
first line with numbers gives the class weights, the other lines give the class-
specific probabilities.

Population ULCM MH DM

q = 1 q = 2 q = 3 q = 1 q = 2 q = 3 q = 1 q = 2 q = 3 q = 1 q = 2 q = 3

.20 .35 .45 .17 .37 .46 .29 .29 .42 .38 .12 .50

j = 1 .25 .80 .90 .72 .47 .90 .35 .76 .91 .49 .81 .92

j = 2 .45 .50 .90 .53 .51 .89 .47 .61 .89 .46 .74 .89

j = 3 .30 .75 .85 .67 .45 .90 .31 .72 .91 .43 .69 .87

j = 4 .40 .60 .80 .60 .47 .84 .38 .65 .85 .40 .64 .83

j = 5 .35 .65 .70 .68 .46 .76 .35 .69 .78 .37 .58 .77

j = 6 .25 .35 .70 .29 .28 .67 .25 .34 .67 .29 .44 .70

j = 7 .10 .45 .60 .39 .34 .57 .24 .46 .58 .25 .39 .68

j = 8 .05 .20 .80 .29 .20 .73 .15 .32 .75 .18 .32 .67

j = 9 .10 .30 .75 .26 .20 .73 .14 .32 .74 .14 .26 .66

j = 10 .05 .15 .85 .21 .04 .81 .03 .17 .85 .03 .16 .64

Looking at Table 2, it can be seen that the estimates of the class-specific
probabilities obtained using the ULCM, are quite different from their population
values. It appears that the data do not contain enough information to recover
the population values of the class-specific probabilities using expected a posteriori
estimates. The latter was confirmed after an inspection of the posterior standard
deviation (SD) and 95% central credibility intervals (CI) for the parameters. Two
examples: the SD and CI for the class-specific probability of item 1 in class 1
were .27 and [.20,.98] respectively; the same quantities for item 1 in class 2 were
.15 and [.29,.77] respectively. Given the fact that these parameters are restricted
to values between zero and one, both the SD and the CI are considered to be
huge. The parameters of class 3 (the largest class) are much better determined
(the SD and CI for the first item in class 3 were .03 and [.84,.94] respectively).
Apparently, for the ULCM and the data generated using the population model
presented in Table 2, the weight of a class influences the accuracy with which the
corresponding class-specific probabilities are estimated. The estimates obtained
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for the MH-model are more accurate. Through the use of contraint (2.1) extra
information with respect to the class-specific probabilities was ‘bought’. The SD
and CI of item 1 in class 1 were .09 and [.19,.49], in class 2, .09 and [.59,.89].
This is an improvement with respect to the corresponding quantities obtained
for the ULCM. Note that the estimates of the class-specific probabilities are in
agreement with constraint (2.1), i.e., increasing with q.

Table 3. Expected a posteriori estimates for two models (N = 500). the first
line with numbers gives the class weights, the other lines give the class-specific
probabilities.

Population ULCM MH
q = 1 q = 2 q = 3 q = 1 q = 2 q = 3 q = 1 q = 2 q = 3
.20 .35 .45 .21 .33 .46 .22 .33 .44

j = 1 .25 .80 .90 .27 .74 .89 .30 .74 .89
j = 2 .45 .50 .90 .51 .54 .90 .48 .58 .91
j = 3 .30 .75 .85 .29 .68 .92 .28 .71 .92
j = 4 .40 .60 .80 .41 .60 .82 .40 .61 .82
j = 5 .35 .65 .70 .31 .73 .72 .35 .68 .74
j = 6 .25 .35 .70 .30 .25 .70 .25 .31 .70
j = 7 .10 .45 .60 .17 .38 .58 .17 .39 .58
j = 8 .05 .20 .80 .10 .25 .76 .10 .26 .78
j = 9 .10 .30 .75 .10 .26 .76 .10 .29 .77
j = 10 .05 .15 .85 .06 .17 .80 .05 .20 .81

The estimates obtained for the class weights and specific probabilities for the
DM-model (see, Table 2) are quite different from the population values. This is
not surprising since the population values are not in agreement with (2.1) and
(2.2), whereas the estimates obtained for the DM-model are, i.e., increasing with
q and decreasing with j.

In Table 3 the ULCM and MH-model were used to analyse a larger data
set (N = 500 instead of N = 250) simulated using the same population as in
Table 2. The estimates obtained are closer to the population values than the
corresponding estimates presented in Table 2. The latter is an indication of
consistency of the estimates.

For three of the parameters the behavior of the Gibbs sampler is presented
in Table 4. The results are representative for all parameters in all models that
were analysed. As can be seen there are slight fluctuations in the EAP and SD
of the class-specific probability for the ULCM with N = 250 over four sequences
of 500 iterations of the Gibbs sampler. The EAP and SD for the class-specific
probability for the MH-model with N = 250 and N =500 is very stable. In Fig-
ure 1 reconstructions of the marginal posterior density of item 1 in class 1 of the
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Table 4. An indication of the behavior of the Gibbs sampler for the class-
specific probability of item 1 in class 1 of the ULCM with N = 250, the
MH-model with N=250, and the MH-model with N = 500.

Model Iteration EAP SD
ULCM: N = 250 c = 1, . . . , 500 .72 .27

c = 501, . . . , 1000 .73 .26
c = 1001, . . . , 1500 .70 .28
c = 1501, . . . , 2000 .72 .27

MH: N = 250 c = 1, . . . , 500 .34 .09
c = 501, . . . , 1000 .35 .09
c = 1001, . . . , 1500 .34 .10
c = 1501, . . . , 2000 .35 .09

MH: N = 500 c = 1, . . . , 500 .30 .08
c = 501, . . . , 1000 .30 .08
c = 1001, . . . , 1500 .29 .08
c = 1501, . . . , 2000 .30 .08

ULCM with N = 250, are displayed for c = 1, . . . , 1000 and c = 1001, . . . , 2000
respectively. As can be seen, the densities are rather similar. Given these results,
it is possible that the Gibbs sampler has converged and visited all modes of the
posterior. However, as stated before in Section 3.4, since latent class models are
complicated, it may be that there are still some important modes that have been
missed.
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proportion

class-specific probability

Figure 1. Posterior distribution of the class-specific probability of item 1 in
class 1 of the ULCM with N = 250 computed for c = 1, . . . , 1000 (solid line),
and for c = 1001, . . . , 2000 (dashed line).



CONSTRAINED LATENT CLASS ANALYSIS 707

5.2. Goodness of fit illustrated with simulated data

Table 5 displays posterior predictive P-values resulting from the analyses
of data sets with a different size, simulated according to the population model
displayed in Table 2, and analysed using the ULCM, MH-model, and DM-model
with varying numbers of latent classes. If N = 250, the ULCM and MH-models
with Q = 3, and Q = 2 fit almost equally well. With this sample size there is
not enough power to distinguish among Q = 3 and Q = 2. Both models with
Q = 1 are rejected, i.e., it is clear that the sample is not homogeneous, and that
at least two latent classes have to be distinguished.

Table 5. Posterior predictive P-values for the (pseudo) likelihood ratio tests
computed for data simulated according to the population model displayed in
Table 2.

N Q Model LR PLR
250 3 ULCM .54 .52
250 2 ULCM .43 .50
250 1 ULCM .00 .00
250 3 MH .58 .52
250 2 MH .48 .50
250 1 MH .00 .00
500 2 MH .22 .42
1000 2 MH .07 .26
250 3 DM .23 .10
500 3 DM .27 .03
1000 3 DM .00 .00

Increasing the sample size from 250 to 500 and 1000 (still for the same 3-
class population model), the goodness-of-fit tests gain power. It can be seen that
the fit of the MH-model with Q = 2 and N = 1000 is worse than the fit with
Q = 2 and N = 250. Furthermore, where the DM-model has an acceptable fit
for N = 250 it has to be rejected for N = 1000.

In Table 6 the population parameters for a preference model (see Section 2)
with three latent classes are displayed. Table 7 presents the posterior predictive
P-values resulting from the analyses of data sets with a different size, simulated
according to this preference model, and analysed using the CLCM presented in
(2.3), (2.4) and (2.5). To illustrate the robustness of the pseudo likelihood ratio
tests against outliers, ten response vectors consisting of response 1 nine times
and response 0 once (the first response vector contains a zero for item 1, the
second for item 2 etc.) were added once, twice and three times to data sets with
N = 250 and N = 1000. Note that these response vectors are considered to be
outliers since response vectors containing response 1 nine times are unlikely given
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Table 6. Population parameters for the preference model. The first line
with numbers gives the class weights, the other lines give the class-specific
probabilities.

Item q = 1 q = 2 q = 3

.20 .35 .45
j = 1 .80 .20 .20
j = 2 .80 .20 .20
j = 3 .80 .20 .20
j = 4 .20 .80 .20
j = 5 .20 .80 .20
j = 6 .20 .80 .20
j = 7 .20 .80 .20
j = 8 .20 .20 .80
j = 9 .20 .20 .80
j = 10 .20 .20 .80

the population parameters displayed in Table 6. For the CLCM with N = 250,
the likelihood ratio test starts to indicate a lack of fit when 20 or more outliers
are added to the data file, while the pseudo likelihood ratio test is still acceptable
even if 30 outliers are added to the data file. For the CLCM with N = 1000,
the likelihood ratio tests indicate a lack of fit when 30 outliers are added to the
data, while the pseudo likelihood ratio tests do not. A general inspection of the
pattern of P-values observed in Table 7, indicates that the pseudo likelihood ratio
test is more robust to outliers than the likelihood ratio test.

Table 7. Posterior predictive P-values for the (pseudo) likelihood ratio tests
computed for data simulated according to the preference model.

N Q Model LR PLR
250 3 Pref. .41 .48
250+10 3 Pref. .13 .37
250+20 3 Pref. .01 .17
250+30 3 Pref. .00 .07
1000 3 Pref. .72 .50
1000+10 3 Pref. .40 .49
1000+20 3 Pref. .05 .43
1000+30 3 Pref. .00 .32

6. Example: LSAT Section 7

Bock and Aitkin (1981) analysed 5 items from section 7 of the Law School
Admission Test (LSAT), and concluded that a two-dimensional normal ogive
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model provided a better fit than a one-dimensional normal ogive model. Note
that the data can be found in Bock and Lieberman (1970). In this section
it will be illustrated that the Mokken model assuming double monotonicity (a
nonparametric alternative for the one-dimensional two-parameter normal ogive
model), formalized in (2.1) and (2.2), provides an adequate description of section
7 of the LSAT. Stated otherwise, one underlying latent trait is sufficient to explain
the responses to section 7 of the LSAT.

The results of the analyses are displayed in Table 8. As can be seen one
latent class is clearly insufficient, but the fit of the two and three class solution
is acceptable. The three class solution is preferred, it can be used to distinguish
persons with low, medium and high abilies (the class-specific probabilities of the
first class are clearly lower that those of the second class which in turn are clearly
lower than those of the third class). Note that j = 1 refers to the first item in
the table presented by Bock and Lieberman (1970), j = 2 to the second item etc.

Table 8. Results of the analysis of section 7 of the LSAT with the Mokken
model assuming double monotonicity. The first line with numbers gives the
class weights, the last two lines give posterior predictive P-values, and the
lines in between give the class-specific probabilities.

Q = 1 Q = 2 Q = 3
q = 1 q = 1 q = 2 q = 1 q = 2 q = 3
1.0 .29 .71 .11 .32 .57

j = 4 .60 .32 .71 .15 .47 .73
j = 2 .65 .36 .77 .23 .51 .81
j = 3 .77 .44 .89 .31 .63 .91
j = 1 .82 .61 .90 .48 .73 .92
j = 5 .84 .68 .91 .61 .77 .94
LR .00 .05 .10

PLR .00 .37 .34

7. Discussion

This paper proposed estimation and testing procedures for constrained latent
class models based on the Gibbs sampler and discrepancy measures, respectively.
In Section 5 the results of the analyses of a number of simulated data sets were
presented. The intention of the simulations was to illustrate the feasibility, and
some interesting features, of the proposed estimation and testing procedures.

It was shown that parameter estimates obtained for the ULCM are rather
inaccurate and undetermined for smaller samples (N = 250), but that the ad-
dition of constraints solves this problem. It was also shown that the estimates
are indeed consistent with the constraints specified in H, and also appear to be
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consistent in a statistical sense. The robustness with respect to outliers of the
pseudo likelihood ratio test was illustrated.

This paper and the simulations provide handholds for the application of
constrained latent class models. Lacking at this point in time are frequency
evaluations (the analyses of repeated samples from the same population) of the
procedures proposed. Since the frequentist properties are theoretically (proba-
bly) intractable, and simulations would take a long time (the average analysis
described in this paper took about 15 hours on a pentium pc), these will probably
not be available for some time.
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