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Abstract: In this paper, we develop new fast algorithms for envelope estimation
that are stable and can be used in contemporary complex envelope estimation
problems. Under the sequential 1D envelope algorithm framework of |[Cook and
Zhang| (2016)), we develop an envelope coordinate descent (ECD) algorithm that is
shown to be much faster than the existing 1D algorithm without loss of accuracy.
We also propose a novel class of envelope component screening (ECS) algorithms
that serve as a screening step that can further significantly speed computation and
that shows promise as precursor methodology when n < p. The ECD and ECS
algorithms have both shown promising performance in extensive simulation studies
and a data analysis.
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1. Introduction

The notion of an envelope was introduced by |Cook, Li and Chiaromonte
(2010)) for response reduction in multivariate linear models, subsequently studied
by |Cook, Helland and Su/ (2013)) for predictor reduction where they connected en-
velopes with partial least squares regression, and recently combined with reduced-
rank regression by |Cook, Forzani and Zhang| (2015)). Envelope methods increase
efficiency in estimation and improve prediction by enveloping the information in
the data that is material to estimation, while excluding the information that is
immaterial. The improvement in estimation and prediction can be quite substan-
tial, as illustrated by many studies in the literature. Envelope methodology has
been adapted to allow simultaneous response and predictor reduction in mul-
tivariate linear regression (Cook and Zhang (2015b)), extended beyond linear
regression models to generic multivariate parameter estimation problems (Cook
and Zhang| (2015a)), and to tensor (multi-dimensional array) regression in neu-
roimaging applications (Li and Zhang (2016); |Zhang and Li (2016)).

An envelope is a subspace onto which we project the multivariate parameter

vector, matrix or tensor. For a given envelope dimension u, the construction
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of an envelope typically involves a non-convex optimization problem over a u-
dimensional Grassmannian. Such optimization requires a good starting value,
an initial guess of the manifold, and can be very expensive computationally.
Cook and Zhang| (2016)) proposed a relatively fast and stable envelope algorithm
called the 1D algorithm, which breaks down the u-dimensional Grassmannian
optimization to a sequence of u one-dimensional optimizations. The 1D algorithm
requires no initial guess, yields y/n-consistent estimators under mild conditions
and was demonstrated to be much faster than a commonly used algorithm based
on direct optimization over the appropriate Grassmannian, which is the basis for
the envlp toolbox of |Cook, Su and Yang| (2015).

The recent advances in adapting envelopes to ever more complex settings
come with added computational burdens. While existing algorithms can be ap-
plied in these contemporary contexts, computational speed is a major obstacle.
Our overarching goal is to provide fast envelope algorithms without sacrificing
significantly on accuracy. Here, we propose a screening algorithm, called en-
velope component screening (ECS), that reduces the original dimension p to
a manageable dimension d < n, without losing notable structural information
on the envelope; we design an envelope coordinate descent (ECD) algorithm
that can be incorporated into the 1D algorithm framework and that stabilizes
and significantly speeds up the existing 1D algorithm without loss of any ac-
curacy and potentially improves the accuracy. These algorithms can be imple-
mented straightforwardly, we have posted our Matlab code at the author’s web-
site (http://ani.stat.fsu.edu/~henry/Software.html), along with a simple tutorial
about how to use and modify the code (e.g. changing the tolerance level and the
maximum number of iterations).

The rest of the paper is organized as follows. In Section 2, we review the basic
definition and properties of envelopes, envelope regression, and the 1D envelope
algorithm. In Section 3, we develop the ECS and the ECD algorithms and their
variants. Section 4 contains some simulation studies and a data analysis from
near-infrared spectroscopy. Proofs are included in the Online Supplementary
Materials.

The following notations and definitions are used in our exposition. Let R™*"
be the set of all real m x n matrices and let SP*P be the set of all real p x p
symmetric matrices. The Grassmannian consisting of the set of all u-dimensional
subspaces of RP, u < p, is denoted as Gp,. If M € R™*", then span(M) C R™
is the subspace spanned by columns of M. We use P4 = Po = A(ATA)1AT
to denote the projection onto A = span(A) and let Qa = I — Pa denote the
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projection onto the orthogonal complement subspace A*.

2. A Brief Review of Envelop Estimation
2.1. Definition of an envelope

In this section we briefly review definitions and some properties of reducing
subspaces and envelopes.

Definition 1. A subspace R C RP is said to be a reducing subspace of M € RP*P
if R decomposes M as M = PrMPr + QrMQnr. If R is a reducing subspace
of M, we say that R reduces M.

This definition of a reducing subspace is equivalent to the usual definition
found in functional analysis (Conway| (1990)), and in the literature on invariant
subspaces, but the underlying notion of reduction is incompatible with how it
is usually understood in statistics. Nevertheless, it is common terminology in
those areas and is the basis for the definition of an envelope, see |[Cook, Li and
Chiaromonte, (2010)); |Cook and Zhang (2015a) for example, which is central to
our developments.

Definition 2. Let M € SP*P and let U C span(M). Then the M-envelope of U,
denoted by Ent(U), is the intersection of all reducing subspaces of M that contain
U.

The intersection of two reducing subspaces of M is still a reducing subspace
of M. This means that Ev (), which is unique by its definition, is the smallest
reducing subspace containing . Also, the M-envelope of U always exists because
of the requirement U C span(M). If span(U) = U for some matrix U, then we
write Epm(U) := Em(U) to avoid notation proliferation. We let £3;(U) denote
the orthogonal complement of En(U).

A result from (Cook, Li and Chiaromonte (2010) gives a characterization of
envelopes.

Proposition 1. If M € SP*P has q < p eigenspaces, then the M-envelope of U C
span(M) can be constructed as Em(U) = >.1_, Pill, where P; is the projection
onto the i-th eigenspace of M.

If the eigenvalues of M are distinct so ¢ = p then it follows from this propo-
sition that the M-envelope of U is the sum of the eigenspaces of M that are
not orthogonal to U. This implies that when g = p the envelope is the span of
some subset of the eigenspaces of M. In the regression context, U/ is typically
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the span of a regression coefficient matrix or a matrix of cross-covariances, and
M is chosen as a covariance matrix which is usually positive definite.

2.2. The 1D algorithm

In this section, we review the 1D algorithm (Cook and Zhang| (2016)), in
terms of estimating a generic envelope Epm(U), where M > 0 and U > 0 are
both in SP*P. Then span(U) C span(M) = RP and the envelope is well-defined.
A generic objective function F was proposed by |Cook and Zhang (2016) for
estimating Eni(U):

F(G) = log|GTMG]| + log|GT (M + U)"'G], (2.1)

where G € RP** is semi-orthogonal with given envelope dimension 0 < u < p.
Since F(G) = F(GO) for any orthogonal u x u matrix O, the minimizer of F(G)
is not unique and the above optimization is essentially over G,,. However, we
are interested only in the span of the minimizer, which is unique as shown in the

following proposition from |Cook and Zhang| (2016)).
Proposition 2. Let T' be any minimizer of F(G). Then span(I') = &y (U).

When w is large, the minimization of can be computationally expen-
sive and it requires a good initial value to avoid local minima. Algorithm 1
summarizes the 1D algorithm which breaks down the optimization of to
“one-direction-at-a-time”. We review the y/n-consistency of Algorithm 1 that
was established by |Cook and Zhang| (2016) and is the theoretical foundation to
the y/n-consistency of our ECD algorithm (Corollary 2).

Algorithm 1 The 1D algorithm (Cook and Zhang, [2016).

Let g, € RP, k =1,...,u, be the sequential directions obtained. Let G = (g1, - - -, 8k),
let (Gg, Gor) be an orthogonal basis for RP and set initial value gg = Gy = 0.

For k =0,...,u — 1, repeat Step 1 and 2 in the following.

1. Let Gy = (g1,...,8k), and let (Gg, Gog) be an orthogonal basis for RP. Set
N; = [GL (M + U)Goi] 7!, My, = G, MGy, and the unconstrained objective
function

dr(w) = log(w M w) + log(w! Npw) — 2log(w!w). (2.2)

2. Solve wg41 = argmin¢y(w), then the (k + 1)-th envelope direction is g =
GorxWit1/[[Whs1ll

Theorem 1. Suppose M > 0, U > 0 and M and U are /n-consistent estimators
for M and U. Let G, denote the estimator obtained from Algorithm 1 with M, U
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and the true envelope dimension u. Then Pg s +/n-consistent for the projection
onto Epm(U).

2.3. Envelope regression and parameter estimation

In the multivariate linear regression context of Y = a+8X+ ¢, the envelope
Em(U) is constructed based on whether we want to reduce the predictors (Cook,
Helland and Sul (2013)), or the response variables (Cook, Li and Chiaromonte
(2010))), or even both sets of variables simultaneously (Cook and Zhang (2015b))).
Then M is chosen to be the covariance matrix of X, ¥x = cov(X), or the
conditional covariance of Y given X, ¥ = cov(Y | X) = cov(e), or the direct sum
of the two, ¥x & 3. Accordingly, U may be chosen as 373, 387, or BT B8®387.
When additional structural information is available, the envelope construction
can be adjusted to gain more efficiency. For instance, a partial envelope (Su and
Cook| (2011))), is used when only a subset of predictors is of special interest. A
reduced-rank envelope (Cook, Forzani and Zhang| (2015)), is appropriate when
regression coefficient matrix 3 is rank deficient and multivariate reduced-rank
regression is preferred over ordinary least squares regression. See [Cook and
Zhang| (2016)) for an introductory example of the working mechanism of envelope
regression and for a more detailed discussion of the connections between various
envelopes and the choice of M and U. Beyond regression models, envelope
estimation is a way to improve estimative efficiency in multivariate parameter
estimation problems, as described by |Cook and Zhang| (2015a). In this more
general context, the envelope can still be estimated from objective function ([2.1))
with different choices for M and U.

3. Two Envelope Component-Wise Algorithms

In this section, we introduce two moment-based and model-free envelope
algorithms: an envelope component screening (ECS) algorithm and an envelope
coordinate descent (ECD) algorithm. The ECS algorithm allows for screening out
eigenvectors of M lying in EI\L/I (U). Since the ECS algorithm is computationally
efficient and robust, it is applicable to situations where n < p or even n < p
and it reduces the dimension p to a lower dimension d < n such that the 1D
algorithm is applicable. The ECD algorithm, on the other hand, is a refined
algorithm that is adapted into the 1D algorithm framework and speeds up each
iteration of the 1D algorithm. In this section, we assume that M > 0 and U > 0
in all the algorithmic and theoretical results.
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3.1. The ECS algorithm

Here and in later statements we use the objective function F(-) defined at
(2.1), but we no longer require the column dimension of its argument to be a
given envelope dimension.

Proposition 3. Let A be a semi-orthogonal basis matrixz for any reducing sub-
space of M and let (A, Ag) € RP*P be an orthogonal matriz. Then F(Ag) <0,
and F(Ao) = 0 if and only if span(U) C span(A). In addition, if F(Ag) = 0
then Ep(U) = AEarvia (ATUA).

Proposition 3 provides support for the moment-based objective function
, and it inspired a way of detecting and eliminating components in El\l/l (U):
if we can find an A such that F(Ag) = 0 then Proposition 3 implies that
Em(U) C span(A) and that we can find En(U) by pursuing the lower dimen-
sion envelope Exrnvia (ATUA). Thus, Proposition 3 provides a foundation for
eliminating parts of £3;(U) by maximizing F(Ag) over the reducing subspaces
of M. In the extreme, if we can find Ay € RP*(P—%) gatisfying F(Ag) = 0, then
Em(U) = span(A) because u is the dimension of the envelope.

Proposition 3 inspired the ECS algorithm to facilitate envelope estimation
by enabling us to estimate a u-dimensional envelope within a smaller space R?
instead of RP, where u < d < p. We state the population version of the ECS algo-
rithm in Algorithm 2, while the sample version uses estimators M and U instead
of M and U. Step 1 of the ECS algorithm constructs an eigen-decomposition
of M. Step 2 of the algorithm orders the eigenvectors of M by their value of
F(v;), where F is as defined in (2.1). The value f; = F(v;) can be viewed as a
negative pseudo-log-likelihood, which achieves its maximum of zero if and only if
v; € gﬁ(U). Hence the ordered series f,) < --- < f;) <0 in Step 2 ranks v;
in terms of their “closeness” to £5;(U). Steps 3 and 4 of Algorithm 2 then deter-
mine a partition of (A, Ag), where span(A) contains the envelope and span(Ay)
lies within the orthogonal complement of the envelope. Then Ay is discarded
and we pursue envelope estimation via AEarya (ATUA).

Proposition 4. In the population ECS algorithm,
foy < < Jo-avy) < Jo-m = = fo) =0,

where u satisfies u < u < p and is the number of eigenvectors from the eigen-
decomposition M = P, )\iviviT (Step 1; Algorithm 2) that are not orthogonal to
span(U). Moreover, if d > U is used in the algorithm then AExrnva(ATUA) =
Em(U).
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Algorithm 2 The envelope component screening (ECS) algorithm.

T

7

1. Construct an eigenvalue decomposition of M as M = > % A\;v;v
equals 1 if ¢+ = j and 0 otherwise.

2. Evaluate f; = F(v;) = log(\;) + log(vI (M + U)~!v;), and then order then as
oy <+ < fy £ 0 with corresponding v ;).

where vI'v;

3. Let Ag = (V(l), . ,V(p,d))T and A = (V(p,d+1), . 7V(p)) € RP*? with a pre-
specified number d.

4. Bstimate &v(U) as Afarna (ATUA).

Proposition 4 has two implications. First, the u-dimensional envelope is
contained within the span of w eigenvectors of M that satisfies f; = F(v;) < 0,
whereas the other eigenvectors have f; = 0. Secondly, for d > u, the ECS estimate
of the envelope is indeed the original envelope in the population, ASxrpna (ATU
A) = &vi(U). Thus, the ECS envelope estimator is Fisher consistent as long as
the dimension d in the ECS algorithm is specified no less than the number .
Since u > u, we need to specify d such that d > u > wu.

We have introduced @ because of an identification issue related to the eigen-
vectors of M. To gain intuition about this issue, let (I',Ty) € RP*P be an
orthogonal matrix, where I' € RP*" is a basis matrix for E&5(U). Then we can
write M = TQT7T + Tyl and U = T®T'T, where Q2,2 > 0 and ® > 0.
If there is an eigenvalue of M corresponding to a two-dimensional eigenspace
spanned by eigenvectors u € span(I') and w € span(T'y), then F(u) > 0 and
F(w) = 0. However, because the eigen-decomposition is not unique, for this par-
ticular eigenvalue we may also get eigenvectors vi = u+w and vo = u— w that
lie in neither span(I') nor span(I'y), and thus F(vy) > 0 and F(vy) > 0. An ex-
treme case is M = I,,, if we form eigenvectors of M as columns of (I, Ty) € RP*P,
(vi,...,vp) = (I, Ty), then F(v;) > 0 for i =1,...,u and F(v;) = 0 for i =
u+1,...,p. On the other hand, any orthogonal matrix O = (01,...,0,) € RP*P
forms a set of eigenvectors for M = I,, but it is possible that F(o;) > 0 for all
1=1,...,p.

Proposition 5. If M has p distinct eigenvalues, or, if all eigenspaces of M
are contained completely in either Enp(U) or Ex;(U), then u = u for any eigen-
decomposition in the ECS algorithm. Depending on the particular eigen-decom-
position in the ECS algorithm, u can be any integer from {u,u+1,...,u+ K},
where K is the sum of the dimensions of eigenspaces of M that intersect both
Em(U) and Ex(U).
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The number % of nonzero f;’s in the ECS algorithm is unique and equal
to u for all possible eigen-decompositions of M when all eigenspaces of M are
contained completely in either En(U) or Ex7(U). However, 4 is no longer unique
if some eigenspace of M intersects non-trivially with both & (U) and E5;(U):
some eigen-decomposition yields @ = u and others may get w > u. Since d > u is
needed for the Fisher consistency of the ECS algorithm, the dimension reduction
achieved by the ECS algorithm can be somewhere between (p—u) and (p—u—K)
subject to the particular eigen-decompositions.

In the sample version of the algorithm, estimators M and U are substituted
into Algorithm 2. Let A and KO be the estimators from the sample ECS al-
gorithm. Based on Proposition 3, we want F(;‘;o) — 0 as n — oo so that the
components to be discarded, KO, are orthogonal to the envelope, and the remain-
ing components of span(;&) converge to a reducing subspace of M that contains
span(U). We have the sample objective function

Fi(Ag) = log |AJMA| +log | A (M + U) A
available instead of the population objective function F(Ko), so we need to show
Fr(Ap) — 0 as n — oo similar to the convergence of F(Ay).

Proposition 6. Suppose M and U are \/n-consistent estimators for M > 0 and
U > 0. If d > @ is used in the sample ECS algorithm, then F(Ag) = Op(n~1/?)
and F,(Ag) = F(Ag) + Op(n~1/?).

The number d serves as an upper bound for the envelope dimension and
does not have to be accurately specified. For instance, if we are estimating
a 10-dimensional envelope in R it is usually reasonable to choose d = 50.
In practice, we may adopt a data-driven modification to Step 3 in the sample
ECS algorithm, where the tuning parameter d is selected from the data rather
than pre-specified. Unlike selecting the envelope dimension u using information
criteria or cross-validation, the selection for d is less crucial and is performed with
negligible computational cost. Since Fn(go) < 0 is monotonically increasing in
the number of components d, we can select d as the largest number such that
Fn(KO) > () for some pre-specified cutoff value Cy < 0. Because Fn(_/io) goes to
zero at rate y/n, we could choose Cj to have a smaller order so that no important
components is missed with high probability. Based on our experience, the cutoff
value Cy = —n "' in Step 3 performs well. We conjecture that the ECS algorithm
is \/n-consistent if M and U are v/n-consistent estimators and the estimation of
Earmia
1D algorithm or the ECD algorithm in Section 3.3. To further speed computation,

(A\TﬁK) at the final step is from any \/n-consistent envelope algorithm,
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Fn(Ko) can be well approximated by Z‘;’-’:—{i fi)- We illustrate this data-driven
approach for selecting d in the numerical analysis in Section 4, where Cj is chosen
as —n ' and FN(AO) is approximated by Zg’;ld fs)- We note that Cp = —n~lis
quite conservative in most cases where d is much bigger than u. We also varied
Cop=—n"9%to Cy = —n~15 and the results were not sensitive to the choice of
C[).

The ECS algorithm is rather general and can be easily modified for specific
problems of interests, as we discuss in the next section.

3.2. Variations on the ECS algorithm
The following result is a useful implication of Proposition 3.

Corollary 1. Let A be a semi-orthogonal basis matrix for any reducing subspace
of M+ U and let (A,Ag) € RP*P be an orthogonal matriz. Then F(Ag) < 0,
and F(Ao) = 0 if and only if span(U) C span(A). In addition, if F(Ag) = 0
then Ev(U) = Aéarva (ATUA).

Corollary 1 is derived straightforwardly from Proposition 3 by noticing that
if span(A) contains span(U) then it reduces M, which is equivalent to reducing
M + U. It has two key implications. First, we can replace M with M + U in
Step 1 of the ECS algorithm (Algorithm 2), leading to these alternative Steps 1
and 2 of the ECS algorithm.

1. Construct the eigenvalue decomposition of M+U as M+U = Y7 | \ivivD

i
where VZTV]' equals 1 if 4 = j and 0 otherwise.
2. Evaluate f; = F(v;) = log(v{ Mv;) —log()\;), and then order then as f(,) <
-+ < fr1) £ 0 with corresponding v ;).
Apparently, we no longer need to compute the inverse of M + U in Step 2 of the
ECS algorithm, which can be helpful in high-dimensional settings. Second, in
some applications the eigenvectors of M + U might be more interpretable than
those of M. For example, in multivariate linear regression Y = a + 8X + ¢,
the matrix M is taken as 3x for a predictor envelope (Cook, Helland and Su
(2013)). Then the original ECS algorithm, which selects principal components
of X according to its closeness to span(ﬁT), is essentially a type of supervised
principal component analysis, see Bair et al.| (2006); [Li, Shen and Huang] (2015);
Li et al.| (2015) for example. If we are interested in the response envelopes of
Cook, Li and Chiaromonte| (2010)) then M = X = cov(e) and M+ U = Xy, and
this modified ECS algorithm may be more interpretable because it selects among
principal components of Y.
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Another important variation on the ECS algorithm is for its sample version
when n < p or even n < p. Sample estimators for M and M + U, which are
typically the sample covariance matrices, are substituted in the objective function
and in the envelope algorlthms For small sample problems where n < p, the
sample matrices M and M + U are typically rank deficient with rank n or n — 1
and existing envelope algorithms fail. One easy way to get around the problem
is to follow Proposition 3 and first downsize the envelope estimation of Ep(U) to
Alarm A(ATUA) with the columns of A as nontrivial n or n—1 eigenvectors of
M or M+U. Then the ECS algorithm and other envelope estimation algorithms
can be applied. We demonstrate this in the simulations.

3.3. The ECD algorithm

For each direction wy1 in the 1D algorithm, we need to minimize ¢y (W)
iteratively. One way to do this is by a nonlinear conjugate gradient method, for
example the Polak-Ribiere type conjugate gradient (PRCG) and the Fletcher-
Reeves type conjugate gradient (FRCG) methods. Other optimization methods
such as gradient descent, Newton-Raphson and quasi-Newton methods can be
applied as well. PRCG and FRCG methods have better performance from our
experience. If the dimension p is large, these standard methods can be expensive
and inefficient, and, since the objective function ¢ (w) is non-convex and has
local minima, it may be hard to find an algorithm that stably minimizes it at
each iteration. Here we propose a fast and stable envelope coordinate descent
(ECD) algorithm for solving ¢y (w). It is much faster than any standard nonlinear
optimization method and is guaranteed to not increase the value of the objective
function at each iteration. Since the ECD algorithm is built within the 1D
algorithm framework, we outline only the part of it for solving ¢ (w) in of
Algorithm 1.

The coordinate descent algorithm can be more efficient when the objective
function is separable in coordinates. We transform the basis to canonical coor-
dinate w — v so that the first term in the objective function is more separable:
log(wIMyw) + log(vI' Av) = log(}_; \iv?). This speeds up the algorithm and
makes the optimization more accurate.

Step 5 in Algorithm 3 approximates the solution to dyy(v)/dv; = 0, which
can be written as

2\v; | 2NN Nyui 4y
vIAv vINv vy

The approximate solution is obtained by treating the denominators v Av, vINv
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Algorithm 3 The envelope coordinate descent (ECD) algorithm for solving ¢x(w).

1. Eigenvalue decomposition of My as My = VAV where V is an orthogonal matrix
and A = diag(A1,..., A\p—x) is a diagonal matrix.

2. Transform the original objective function into canonical coordinates: v <« VTw,
N « VTN,V and

dr(w) = pr(v) = log(vT Av) + log(vINv) — 2log(v'v). (3.1)

3. Fort = 1,..., Tmax, where Tinayx is the maximum number of iterations, update v(*)
following Step 4-7 and terminate iteration if ¢y (v() — 5 (v*=1)) < ¢, for some tol-
erance value € > 0. At the termination, transform back to w1 = argmin ¢ (w) =
Vv.

4. Update a® «+ (vTAv)~!, b® +— (vINv)™! and ¢ « (vvT)~! according to
current stage v(t).

5 For j = 1,...,p—k, if a®); + b(t)]vjj — 2¢) £ 0 then consider moving each
coordinate of v as

p—k )7 (1)
LD Zi;ﬁj b )ivijvi .
J (Z(t) )‘j -+ b(t)ij — QC(t)
6. If the objective function is not decreased by moving vj(-t) to v
v§t+1) to v§t).

(3.2)

(t+1)

; then back up

7. If none of the coordinates is updated, then run one iteration of any standard
nonlinear optimization method to update v.

and v!'v as constants at the current step, and solving the resulting linear equation
in v; from the numerators. Step 6 is then a back-tracking step to make sure
that the objective function is monotonically non-increasing. Step 7 guarantees
that the algorithm will converge because of basic properties of the standard
nonlinear optimization method chosen in Step 7. Thus, this ECD algorithm
has a convergence rate bounded below by the convergence rate of the standard
nonlinear optimization method chosen in Step 7. Our experience suggests that
the approximated solution in Step 5 is usually very close to the true minimizer
for the coordinate.

The y/n-consistency of the ECD algorithm follows as a result of the 1D
algorithm consistency (Theorem 1) and also because that the ECD algorithm is
guaranteed to solve ¢ (w) from steps 6-7 of Algorithm 3.

Corollary 2. Suppose M >0, U > 0 and M and U are \/n-consistent sample
estimators for Ml and U. Let G, denote the estimator obtained from the ECD
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Table 1. Computing time in seconds for each methods with simulated matrices M and U.
Each cell of the table was averaged over 20 runs with standard error in parenthesizes.
The estimation accuracy is [|[Pr — Pgllp < 107¢ for every methods at each of these
settings and is thus not reported the table.

ECD 1D ECS (d = u)
p=20 3.8(04) x 1072 7.2 (0.3) 2.6 (0.3) x 1072
M p=50 20(0.1) x 107" 2.6 (0.1) x 10  1.5(0.1) x 107}
p=1200 9.1(0.1) 1.7 (0.04) x 10> 1.5 (0.01) x 10
p=20 3.4(04) x 1072 4.2 (0.1) x 10 1.0 (0.3) x 1072
(II) p=50 1.9(0.1) x 1071 1.4 (0.01) x 10> 6.8 (0.5) x 1072
p=200 8.2 (0.06) 7.0 (0.01) x 10 3.5 (0.02)
p=20 44(07) x 1072 3.4(0.1) x 10 1.6 (0.6) x 1072
() p=50 24 (0.1) x 107+ 4.9 (0.1) x 10 82 (0.7) x 1072
p=200 8.1 (0.1) 7.2 (0.04) x 10 3.8 (0.04)

algorithm using M and U where u is the dimension of the envelope. Then Pg

is \/n-consistent for the projection onto Eni(U).

4. Numerical Studies

In this section, we compare the 1D algorithm to our proposed algorithms. In
the simulated data studies of Section 4.1, because the true envelope structure is
known, we find that there is no significant difference among methods in terms of
accuracy in estimating envelopes and thus we compare the algorithms in terms
of their computation time. The shared estimation accuracy is summarized in
table legends. In the data analysis of Section 4.2, the true envelope structure
is unknown and we compare the methods in terms of cross-validation prediction
mean squared errors (PMSE) and also computation time. The computation was
done on a Windows 7 computer with Intel(R) Core(TM) i5-5300U CPU@2.30GHz
processor, 8.00 GB installed memory (RAM), 64-bit Operating System.

The coordinate descent algorithm can be more efficient when the objective
function is separable in coordinates. Our ECD algorithm thus takes advantage of
the canonical coordinates. However, transformation of the coordinate system has
little effect on the 1D algorithm solved by any standard nonlinear optimization
methods (such as PRCG).

4.1. Simulated data

In this section, we consider the problem of estimating a generic envelope
Em(U), where matrices were generated as
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ror?” + 1oy,  Model I,
M = { IT7 +0.01T,T7, Model II,

0.01TT? + Ty I'7, Model II1,
U =T®r7, for all models,

where T' € RP*" was randomly generated by first filling in with random num-
bers from the Uniform (0,1) distribution and then transforming so that I is
semi-orthogonal, Ty € RP*(~%) was the completion of I such that (I',Ty) was
orthognal, Q was generated as AAT > 0, where A had the same size of £ and
was filled in with random numbers from Unifrom (0, 1), Qo and ® were both
generated in the same way as €2 with A matching the dimensions of 2y and ®.
Finally, to guarantee M > 0 in Model I, we added 0.00001L, to M after it was
simulated.

The first set of simulations compares the methods primarily on the time it
takes to recover the envelope in the population, using the true values for M and
U in the objective function F. For each of the three models, we fixed u = 5 and
generated 20 pairs of M and U for each of the three dimensions, p = 20, 50, and
200. Three methods are to be compared here: ECD algorithm; 1D algorithm;
ECS algorithm with d = u components selected. The ECS method worked as a
stand-along method because M and U were population quantities. We recorded
the estimation error, the Frobenius norm |[Pr — Pg||r, and also the computing
time for each run. The results were summarized in Table 1. All three methods
had the same accuracy in these settings, since we used appropriate tolerance and
maximum iteration numbers, the estimation errors were simply due to rounding
errors in the program. In terms of computation time, ECS and ECD were equally
fast, and about a hundred times faster than the 1D algorithm.

In the next set of simulations we applied the algorithms to estimates M ~
W,(M/n, n) and U~ W,(U/n, n) instead of their population counterparts M
and U. The Wishart distribution mimics the linear regression model settings.
We chose n = 100 and varied p as 20, 50, and 2,000 to mimic the small (p < n),
moderate (p < n) and high (p > n) dimensional situations.

For p = 20, the ECS algorithm was not needed as both the ECD and 1D
algorithms are fast and accurate for relatively small p. The direct comparison of
the ECD algorithm and the 1D algorithm is summarized in Table 2 where ECD
was at least ten times faster.

For p = 50, the ECD and 1D algorithms are still applicable and the ECS
algorithm can also be used as a preparation step for both 1D and ECD algorithms.
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Table 2. Computing time in seconds using simulated matrices M and U with p =20
and n = 100. Each cell of the table was averaged over 100 runs with standard error in
parenthesizes. The estimation accuracies |Ppr —Pg|| ¢ for the three models are 0.42, 1.20
and 0.14, respectively, and there was no significant difference between any two methods
at any of the three settings. Therefore, estimation accuracy is not reported the table.

Models (D) (I1) (I11)
ECD 0.20 (0.01) 0.09 (0.01) 0.145 (0.01)
1D 4.28 (0.07) 2.35 (0.04) 1.65 (0.02)

Table 3. Computing time in seconds using simulated matrices M and U with p =50
and n = 100. Each cell of the table was averaged over 100 runs with standard error in
parenthesizes. The estimation accuracies ||Pr —Pg||r for the three models are 0.98, 1.94
and 0.29, respectively, and there was no significant difference between any two methods
at any of the three settings. Therefore, estimation accuracy is not reported the table.

Time
Models — ECD D FECSECD  BOsip  DOd selected d
(D)  0.56 (0.02) 12.19 (0.08) 0.62 (0.02) 11.94 (0.08) 47.0 (0.1)
(I)  0.45 (0.01)  9.46 (0.10)  0.42 (0.01)  8.78 (0.09) 39.9 (0.2)
(II1)  0.74 (0.02)  6.59 (0.05)  0.14 (0.01)  0.14 (0.01) 5 (0)
We chose d based on the cut-off value Cp = —n~! as discussed in Section 3.1.

The results are summarized in Table 3. Again, the ECD algorithm improved over
the 1D algorithm, with and without the preparation step by ECS algorithm. For
Models (I) and (II), the ECS algorithm only eliminated a few components so that
the results did not change much with the ECS algorithm. For Model (III), the
ECS algorithm selected d equal to the envelope dimension u every time, implying
a clear envelope structure from the data and thus estimating it as accurate as
the 1D or ECD algorithms. The results were summarized in Table 3.

For p = 2,000, the ECD and 1D algorithms are no longer straightforwardly
applicable. We used the ECS algorithm to first reduce the dimension from p =
2,000 to n = 100 and then applied the ECD and 1D algorithms on the reduced
data. We also applied the ECS-ECD and ECS-1D on the reduced data with d
selected from the data. Because the ECS step of reducing the dimension from
2,000 to 100 was the more costly step, we extracted the computing time of this
step as ECS,, in Table 4. The estimation accuracy ||Pr—Pg||r for Model (IIT) was
3.16 for all methods because the immaterial part I‘OI‘OT dominated the material
part 0.01TT7 in M and there was no estimable information from the data — the
sample version M lay mostly within span(I'g) as n < p. Therefore, the ECS
algorithm also suggested d = 0 for this situation.
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Table 4. Computing time in seconds using simulated matrices M and U with p = 2,000
and n = 100. Each cell of the table was averaged over 100 runs with standard error
in parenthesizes. The ECS,, is the pre-process step of applying the ECS algorithm to
reduce the dimension from p = 2,000 to d = n = 100. Then we recorded the computing
time of the four methods (ECD, 1D, ECS-ECD and ECS-1D) applied on the reduced
data. The estimation accuracies |[Pr — Pa| r for the three models are 1.31, 1.45, 3.16,
respectively, and there was no significant difference between any two methods at any of
the three settings. Therefore, estimation accuracy is not reported the table.

Time
Models  ECD 1D ECS.ECD  ECS-1D BCS,, ECS selected d
(I) 0.92 (0.01) 5.64 (0.05) 1.15 (0.01) 5.12 (0.06) 9.20 (0.03)  86.9 (0.2)
(
(

(I)  0.86 (0.01) 4.62 (0.07) 0.54 (0.01) 1.39 (0.03) 9.45 (0.03)  40.8 (0.4)
(I11) NA NA  0.72(0.01) 62.13 (0.76) 9.24 (0.04) 0 (0)

4.2. Data analysis

We revisited the meat protein data set from Cook, Helland and Su/ (2013)
and |Cook and Zhang| (2016). Following these previous studies, we used the
protein percentage of n = 103 meat samples as the univariate response variable
Y; eR',i=1,...,n, and used the corresponding p = 50 spectral measurements
from near-infrared transmittance at every fourth wavelength between 850nm and
1050nm as the predictor X; € RP. The linear regression model was built as
Y; = a+BX;+e€; with the envelope Es_(87) in the predictor space (Cook, Helland
and Sul (2013)). If M = Bxy = Tx — Txy L' Thy > 0 and M+ U = I,
then we can obtain the normal likelihood-based objective function by substituting
the corresponding sample covariance matrices M and M + U into . Given
the envelope dimension u, we used M and U with various algorithms to get
estimators of an envelope basis, denoted as T. Then the envelope estimator
for the regression coefficient matrix was written as BT = f(f‘Tﬁxf‘)—lfTixy
and the response was predicted as Y* = fiy + B(X* — px), where piy and px
are the sample means from observed data (or from the training data set) and
X* denotes new independently observed data. Varying envelope dimension u
from 1 to 25 and using five-fold cross-validation prediction mean squared error
and computation time as two criteria (Cook and Zhang (2016)) compared the
1D envelope estimator based on Algorithm 1 with OLS and envelope estimator
from full Grassmannian (FG) optimization. Their results showed both envelope
estimators to be uniformly superior to OLS and that the 1D envelope estimator
was superior to the FG envelope estimator on the two criteria: the computation
time for the 1D estimator was 10 to 100 times faster than the FG estimator and
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Prediction mean squared errors

PMSE

Envelope dimension

Figure 1. Meat Protein Data: prediction mean squares error comparison.

the prediction error of the 1D estimator was always less than or equal to that
of the FG estimator for all the values of u from 1 to 25. We next compare the
proposed algorithms only to the “best available” method: the 1D algorithm.

We randomly split the data into a testing sample and a training sample in
a 1:4 ratio and recorded the prediction mean squared errors (PMSE) and the
computation time for fitting each envelope basis at each of the 25 envelope di-
mensions. This procedure was then repeated 100 times and the results averaged.
Similar to the simulation studies in Table 3, we compared the four envelope es-
timators: ECD, 1D, ECS-ECD, and ECS-1D. For the ECS-ECD and ECS-1D
estimators we used the ECS algorithm to screen the 50 components down to the
data-driven d, which was 34.2 on average with 0.2 standard error.

Figure 1 summarizes the PMSE comparison. The ECD algorithm was again
proven to be the most reliable one. The differences between the 1D and the ECD
estimators were due to the convergence of algorithms on some of the 100 training
data sets. The ECD algorithm is less sensitive to peculiar local optima, while
the 1D algorithm seems often trapped in those local optima. In this data set,
there appears to be many local optima mainly due to two reasons: the number
of predictors p = 50 is close to the training set sample size 83; the correlation
among the predictors is very high. From the absolute values of the px (p—1)/2 =
1,225 pairwise sample correlations, we find 53 of them are bigger than 0.99 where
the largest one is 0.9999. Comparing ECS-ECD to ECD, it is clear that the ECS
algorithm sacrificed accuracy for computational efficiency and fewer components
in the model. However, because of fewer components, the ECS-1D algorithm
actually improved over the 1D algorithm. For v = 2, we summarize all the PMSE
on 100 testing sets using a side-by-side boxplot in the Supplementary Materials,
where the 1D algorithm is clearly outperformed by our proposed estimators using
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Averaged computation time in seconds (overview)
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Figure 2. Meat Protein Data: computing time comparison.

either means or quantiles of the 100 PMSE as criteria.

Figure 2 summarizes the computing time comparison. The ECD algorithm
was at least 10 times faster than the 1D algorithm across all the envelope dimen-
sions. The ECS algorithm improved the 1D algorithm by roughly doubling its
speed, and it improved the ECD algorithm speed even more drastically, some-
times more than 10 times faster. This can be explained by the fact that both
the ECD and the ECS algorithms work on the same envelope components or
coordinates, which were the principal components of the 50 predictors in this
application, and that variables in this data set are highly correlated leads to an
even faster convergence of the ECS-ECD algorithm.

If we consider choosing the envelope dimension from 1 to 25 using 5-fold
cross-validation, then we need 25 x 5 = 125 individual envelope model fits. The
1D algorithm took a total of about 11.5 minutes to finish the optimization, while
the faster ECD algorithm needs only 0.5 minutes to reach the same conclusion.
If we choose the ECS-ECD approach, it is even faster, with just 0.067 minutes for
all the envelope estimations. While these differences might not seem very large,
applied work may often require much more computation. We may wish to use
averages over multiple five-fold cross validations to gain a more reliable picture
of relative prediction errors, we might use the bootstrap to estimate standard
errors or for estimators based on bootstrap smoothing, or we might wish to carry
out computations for all possible envelope dimensions. Iterating over alternating
envelope fits might be required in some problems, as in envelopes for simultaneous
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response and predictor reduction (Cook and Zhang (2015b))). For instance, if we
decided for the meat analysis to use averages over 10 five-fold cross validations,
250 bootstrap samples and all envelope dimensions, the computation time could
range from about 80 days for the 1D algorithm to a half day for the ECS-ECD
algorithm.

5. Discussion

In this paper, we proposed two computational tools to speed up the non-
convex Grassmannian optimization that appears in the estimation of almost all
envelope models, for example (Cook, Li and Chiaromonte (2010); Su and Cook
(2011)); |Cook, Helland and Sul (2013); |Cook and Zhang (2015a)); [Li and Zhang
(2016)); Zhang and Li| (2016])). The ECD and the ECS algorithms were developed
based on the idea that the iterative non-convex optimization steps in envelope
estimation could be replaced by crude or approximated solutions after transform-
ing the coordinates. These algorithms can also be applied to estimate a general
envelope provided the objective function F is reasonable. The general approach
may also be adapted to Grassmannian optimizations that arise in other multi-
variate statistical context like likelihood acquired directions (Cook and Forzani
(2009)).

Supplementary Materials

The online Supplementary Materials (PDF) contain technical details and
some additional numerical results.
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