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Abstract: In Bayesian inference, a Bayes factor is defined as the ratio of posterior

odds versus prior odds where posterior odds is simply a ratio of the normalizing

constants of two posterior densities. In many practical problems, the two posteriors

have different dimensions. For such cases, the current Monte Carlo methods such as

the bridge sampling method (Meng and Wong (1996)), the path sampling method

(Gelman and Meng (1994)), and the ratio importance sampling method (Chen and

Shao (1997)) cannot directly be applied. In this article, we extend importance

sampling, bridge sampling, and ratio importance sampling to problems of different

dimensions. Then we find global optimal importance sampling, bridge sampling,

and ratio importance sampling in the sense of minimizing asymptotic relative mean-

square errors of estimators. Implementation algorithms, which can asymptotically

achieve the optimal simulation errors, are developed and two illustrative examples

are also provided.
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1. Introduction

Kass and Raftery (1995) illustrated a simple problem for testing the two
hypotheses H1 and H2. When the hypotheses H1 and H2 are equally probable a
priori so that P (H1) = P (H2) = 0.5, then the Bayes factor is

B =
m(x|H1)
m(x|H2)

, (1.1)

where x is the data and

m(x|Hi) =
∫
Rdi

L(x|θi,Hi)π(θi|Hi)dθi,

where θi is a di × 1 parameter vector under Hi, π(θi|Hi) is the prior density,
L(x|θi,Hi) is the likelihood function of θi and m(x|Hi) the marginal likelihood
function for i = 1, 2. (See Jeffreys (1961), Chap. 5 for various examples of this
simple Bayesian hypothesis testing problem.) Clearly, Bayes factor B is a ratio
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of two normalizing constants of two unnormalized densities L(x|θi,Hi)π(θi|Hi),
i = 1, 2, respectively. Note that when d1 �= d2, we are dealing with a problem of
two different dimensions.

Verdinelli and Wasserman (1996) also considered a similar problem for test-
ing precise null hypotheses using Bayes factors when nuisance parameters are
present. Consider the parameter (θ, ψ) ∈ Ω × Ψ, where ψ is a nuisance pa-
rameter, and test the null hypothesis H0: θ = θ0 versus H1: θ �= θ0. Then
they obtain the Bayes factor B = m0/m where m0 =

∫
Ψ L(x|θ0, ψ)π(θ0)dψ and

m =
∫
Ω×Ψ L(x|θ, ψ)π(θ, ψ)dθdψ (Jeffreys (1961), Chap. 5). Here L(x|θ, ψ) is the

likelihood function given data x and π(θ0) and π(θ, ψ) are the priors. Therefore,
the Bayes factor B is a ratio of two normalizing constants again. In this case,
one density is a function of ψ and the other density is a function of θ and ψ.

From the above two examples, we can form a general problem for com-
puting ratios of two normalizing constants with different dimensions. Let θ =
(θ(1), . . . , θ(k)) and ψ = (ψ(1), . . . , ψ(d)). Also let π1(θ) be a density which is
known up to a normalizing constant:

π1(θ) =
p1(θ)
c1

, θ ∈ Ω1, (1.2)

where Ω1 ⊂ Rk is the support of π1 and let π2(θ, ψ) be another density which is
known up to a normalizing constant:

π2(θ, ψ) =
p2(θ, ψ)
c2

, (θ, ψ) ∈ Θ2, (1.3)

where Θ2 ⊂ Rk+d (d ≥ 1) is the support of π2. We also denote

Ω2 =
{
θ : ∃ ψ ∈ Rd such that (θ, ψ)∈Θ2

}
and Ψ(θ)=

{
ψ : (θ, ψ)∈Θ2

}
for θ∈Ω2.

(1.4)
Then the ratio of two normalizing constants is defined as

r =
c1
c2
. (1.5)

As Gelman and Meng (1994) pointed out, analytic approximation, numer-
ical integration, and Monte Carlo simulation are three common approaches for
computing the above intractable ratio of normalizing constants. However, Monte
Carlo simulation is widely used especially in Bayesian statistics, mainly because
of its general applicability (for example, no restrictions on the dimensionality).
Recently, Meng and Wong (1996) proposed bridge sampling, Gelman and Meng
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(1994) developed path sampling for estimating the ratio of two normalizing con-
stants and Geyer (1994) proposed reverse logistic regression for obtaining nor-
malizing constants. Chen and Shao (1997) gave a brief overview of current Monte
Carlo methods and they further developed ratio importance sampling for esti-
mating the ratio of two normalizing constants. However, all the previous methods
cannot be directly applied to cases where the two densities have different dimen-
sions. To see this fact, we can check the simplest importance sampling method
(see, for example, Meng and Wong (1996) or Chen and Shao (1997)). The key
identity for the simplest importance sampling method

r =
c1
c2

= Eπ2

{ p1(θ)
p2(θ, ψ)

}
(1.6)

does not hold in general, unless under certain conditions, for example,
∫
Ψ(θ) dψ =

1 for all θ ∈ Ω2. Here, Eπ2 denotes the expectation with respect to π2. This
convention will be used throughout this paper. Further, it is difficult to construct
a path to link π1 and π2 due to different dimensionality. Therefore, it is not
feasible to apply path sampling for estimating the ratio r given in (1.5).

In order to compute the Bayes factor given in (1.1), Newton and Raftery
(1994) proposed several Monte Carlo methods to estimate m(x|H1) and m(x|H2)
individually and then to estimate the Bayes factor. Their methods are essentially
special cases of ratio importance sampling (Chen and Shao (1997)). If the main
interest is to compute the Bayes factor, their methods might not be efficient.

The problems of different dimensions were also considered by Carlin and Chib
(1995) in the context of Bayesian model choice. Instead of computing marginal
likelihoods, they developed a Markov chain Monte Carlo algorithm that does not
suffer from convergence difficulties; and then the outputs from their algorithm
can be directly used to estimate posterior model probabilities.

Note that if the conditional density of ψ given θ is completely known, the
problem of different dimensions disappears. We present further explanation as
follows. First we denote π2(ψ|θ) to be the conditional density of ψ given θ, that
is,

π2(ψ|θ) =
p2(θ, ψ)∫

Ψ(θ) p2(θ, ψ′)dψ′ , ψ ∈ Ψ(θ) for θ ∈ Ω2. (1.7)

Then

π2(θ, ψ) =
p2(θ, ψ)
c2

=
p2(θ)
c2

· π2(ψ|θ),

where p2(θ) is a (completely known) unnormalized marginal density of θ. Thus,
one can directly apply the same-dimension identities to the problem that only
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involves p1(θ) and p2(θ). Therefore, we assume that π2(ψ|θ) is known only up to
a normalizing constant

c(θ) =
∫
Ψ(θ)

p2(θ, ψ)dψ.

This assumption will be made throughout this paper. Since c(θ) depends on θ,
the different-dimension problem is a challenging and difficult one.

The outline of this article is as follows. In Section 2 we present the gen-
eralized versions of importance sampling, bridge sampling and ratio importance
sampling for estimating r given in (1.5). In Section 3 we derive global optimal im-
portance sampling, bridge sampling and ratio importance sampling in the sense
of minimizing asymptotic relative mean-square errors of the estimators. In Sec-
tion 4 we develop detailed implementation procedures. Two illustrative examples
are provided in Section 5 and in the final section we give a brief conclusion.

2. Monte Carlo Estimators

In this section, we present generalized versions of importance sampling (IS),
bridge sampling (BS), and ratio importance sampling (RIS) for estimating r given
in (1.5) when two unnormalized densities have different dimensions.

As discussed in Section 1, we cannot directly use IS, BS, and RIS for es-
timating r since π(θ) and π(θ, ψ) are defined on two different dimensional pa-
rameter spaces. However, this unequal dimensions problem can be resolved by
augmenting the lower dimensional density into one that has the same dimension
as the higher one by introducing a weight function. To illustrate the idea, let
p∗1(θ, ψ) = p1(θ)w(ψ|θ) and

π∗1(θ, ψ) =
p∗1(θ, ψ)
c∗1

, (2.1)

where w(ψ|θ) is a completely known weight density function so that
∫
Ψ(θ) w(ψ|θ)

dψ = 1 and c∗1 is the normalizing constant of π∗1(θ, ψ). Then, it is easy to show
that c∗1 = c1. Thus, we can view r = c1/c2 as the ratio of the two normalizing
constants of π∗1(θ, ψ) and π2(θ, ψ) and henceforth, we can directly apply the IS,
BS, and RIS identities (Meng and Wong (1996) and Chen and Shao (1997)) on
the (θ, ψ) space for estimating r. We summarize the IS, BS and RIS estimators
of r as follows.

Importance Sampling

Assume Ω1 ⊂ Ω2. Let (θ21, ψ21), . . ., (θ2n, ψ2n) be a random draw from π2.
Then, on the (θ, ψ) space, using the IS identity

r =
c1
c2

= Eπ2

{p1(θ)w(ψ|θ)
p2(θ, ψ)

}
, (2.2)
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the ratio r can be estimated by

r̂IS(w) =
1
n

n∑
i=1

p1(θ2i)w(ψ2i|θ2i)
p2(θ2i, ψ2i)

. (2.3)

Bridge Sampling

Using the BS identity on the (θ, ψ) space (Meng and Wong (1996)), we have

r =
c1
c2

=
Eπ2{ p1(θ)w(ψ|θ)α(θ, ψ)}
Eπ∗

1
{ p2(θ, ψ)α(θ, ψ)} , (2.4)

where π∗1(θ, ψ) is defined by (2.1) with the support of Θ1 = {(θ, ψ) : ψ ∈
Ψ1(θ), θ ∈ Ω1} and α(θ, ψ) is an arbitrary function defined on Θ1 ∩ Θ2 such
that

0 <
∣∣∣
∫
Θ1∩Θ2

α(θ, ψ)p1(θ)w(ψ|θ)p2(θ, ψ)dθdψ
∣∣∣ <∞.

Then using two random draws (θi1, ψi1), . . ., (θini , ψini), i = 1, 2, from π∗1 and π2

respectively, we obtain consistent estimator of r as follows

r̂BS(w,α) =
n−1

2

∑n2
i=1 p1(θ2i)w(ψ2i|θ2i)α(θ2i, ψ2i)

n−1
1

∑n1
i=1 p2(θ1i, ψ1i)α(θ1i, ψ1i)

. (2.5)

Ratio Importance Sampling

Using the RIS identity on the (θ, ψ) space (Chen and Shao (1997)), we have

r =
c1
c2

=
Eπ

{
p1(θ)w(ψ|θ)/π(θ, ψ)

}

Eπ
{
p2(θ, ψ)/π(θ, ψ)

} , (2.6)

where π is an arbitrary density over Θ such that π(θ, ψ) > 0 for (θ, ψ) ∈ Θ =
Θ1∪Θ2. We remark that in (2.6), it is not necessary for π to be completely known,
i.e., π can be known up to an unknown normalizing constant: π(θ, ψ) = p(θ, ψ)/c.
Given a random draw (θ1, ψ1), . . ., (θn, ψn) from π, the ratio importance sampling
estimator of r is

r̂RIS(w, π) =
∑n
i=1 p1(θi)w(ψi|θi)/π(θi, ψi)∑n

i=1 p2(θi, ψi)/π(θi, ψi)
. (2.7)

Even without knowing the normalizing constants, ci, i = 1, 2, or c, the
distributions π2(θ, ψ), π1(θ), or π(θ, ψ) for IS, BS or RIS can be sampled, for
example, by means of the Markov chain Monte Carlo (MCMC) methods such as
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the Metropolis-Hastings algorithm (Metropolis et al. (1953); Hastings (1970)),
the Gibbs sampler (Geman and Geman (1984); Gelfand and Smith (1990); Tanner
and Wong (1987)), and various hybrid algorithms (Chen and Schmeiser (1993);
Müller (1991); Tierney (1994)).

In the next section, we will discuss what the optimal choices of w, α and
π are so that r̂IS(w), r̂BS(w,α) and r̂RIS(w, π) have the smallest asymptotic
relative mean-square errors.

3. Global Optimal Monte Carlo Methods

In this section, we explore the properties of three estimators, namely, r̂IS(w),
r̂BS(w,α) and r̂RIS(w, π).

We use the following notation. Let π21(θ) be the marginal density of θ defined
on Ω2. Then

π21(θ) =
∫

Ψ(θ)

p2(θ, ψ)
c2

dψ for θ ∈ Ψ(θ), (3.1)

where Ω2 and Ψ(θ) are defined in (1.4). Denote r̂ as an estimator of r. Then the
relative mean-square error (RE) is defined as

RE 2(r̂) =
E(r̂ − r)2

r2
(3.2)

and the asymptotic relative mean-square error (ARE) is defined as

ARE 2(r̂) = lim
n→∞nRE 2(r̂). (3.3)

On the (θ, ψ) space, for a given weight density function w(ψ|θ), the RE’s
and ARE’s of r̂IS(w), r̂BS(w,α) and r̂RIS(w, π) can be directly obtained from
Meng and Wong (1996) and Chen and Shao (1997). The results are presented in
the following three lemmas.

Lemma 3.1. Assume Ω1 ⊂ Ω2 and
∫
Θ2

{p2
1(θ)w

2(ψ|θ)/p2(θ, ψ)}dθdψ < ∞.
Then we have

RE 2
(
r̂IS(w)

)
=

1
r2

Var(r̂IS(w)) =
1
n

[ ∫
Θ2

π2
1(θ)w

2(ψ|θ)
π2(θ, ψ)

dθdψ − 1
]

(3.4)

and

ARE 2(r̂IS(w)) =
∫
Θ2

π2
1(θ)w

2(ψ|θ)
π2(θ, ψ)

dθdψ − 1. (3.5)

Lemma 3.2. Let n = n1 + n2 and si,n = ni/n for i = 1, 2. Assume that
si = limn→∞ si,n > 0 (i = 1, 2), Eπ2{ p1(θ)w(ψ|θ)α(θ, ψ)}2 <∞ and

Eπ∗
1

{
( p2(θ, ψ)α(θ, ψ))2 + 1/( p2(θ, ψ)α(θ, ψ))2

}
<∞.
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Then we have

RE 2
(
r̂BS(w,α)

)
=

1
ns1,ns2,n

·
{∫

Θ1∩Θ2
π1(θ)w(ψ|θ)π2(θ, ψ)(s1,nπ1(θ)w(ψ|θ) + s2,nπ2(θ, ψ))α2(θ, ψ)dθdψ( ∫

Θ1∩Θ2
π1(θ)w(ψ|θ)π2(θ, ψ)α(θ, ψ)dθdψ

)2 − 1
}

+ o(
1
n

)

and

ARE 2
(
r̂BS(w,α)

)
=

1
s1s2

·
{∫

Θ1∩Θ2
π1(θ)w(ψ|θ)π2(θ, ψ)(s1π1(θ)w(ψ|θ)+s2π2(θ, ψ))α2(θ, ψ)dθdψ( ∫

Θ1∩Θ2
π1(θ)w(ψ|θ)π2(θ, ψ)α(θ, ψ)dθdψ

)2 −1
}
. (3.6)

Lemma 3.3. Assume that Eπ{(π1(θ)w(ψ|θ) − π2(θ, ψ))/π(θ, ψ)}2 <∞ and

Eπ
{
p1(θ)w(ψ|θ)/p2(θ, ψ)

}2
<∞.

Then we have

RE 2
(
r̂RIS(w, π)

)
=

1
n
Eπ

{(π1(θ)w(ψ|θ) − π2(θ, ψ))2

π2(θ, ψ)

}
+ o(

1
n

)

and

ARE 2
(
r̂RIS(w, π)

)
=

∫
Θ1∪Θ2

(π1(θ)w(ψ|θ) − π2(θ, ψ))2

π(θ, ψ)
dθdψ. (3.7)

Now we present a general result that will be essentially used for deriving
optimal choices of w(ψ|θ), α(θ, ψ) and π(θ, ψ) for IS, BS and RIS.

Theorem 3.1. Assume there exist functions h and g such that
(I) ARE 2(r̂) ≥ h{Eπ2 [g(π1(θ)w(ψ|θ)/π2(θ, ψ))]},

(II) either (i) or (ii) holds:
(i) h is an increasing function and g is convex;
(ii) h is a decreasing function and g is concave.

Then for an arbitrary w(ψ|θ) defined on Ψ(θ) or Ψ1(θ),

ARE 2(r̂) ≥ h
{
Eπ21

[
g(π1(θ)/π21(θ))

]}
. (3.8)

That is, the lower bound of ARE 2(r̂) is h{Eπ21 [g(π1(θ)/π21(θ))]}. Furthermore,
if the equality holds in (I), the lower bound of ARE 2(r̂) is achieved when w(ψ|θ) =
π2(ψ|θ).
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The proof of (3.8) simply follows assumptions (I) and (II) and Jensen’s in-
equality.

Using the above theorem, we can easily obtain the optimal choices of w(ψ|θ),
α(θ, ψ) and π(θ, ψ) for IS, BS and RIS in the sense of minimizing their ARE’s.
These optimal choices are denoted by wISopt for IS, wBSopt and αopt for BS and
wRISopt and πopt for RIS. IS with w(ψ|θ) = wISopt(ψ|θ), BS with w = wBSopt and
α = αopt, and RIS with w = wRISopt and π = πopt are called optimal importance
sampling (OIS), global optimal bridge sampling (GOBS), and global optimal
ratio importance sampling (GORIS), respectively. We further denote

r̂OIS = r̂IS(wISopt), r̂GOBS = r̂BS(wBSopt , αopt) and r̂GORIS = r̂RIS(wRISopt , πopt).

Then we have the following results.

Theorem 3.2. The optimal choices are

wISopt = wBSopt = wRISopt = π2(ψ|θ), ψ ∈ Ψ(θ) for θ ∈ Ω1 ∩ Ω2

and wBSopt and wRISopt are arbitrary densities for θ ∈ Ω1 − Ω2,

αopt(θ, ψ) =
c

s1π1(θ)wBSopt (ψ|θ) + s2π2(θ, ψ)
, (θ, ψ) ∈ Θ1 ∩ Θ2, ∀ c �= 0,

and

πopt(θ, ψ) =
|π1(θ)wRISopt (ψ|θ) − π2(θ, ψ)|∫

Θ1∪Θ2
|π1(θ′)wRISopt (ψ′|θ′) − π2(θ′, ψ′)|dθ′dψ′ .

The optimal ARE’s are

ARE 2
(
r̂OIS

)
=

∫
Ω1

π2
1(θ)

π21(θ)
dθ − 1, (3.9)

ARE 2
(
r̂GOBS

)
=

1
s1s2

{( ∫
Ω1∩Ω2

π1(θ)π21(θ)
s1π1(θ) + s2π21(θ)

dθ
)−1 − 1

}
, (3.10)

and
ARE 2

(
r̂GORIS

)
=

[ ∫
Ω1∪Ω2

|π1(θ) − π21(θ)|dθ
]2
. (3.11)

Proof. We prove the theorem in turn for IS, BS and RIS.
For IS, from Lemma 3.1, we take h(y) = y−1, which is an increasing function

of y, and g(x) = x2, which is convex. Therefore, Theorem 3.1 implies that the
lower bound of ARE 2(r̂IS(w)) is

∫
Ω1

π2
1(θ)

π21(θ)
dθ − 1. Since the equality holds in

(I) of Theorem 3.1, this lower bound is attained at w = π2(ψ|θ). Thus we have
proved the optimal results for IS.
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For BS, analogous to the proof given by Meng and Wong (1996), by Lemma
3.2 and the Cauchy-Schwarz inequality, for all α(θ, ψ)

ARE 2
(
r̂BS(w,α)

)
≥ 1
s1s2

{( ∫
Θ1∩Θ2

π1(θ)w(ψ|θ)π2(θ, ψ)
s1π1(θ)w(ψ|θ) + s2π2(θ, ψ)

dθdψ
)−1 − 1

}
.

We take h(y) = 1
s1s2

( 1
y−1) and g(x) = x

s1x+s2
. Then h(y) is a decreasing function

of y and g′′(x) = −2s1s2
(s1x+s2)3

< 0 which implies that g is concave. Therefore,
Theorem 3.1 yields the lower bound of ARE 2(r̂BS(w,α)) as

1
s1s2

{( ∫
Ω1∩Ω2

π1(θ)π21(θ)
s1π1(θ) + s2π21(θ)

dθ
)−1 − 1

}
. (3.12)

Although the equality does not hold in (I) of Theorem 3.1, it can be easily verified
that the lower bound (3.12) is reached at w = wBSopt and α = αopt. Thus, we have
proved Theorem 3.2 for BS.

Finally, for RIS, by Lemma 3.3 and the Cauchy-Schwarz inequality, for an
arbitrary density π,

ARE 2
(
r̂RIS(w, π)

)
≥

[ ∫
Θ1∪Θ2

|π1(θ)w(ψ|θ) − π2(θ, ψ)|dθdψ
]2
. (3.13)

Now we take h(y) = y2 and g(x) = |x − 1|. Obviously, h(y) is an increasing
function of y for y > 0 and g(x) is convex. Therefore, from Theorem 3.1 the
lower bound of ARE 2(r̂RIS(w, π)) is

[ ∫
Ω1∪Ω2

|π1(θ) − π21(θ)|dθ
]2
.

Note that since the integral region of the right side of Inequality (3.13) is bigger
than the support of π2, Theorem 3.1 needs an obvious adjustment. By algebra,
plugging w = wRISopt and π = πopt into (3.7) leads to (3.11). Thus we have
completed the proof of Theorem 3.2.

It is interesting to mention that the optimal choices of w are the same for
all three Monte Carlo methods (IS, BS and RIS). The optimal w is the condi-
tional density π2(ψ|θ). These results are consistent with our intuitive guess. We
conclude this section with the following brief remarks.

Remark 3.1. It is known that IS is a special case of BS with α(θ, ψ) =
1/π2(θ, ψ). Because this α is not αopt, the proof for the optimal choice of w
for IS cannot simply follow that for BS.

Remark 3.2. Following the proof of Theorem 3.3 of Chen and Shao (1997), we
have

ARE2
(
r̂RIS(wRISopt , πopt)

)
≤ ARE2

(
r̂BS(wBSopt , αopt)

)
.
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From Section 3 of Chen and Shao, we also have

ARE 2
(
r̂RIS(wRISopt , πopt)

)
≤ ARE 2

(
r̂IS(wISopt)

)
.

Remark 3.3. Under certain conditions (c.f., Theorem 3.1 of Chen and Shao
(1997)), the central limit theorem holds for all r̂IS(w), r̂BS(w,α) and r̂RIS(w, π).
We state the following results without proof:

√
n (r̂IS(w) − r)/r D−→ N

(
0, ARE 2(r̂IS(w))

)
, as n→ ∞,

√
n (r̂BS(w,α) − r)/r D−→ N

(
0, ARE 2(r̂BS(w,α))

)
, as n→ ∞,

and

√
n (r̂RIS(w, π)− r)/r D−→ N

(
0, ARE 2(r̂RIS(w, π))

)
, as n→ ∞,

where ARE 2(r̂IS(w)), ARE 2(r̂BS(w,α)) and ARE 2(r̂RIS(w, π)) are given in
(3.5), (3.6) and (3.7) respectively.

Remark 3.4. With the global optimal choices of w, α and π, the (asymptotic)
relative mean-square errors (ARE’s) for all three methods depend only on π1(θ)
and π21(θ), which implies that the extra parameter ψ does not add any extra
simulation variation, i.e., we do not lose any simulation efficiency although the
second unnormalized density π2 has d extra dimensions. However, such a conclu-
sion is valid only if the optimal solutions can be implemented in practice since
w(ψ|θ) is not completely known. We will discuss implementation issues in Section
4.

Remark 3.5. Assuming that Ψ(θ) = Ψ ⊂ Rm for all θ ∈ Ω2 and Ω1 ⊂ Ω2, we
have the identity

r = Eπ2

{
p2(θ∗, ψ)p1(θ)/p2(θ, ψ)

}
/c(θ∗),

where c(θ∗) =
∫
Ψ p2(θ∗, ψ)dψ and θ∗ ∈ Ω2 is a fixed point. Thus, a marginal-

likelihood estimator of r can be defined by

r̂ML =
{ 1
n

n∑
i=1

p2(θ∗, ψi)p1(θi)
p2(θi, ψi)

}
·
{ 1
n

n∑
i=1

w∗(ϕi|θ∗)
p2(θ∗, ϕi)

}
,

where (θi, ψi), i = 1, . . . , n and ϕi , i = 1, . . . , n are two independent random
draws from p2(θ, ψ) and π2(ϕ|θ∗), respectively, and w∗(ϕ|θ∗) is an arbitrary (com-
pletely known) density defined on Ψ (see Chib (1995) or Chen and Shao (1997)
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for a full description of the marginal likelihood method). Then, we have

Var
(
r̂ML

)
= r2

[ 1
n

{ ∫
Ω1

π2
1(θ)

π21(θ)

( ∫
Ψ

π2
2(ψ|θ∗)
π2(ψ|θ) dψ

)
dθ − 1

}
+ 1

]

×
[ 1
n

{ ∫
Ψ

w∗2(ϕ|θ∗)
π2(ϕ|θ∗) dϕ− 1

}
+ 1

]
− r2.

By the Cauchy-Schwarz inequality,
∫

Ψ

π2
2(ψ|θ∗)
π2(ψ|θ) dψ ≥ 1 and

∫
Ψ

w∗2(ϕ|θ∗)
π2(ϕ|θ∗) dϕ ≥ 1.

Thus, for all w∗(ϕ|θ∗)
Var

(
r̂ML

)
≥ Var(r̂OIS), (3.14)

where Var(r̂OIS) = r2

n ARE
2(r̂OIS). Hence, r̂ML is not as good as r̂OIS. Note

that the optimal choice of w∗ is w∗
opt(ϕ|θ∗) = π2(ϕ|θ∗). Even with this optimal

weight density w∗
opt, equality in (3.14) still does not hold in general unless θ and

ψ are independent.

4. Implementation Issues

In many practical problems, the closed form of the conditional densityπ2(ψ|θ)
is not available especially when Ψ(θ) is a constrained parameter space (Chen
1994). (Also see Gelfand, Smith and Lee (1992) for the Bayesian analysis of
constrained parameter problems.) Therefore, evaluating ratios of normalizing
constants for densities with different dimensions is an important problem. In this
section we present detailed implementation schemes for obtaining r̂OIS, r̂GOBS
and r̂GORIS . We consider our implementation procedures for d = 1 and d > 1
separately.

First, we consider d = 1. In this case, π2(ψ|θ) = p(θ,ψ)
c(θ) where c(θ) =∫

Ψ(θ) p(θ, ψ
′)dψ′. Note that the integral in c(θ) is only one-dimensional. Since

one-dimensional numerical integration methods are well-developed and compu-
tationally fast, one can use, for example, IMSL subroutine QDAG or QDAGI; or
as Verdinelli and Wasserman (1995) suggested, one can use a grid {ψ∗

1 , . . . , ψ
∗
M}

that includes all sample points ψ1, . . ., ψn and then use the trapezoidal rule to
approximate the integral. In the following three algorithms, we assume that c(θ)
will be calculated or approximated by a numerical integration method. Detailed
implementation schemes for obtaining r̂OIS, r̂GOBS and r̂GORIS are presented as
follows.

For IS, r̂OIS is available through the following two step algorithm.
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Algorithm: OIS
Step 1 Draw a random sample (θ1, ψ1), . . ., (θn, ψn) from π2(θ, ψ).
Step 2 Calculate c(θi) and compute

r̂OIS =
1
n

n∑
i=1

p1(θi)
c(θi)

. (4.1)

Note that if one uses a one-dimensional numerical integration subroutine, in
Step 1 one needs to draw the θi from the marginal distribution of θ. However,
drawing θi and ψi together is often easier than drawing θi alone from its marginal
distribution. (In such case ψ can be considered as an auxiliary variable or a
latent variable. As Besag and Green (1993) and Polson (1996) pointed out, use
of latent variables in Monte Carlo sampling will greatly ease implementation
difficulty and dramatically accelerate convergence.) Furthermore, if one uses the
aforementioned grid numerical integration method to approximate c(θ), the ψi
can be used as part of grid points.

For GOBS, similar to Algorithm OIS, we have the following algorithm.

Algorithm: GOBS
Step 1 Draw random samples (θi1, ψi1), . . ., (θini , ψini), i = 1, 2, (n1 + n2 = n)
as follows:

(i) Draw {θ11, . . . , θ1n1} from π1(θ) and then draw {θ21, . . . , θ2n2} from the
marginal distribution of θ with respect to π2(θ, ψ).

(ii) Draw ψij independently from π2(ψ|θij) for j = 1, . . . , ni and i = 1, 2.
Step 2 Calculate c(θij) and set r̂GOBS be the unique zero root of the “score”
equation

S(r) =
n1∑
i=1

s2r

s1p1(θ1i)/c(θ1i) + s2r
−

n2∑
i=1

s1p1(θ2i)/c(θ2i)
s1p1(θ2i)/c(θ2i) + s2r

. (4.2)

Analogous to Theorem 2 of Meng and Wong (1996), in Step 2 S(0) = −n2,
S(∞) = n1, and

dS(r)
dr

=
n1∑
i=1

s1s2p1(θ1i)/c(θ1i){
s1p1(θ1i)/c(θ1i) + s2r

}2 +
n2∑
i=1

s1s2p1(θ2i)/c(θ2i){
s1p1(θ2i)/c(θ2i) + s2r

}2 > 0.

Thus, S(r) = 0 has a unique root. Since S(r) is a strictly increasing function,
this root can be easily obtained by, for example, the bisection method. Note
that in Step 1, drawing the θij or the ψij does not require knowing normalizing
constants since we can use, for example, a rejection/acceptance, Metropolis, or
Gibbs sampler method. Also note that in Step 2, r̂GOBS can be obtained by
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using an alternative iterative method proposed by Meng and Wong (1996). This
method can be implemented as follows. Starting with an initial guess of r, r̂(0),
at the (t+ 1)th iteration, we compute

r̂(t+1) =
1
n2

n2∑
i=1

p1(θ2i)/c(θ2i)
s1p1(θ2i)/c(θ2i) + s2r̂(t)

/ 1
n1

n1∑
i=1

1/c(θ1i)
s1p1(θ1i)/c(θ1i) + s2r̂(t)

.

Then, the limit of r̂(t) is r̂GOBS .
For RIS, we obtain an approximate r̂GORIS , denoted by r̂∗GORIS , by a two-

stage procedure developed by Chen and Shao (1997).
Algorithm: GORIS
Step 1 Let π(θ, ψ) be an arbitrary (known up to a normalizing constant) density
over Θ such that π(θ, ψ) > 0 for (θ, ψ) ∈ Θ. (For example, π(θ, ψ) = π2(θ, ψ).)
Draw a random sample (θ1, ψ1), . . . , (θn1 , ψn1) from π. Calculate the c(θi) and
compute

τn1 =
∑n1
i=1 p1(θi)p2(θi, ψi)/[c(θi)π(θi, ψi)]∑n1

i=1 p2(θi, ψi)/π(θi, ψi)
. (4.3)

Step 2 Let

π∗n1
(θ, ψ) =

|p1(θ)π2(ψ|θ) − τn1p2(θ, ψ)|∫
Θ |p1(θ′)π2(ψ′|θ′) − τn1p2(θ′, ψ′)|dθ′dψ′ . (4.4)

Then, make a random draw (ϑ1, ϕ1),. . . , (ϑn2 , ϕn2) from π∗n1
. (n1 + n2 = n.)

Step 3 Calculate c(ϑi) and compute

r̂∗GORIS =
∑n2
i=1 p1(ϑi)/|p1(ϑi) − τn1c(ϑi)|∑n2
i=1 c(ϑi)/|p1(ϑi) − τn1c(ϑi)|

. (4.5)

Similar to Theorem 5.1 of Chen and Shao (1997) we can prove that r̂∗GORIS
has the same asymptotic relative mean-square error as r̂GORIS as long as n1 =
o(n) and n1 → ∞. The most expensive/difficult part of Algorithm GORIS
is Step 2. There are two possible approaches to draw (ϑi, ϕi) from π∗n1

. The
first approach is the random-direction interior-point (RDIP) sampler (Chen and
Schmeiser (1994)). RDIP requires only that |p1(θ)π2(ψ|θ) − τn1p2(θ, ψ)| can be
computed at any point (θ, ψ). Another approach is Metropolis sampling. In
Metropolis sampling, one needs to choose a good proposal density that should be
spread out enough (Tierney (1994)). For example, if π2(θ, ψ) has a tail as heavy
as the one of p1(θ)π2(ψ|θ), then one can simply choose π2(θ, ψ) as a proposal
density. Compared to Algorithms OIS and GOBS, Algorithm GORIS requires
evaluating c(θ) in the sampling step; hence, Algorithm GORIS is more expensive.

Second, we consider d > 1. In this case, the integral in c(θ) is multidimen-
sional. Therefore, simple numerical integration methods might not be feasible.
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Instead of directly computing c(θ) in the case of d = 1, we develop Monte Carlo
schemes to estimate π2(ψ|θ). However, the basic structures of the implementa-
tion algorithms are similar to those for d = 1. Thus, in the following presentation,
we mainly focus on how to estimate or approximate π2(ψ|θ). We propose “exact”
and “approximate” approaches to do so.

We start with an “exact” approach. Using the notation of Schervish and
Carlin (1992), we let ψ′ = (ψ′

(1), . . . , ψ
′
(d)), ψ

(j′) = (ψ(1), . . . , ψ(j), ψ
′
(j+1), . . . , ψ

′
(d))

and ψ(d′) = ψ. We denote a “one-step Gibbs transition” density as

π
(j)
2 (ψ|θ) = π2(ψ(j)|ψ(1), . . . , ψ(j−1), ψ(j+1), . . . , ψ(d), θ)

and a “transition kernel” as

k(ψ′, ψ|θ) =
d∏
j=1

π
(j)
2 (ψ(j′)|θ).

Then we have the following key identity

π2(ψ|θ) =
∫

Ψ(θ)
k(ψ′, ψ|θ)π2(ψ′|θ)dψ′.

Now we can obtain a Monte Carlo estimator of π2(ψ|θ) by

π̂2(ψ|θ) =
1
m

m∑
l=1

k(ψl, ψ|θ), (4.6)

where ψl, l = 1, . . . ,m, is a random draw from π2(ψ|θ). The above method
was originally introduced by Ritter and Tanner (1992) for the Gibbs stopper.
Here, we use this method for estimating conditional densities. Although the
joint conditional density is not analytically available, one-dimensional conditional
densities can be computed by the aforementioned simple numerical integration
method and sometimes some of one-dimensional conditional densities are even
analytically available or easy to compute (see an illustrated example in Section
5). Therefore, (4.6) is advantageous. In (4.6), sampling from π2(ψ|θ) does not
require knowing the normalizing constant c(θ) and convergence of π̂2(ψ|θ) to
π2(ψ|θ) is expected to be rapid. Algorithms OIS, GOBS and GORIS for d > 1
are similar to the ones for d = 1. We only need the following minor adjustment.
Suppose we generate ψl, l = 1, . . . ,m, from π2(ψ|θi), π2(ψ|θij) or π2(ψ|ϑi) and
we compute π̂2(ψi|θi), π̂2(ψij |θij), or π̂2(ϕi|ϑi) by using (4.6). Then, for OIS and
GOBS, instead of (4.1) and (4.2), we use

r̂OIS =
1
n

n∑
i=1

p1(θi)π̂2(ψi|θi)
p2(θi, ψi)

(4.7)
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and

S(r) =
n1∑
i=1

s2rp2(θ1i, ψ1i)
s1p1(θ1i)π̂2(ψ1i|θ1i) + s2rp2(θ1i, ψ1i)

−
n2∑
i=1

s1p1(θ2i)π̂2(ψ2i|θ2i)
s1p1(θ2i)π̂2(ψ2i|θ2i) + s2rp2(θ2i, ψ2i)

. (4.8)

For GORIS, instead of (4.3) and (4.5), we use

τn1 =
∑n1
i=1 p1(θi)π̂2(ψi|θi)/π(θi, ψi)∑n1

i=1 p2(θi, ψi)/π(θi, ψi)
(4.9)

and

r̂∗GORIS =
∑n2
i=1 p1(ϑi)π̂2(ϕi|ϑi)/|p1(ϑi)π̂2(ϕi|ϑi) − τn1p2(ϑi, ϕi)|∑n2

i=1 p2(ϑi, ϕi)/|p1(ϑi)π̂2(ϕi|ϑi) − τn1p2(ϑi, ϕi)| . (4.10)

Although the above method involves extensive computation, it is quite simple
especially for OIS and GOBS. More importantly, it achieves the optimal (relative)
mean-square errors asymptotically, i.e., as m→ ∞.

Lastly, we briefly introduce an “approximate” approach that requires less
computation effort. Mainly, one needs to find a completely known density w∗(ψ|θ)
that has a shape similar to π2(ψ|θ). Chen (1994) presented detailed guidelines
for choosing a good w∗(ψ|θ). His guidelines are essentially similar to the ones
for choosing a good importance sampling density (e.g., see Geweke (1989)) and
they can be directly applied to this problem. We use few lines to summarize
these guidelines. When the parameter space Θ2 is unconstrained, we choose a
joint importance sampling density, for example, a normal or t density, that has
a shape similar to π2(θ, ψ) by using the method of Laplace approximation or
moments estimates. (Note that the posterior moments of π2(θ, ψ) are quite easy
to obtain through, e.g., a Markov chain Monte Carlo method.) Then, w∗(ψ|θ)
is chosen to be the conditional density of the joint importance sampling density.
When Θ2 is a constrained parameter space, we use

w∗(ψ|θ) = w∗(ψ(1)|θ)w∗(ψ(2)|ψ(1), θ) · · ·w∗(ψ(d)|ψ(1), . . . , ψ(d−1), θ).

Then each of the above one-dimensional conditional densities is chosen by method
of moments estimates. For example, if the support of the conditional density of
ψ(1) given θ is a finite interval, then one can use a beta density as w∗(ψ(1)|θ)
whose mean, variance as well as two endpoints of the interval are determined by
posterior moments of ψ(1) and θ (see Chen (1994) for the detailed illustration).
When a good w∗(ψ|θ) is chosen, we simply replace π̂2 by w∗(ψ|θ) in (4.7), (4.8),
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(4.9), and (4.10) and then Algorithms OIS, GOBS and GORIS give approximate
r̂OIS, r̂GOBS and r̂GORIS .

In the next section, we present illustrative examples to show how our algo-
rithms can be implemented in practice.

5. Examples

5.1. Testing for departures from normality

As an illustration of our implementation algorithms developed in Section 4
for d = 1, we consider an example given in Section 3.2 of Verdinelli and Wasser-
man (1995). Suppose that we have observations x1, . . ., xN and we would like to
test whether the sampling distribution is normal or heavier tailed. We use the
t distribution with ν degrees of freedom for the data. Using notation similar to
that of Verdinelli and Wasserman (1995), we define ψ = 1/ν so that ψ = 0 corre-
sponds to the null hypothesis of normality and larger values of ψ correspond to
heavier-tailed distributions, with ψ = 1 corresponding to a Cauchy distribution
(0 ≤ ψ ≤ 1). Let θ = (µ, σ) where µ and σ are location and scale parameters and
denote x̄ and s2 to be the sample mean and the sample variance of x1, . . ., xN .
Then, using exactly the same choices of priors as in Verdinelli and Wasserman
(1995), we have the posteriors denoted by π1(θ) under the null hypothesis and
π2(θ, ψ) under the alternative hypothesis:

π1(θ) =
p1(θ)
c1

and π2(θ, ψ) =
p2(θ, ψ)
c2

,

where

p1(θ) =
[ N∏
i=1

1√
2πσ

exp
(
− (xi − µ)2

2σ2

)]
· 1
σ

=
1

(
√

2π)NσN+1
exp

(
− (N − 1)s2 +N(µ− x̄)2

2σ2

)

and

p2(θ, ψ) =
[ N∏
i=1

Γ(1+ψ
2ψ )

√
ψ

√
πσΓ( 1

2ψ )
1(

1 + ψ(xi−µ)2

σ2

) 1+ψ
2ψ

]
· 1
σ

=
ψ
N
2

(
√
π)NσN+1

·
[Γ(1+ψ

2ψ )

Γ( 1
2ψ )

]N ·
N∏
i=1

1
(
1 + ψ(xi−µ)2

σ2

) 1+ψ
2ψ

.

Thus, the Bayes factor is r = c1/c2. It is easy to see that θ is two-dimensional
(k = 2) and ψ is one-dimensional (d = 1).
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Now we apply Algorithms OIS, GOBS and GORIS given in Section 4 to
obtain estimates r̂OIS, r̂GOBS and r̂GORIS for the Bayes factor r when d = 1.
It should be mentioned that in this case the generalized Savage-Dickey density
ratio estimate of Verdinelli and Wasserman (1995) is exactly the same as the
optimal importance sampling estimate r̂OIS . In fact, as discussed in Verdinelli
and Wasserman (1995), in this case the Savage-Dickey formula holds and the
Bayes factor reduces to the posterior marginal for ψ (with respect to π2(θ, ψ))
evaluated at ψ = 0. Therefore, the generalized Savage-Dickey density ratio
estimate is simply the estimate of this posterior marginal at ψ = 0 given by
equation (2) of Verdinelli and Wasserman (1995), which is exactly r̂OIS.

To implement our three algorithms, we need to sample from π1 and π2.
Sampling from π1 is straightforward. To sample from π2, instead of using an
independence chain sampling scheme as in Verdinelli and Wasserman (1995), we
use Gibbs sampling by introducing auxiliary variables (latent variables). Note
that a t distribution is a scale mixture of normal distributions (e.g., see Albert
and Chib (1993)). Let λ = (λ1, . . . , λN ) and let the joint distribution of (θ, ψ, λ)
be

π∗2(θ, ψ, λ) ∝
[ N∏
i=1

( √
λi√

2πσ
exp

(
− λi(xi − µ)2

2σ2

))( 1
Γ( 1

2ψ )
(

1
2ψ

)
1

2ψ λ
1

2ψ
−1

i

exp
(
− 1

2ψ
λi

))] 1
σ
.

Then, the marginal distribution of (θ, ψ) is π2(θ, ψ). We run the Gibbs sampler
by taking

λi ∼ G
(1 + ψ

ψ
,

1
2ψ

+
(xi − µ)2

2σ2

)
for i = 1, . . . , N,

µ ∼ N
(∑N

j=1 λjxj∑N
j=1 λj

,
σ2

∑N
j=1 λj

)
,

1
σ2

∼ G
(N

2
,

∑N
j=1 λj(xi − µ)2

2

)
,

and

1
2ψ

∼ π(
1

2ψ
) ∝ 1

( 1
2ψ )2

[( 1
2ψ )

1
2ψ

Γ( 1
2ψ )

]N( N∏
j=1

λj
) 1

2ψ exp
(
− (

1
2ψ

)
N∑
j=1

λj
)
,

where G(a, b) denotes a Gamma distribution with density g(λ|a, b) ∝ λa−1

exp(−bλ). Sampling λi, µ, and 1
σ2 from their corresponding conditional distribu-

tions is trivial and we use the adaptive rejection sampling algorithm of Gilks and
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Wild (1992) to generate 1
2ψ from π( 1

2ψ ) since π( 1
2ψ ) is log-concave when N ≥ 4.

Therefore, the Gibbs sampler can be exactly implemented. We believe that our
Gibbs sampling scheme is superior to an independence chain Metropolis sampling
scheme.

We implement our three algorithms in double precision Fortran-77 using
the IMSL subroutines. We follow exactly the steps for Algorithms OIS, GOBS
and GORIS presented in Section 4. We obtain a “random” draw (θ1, ψ1), . . .,
(θn, ψn) from π2 by using the aforementioned Gibbs sampling scheme. First,
we use several diagnostic methods to check convergence of the Gibbs sampler
recommended by Cowles and Carlin (1996). Second, we take every Bth “sta-
tionary” Gibbs iterate so that the autocorrelations for the two components of θi
disappear. The autocorrelations are calculated by an IMSL subroutine DACF.
We use another IMSL subroutine DQDAG to calculate c(θi). A random draw
θ11, . . ., θ1n1 from π1 can be obtained by using an exact sampling scheme. For
Algorithm GORIS, we choose π2(θ, ψ) as π in Step 1 and take a “random” sample
{(θi, ψi), i = 1, . . . , n1} from π2 to calculate τn1. In Step 2, we adopt Metropolis
sampling with π2(θ, ψ) as a proposal density. Let (θj, ψj) denote the current
values of the parameters. We take candidate values (θc, ψc) from every Bth
“stationary” Gibbs iterate with the target distribution π2(θ, ψ). We compute
a = min{ω(θc)

ω(θj)
, 1} where ω(θ) = |p1(θ)/c(θ) − τn1|. We set (θj+1, ψj+1) equal to

(θc, ψc) with acceptance probability a and to (θj, ψj) with probability 1− a. We
then take every (B′)th Metropolis iterate to obtain a “random” draw (ϑ1, ϕ1),
. . ., (ϑn2 , ϕn2). We make no claim that the above sampling schemes are the most
efficient ones, but they provide roughly independent samples and they are also
straightforward.

In order to obtain informative empirical evidence of the performance of OIS,
GOBS, and GORIS, we conducted a small scale simulation study. We took a
dataset of N = 100 random numbers from N(0, 1). Using this dataset, first we
implemented GOBS with n1 = n2 = 50, 000 to obtain an approximate “true”
value of the Bayes factor r, which gives r = 6.958. In our implementation,
we took B = 30 for Gibbs sampling and B′ = 10 for Metropolis sampling to
ensure an approximately “independent” Monte Carlo sample obtained. (Note
that the Gibbs sampler converged earlier than 500 iterations.) Second, we used
n = 1, 000 for Algorithm OIS, n1 = n2 = 500 for Algorithm GOBS and n1 =
200 and n2 = 800 for Algorithm GORIS and we estimated the Monte Carlo
standard errors based on the estimated first-order approximation of RE(r̂) using
the available random draws. (No extra random draws are required for this stage
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of the computation.) For example, the standard error for r̂GOBS is given by

se(r̂GOBS)= r̂GOBS
( 1
ns1s2

[( 1
n2

n2∑
i=1

p1(θ2i)
s1p1(θ2i) + s2r̂GOBSc(θ2i)

)−1 − 1
])−1/2

,

where n = n1 +n2 = 1, 000. Third, using the above implementation scheme with
the same simulated dataset, we independently replicated the three estimation
procedures 500 times. Then, we calculated the averages of r̂OIS, r̂GOBS , and
r̂GORIS, Monte Carlo standard errors (MC S.E.), estimated biases (E(r̂) − r),
mean-squared errors (MSE), averages of the approximate standard errors (Ap-
prox. S.E.), and the average CPU time. (Note that our computation was per-
formed on the DEC-station 5000-260.) The results are summarized in Table
1.

Table 1. The results of simulation study

Method Average of r̂’s Bias MSE MC S.E. Approx. S.E.
Average CPU

in Minutes

OIS 6.995 0.037 0.066 0.254 0.187 1.52

GOBS 6.971 0.013 0.063 0.250 0.193 1.22

GORIS 6.933 -0.025 0.054 0.231 0.184 2.10

From Table 1, we see that (i) all three averages are close to the “true” value
and the biases are relatively small; (ii) GORIS produced a slightly smaller Monte
Carlo standard error than the other two; (iii) all three approximate standard
errors are slightly understated, which has appeal since we used the estimated
first-order approximation of RE(r̂); (iv) GOBS used the least CPU time since
sampling from π2(θ, ψ) is much more expensive than sampling from π1(θ) and
GORIS used the most CPU time since sampling from π∗n1

(θ, ψ) in Step 2 of
Algorithm GORIS is relatively more expensive. Finally, we notice that based on
the above estimated value of r, the normal data results in a posterior marginal
that is concentrated near ψ = 0 and leads to a Bayes factor strongly favoring
the null hypothesis of normality and we also note that our estimated value of
the Bayes factor disagrees with Verdinelli and Wasserman (1995), probably due
to (i) use of a different simulated dataset, (ii) use of an exact Gibbs sampling
scheme, and (iii) use of an IMSL numerical integration subroutine.

5.2. Testing for ordered alternatives of normal means

The aim of our second example is to illustrate our implementation algo-
rithms when d > 1. Suppose that we have observations {xi = (xi1, . . . , xit), i =
1, . . . , N} where the xij are independently from N(µj , σ2). We would like to
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test whether µ1, . . ., µt are ordered. For simplicity, we consider a special mono-
tone ordering, namely, µ1 < · · · < µt. Therefore, our null hypothesis is H1 :
µ1 = · · · = µt. Let θ = (µ1, σ) and ψ = (µ2, . . . , µt). Under the null and alterna-
tive hypotheses (H1 and H2), we take independent priors for the location param-
eters µi and scale parameter σ so that πH1(θ) = πH1(µ1)πH1(σ) where πH1(µ1) =
D1√
2π

exp(−D2
1µ

2
1

2 ) and πH1(σ) ∝ σ−1 and πH2(θ, ψ) = πH2(µ1, . . . , µt)πH2(σ)

where πH2(µ1, . . . , µt) = 1
cN

∏t
j=1

D2√
2π

exp(−D2
2µ

2
j

2 ) with the restriction µ1 <

· · · < µt, cN =
∫
µ1<···<µt

∏t
j=1

D2√
2π

exp(−D2
2µ

2
j

2 )dµ1, . . . , dµt, and πH2(σ) ∝ σ−1.
Following Laud and Ibrahim (1996), we take D1 and D2 to be of the form:
D1 = d

(1)
0 D and D2 = d

(4)
0 D where

d
(1)
0 =

ba

1 − ba
and d

(4)
0 =

ba1/4

1 − ba1/4
. (5.1)

In (5.1) b and a are determined by

ba = u1 and ba1/4 = u2.

In order to complete prior elicitation, we need to specify values ofD and 0 < u1 <

u2 < 1 where D, u1 and u2 reflect sharp or vague prior beliefs (see, e.g., Laud
and Ibrahim (1996)). With the above prior specification, we have the posteriors
denoted by π1(θ) under H1 and π2(θ, ψ) under H2:

π1(θ) =
p1(θ)
c1

and π2(θ, ψ) =
p2(θ, ψ)
c2

. (5.2)

In (5.2),

p1(θ) =
[ N∏
i=1

t∏
j=1

1√
2πσ

exp
(
− (xij − µ1)2

2σ2

)] D1√
2π

exp
{
− D2

1µ
2
1

2

} 1
σ

=
D1

(
√

2π)tN+1σtN+1
exp

{
−

[(tN − 1)s2 + tN(µ1 − x̄)2

2σ2
+
D2

1µ
2
1

2

]}

and

p2(θ, ψ) =
[ N∏
i=1

t∏
j=1

1√
2πσ

exp
(
− (xij − µj)2

2σ2

)] 1
cN

t∏
j=1

D2√
2π

exp
(
− D2

2µ
2
j

2

) 1
σ

=
Dt

2

cN (
√

2π)tN+tσtN+1

exp
{
−

[(tN − 1)s2 −N
t∑

j=1

(x̄j − x̄)2+N
t∑

j=1

(x̄j − µj)2

2σ2
+

D2
2

t∑
j=1

µ2
j

2

]}
,
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where x̄ and s2 are the sample mean and the sample variance of all the xij ’s
and x̄j is the sample mean of x1j , . . ., xNj for j = 1, . . . , t. We choose P (H1) =
P (H2) = 0.5 a priori. Thus, the Bayes factor is r = c1/c2. In this case, θ is
two-dimensional (k = 2) and ψ is (t − 1)-dimensional (d = t− 1). When t > 2,
we have d > 1.

The implementation of our three algorithms is almost exactly the same as
that in the first example. We sample from π1(θ), π2(θ, ψ) and π2(ψ|θ) using Gibbs
sampling. For example, to sample from π2(θ, ψ), we run the Gibbs sampler by
drawing

µj ∼ N
( Nx̄j
N +D2

2σ
2
,

σ2

N + σ2D2
2

)
,

where µj−1 < µj < µj+1 (µ0 = −∞ and µt+1 = ∞) and

1
σ2

∼ G
( tN + t

2
,
(tN − 1)s2 −N

∑t
j=1(x̄j − x̄)2 +N

∑t
j=1(x̄j − µj)2

2

+
D2

2

∑t
j=1 µ

2
j

2

)
.

Then, we take every Bth “stationary” Gibbs iterate to obtain an approximately
“independent” Monte Carlo sample. To calculate estimates r̂OIS, r̂GOBS and
r̂GORIS, we use (4.7), (4.8), (4.9) and (4.10) instead of using (4.1), (4.2), (4.3)
and (4.5) in the first example. Note that when d > 1, π2(ψ|θ) is not analytically
available and when d > 2, it is difficult or expensive to use a numerical integration
method to evaluate c(θ). Therefore, we use (4.6) to obtain π̂2(ψ|θ), an estimate
of π2(ψ|θ). Although π2(ψ|θ) is not available in closed form, we have an explicit
expression of π(j)

2 (ψ|θ), that is,

π
(j)
2 (ψ|θ) = π2(µj |µ1, . . . , µj−1, . . . , µj+1, . . . , µt, σ)

=

1√
2πσ∗j

exp(− (µj−ξj)2
2σ∗2

j
)

Φ
(
µj+1−ξj

σ∗j

)
− Φ

(
µj−1−ξj

σ∗j

) ,

for µj−1 < µj < µj+1 and j = 2, 3, . . . , t where ξj = Nx̄j
N+D2

2σ
2 , σ∗2

j = σ2

N+σ2D2
2
, and

Φ is the standard normal cumulative distribution function.
We generated a dataset of N×t = 100×4 random numbers from N(0, 1). We

took B = 5 for Gibbs sampling, B′ = 5 for Metropolis sampling, and m = 1, 000
for estimating π2(ψ|θ). We used n = 1, 000 for Algorithm OIS, n1 = n2 = 500
for Algorithm GOBS, and n1 = 200 and n2 = 800 for Algorithm GORIS. We
obtained cN with a value of 0.0417 by using a Monte Carlo method with 5,000,000
replicates. Since the number of replicates is so large that the Monte Carlo error
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is negligible. To specify the prior distributions, we took D = 1, u1 = 0.2 and
u2 = 0.5. Then, we obtained r̂OIS, r̂GOBS and r̂GORIS with the standard errors in
parentheses to be 46.05 (7.96), 28.52 (3.01) and 34.99 (1.94) respectively. (Note
that the reported standard errors are based on the first-order approximation of
RE(r̂).) Based on the above estimates, the normal data with unordered means
yields a Bayes factor strongly favoring the null hypothesis. Note that different
choices of D, u1 and u2 might lead to different values of Bayes factor. (See
Ibrahim, Chen, and MacEachern (1996) for a comprehensive sensitivity study for
the prior parameters). Also note that in order to obtain an approximate “true”
value of the Bayes factor r, using the same dataset we implemented Algorithm
GOBS with n1 = n2 = 10, 000 and we obtained r̂GOBS = 32.96 with a standard
error of 0.73. Therefore, OIS seems very unreliable in this case. Finally, we note
that similar to Example 5.1, GOBS used the least CPU time and GORIS used
as twice amount of CPU time as GOBS.

6. Conclusions

In this article, we extended importance sampling, bridge sampling, and ratio
importance sampling to the cases where two densities have different dimensions
and we found the global optimal solutions of such extensions. We also provided
practically useful implementation algorithms for obtaining these global optimal
estimators.

We used two examples to illustrate the methodology as well as the implemen-
tation algorithms developed in this paper. In both examples, we implemented the
asymptotically optimal versions of Algorithms OIS, GOBS and GORIS, which are
relatively computationally intensive. However, for higher dimensional or more
complex problems, “approximate” optimal approaches proposed in Section 4 may
be more attractive since they require much less computation effort. Finally, we
note that the two-stage GORIS algorithm typically performs better when a small
sample size n1 in Step 1 is chosen. A rule of thumb of choosing n1 and n2 is that
n1/n2 ≈ 1/4.

The different dimensions problems are the important ones as they often arise
in Bayesian model comparison and Bayesian variable selection. As our algorithms
can asymptotically or approximately achieve the optimal simulation errors and
they can be programmed in a routine manner, our methodology developed in this
paper will be useful in computing Bayes factors (Kass and Raftery (1995)) or
intrinsic Bayes factors (Berger and Pericchi (1996)) and in Bayesian comparisons
(Geweke (1994)) or model selection. In fact, our methods have been successfully
applied to Bayesian variable selection for proportional hazards models (Ibrahim,
Chen, and MacEachern (1996)) and Bayesian analysis of correlated Binary data
models (Dey and Chen (1996)).
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