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Abstract: The lasso and related sparsity inducing algorithms have been the target

of substantial theoretical and applied research. Correspondingly, many results are

known about their behavior for a fixed or optimally chosen tuning parameter spec-

ified up to unknown constants. In practice, however, this oracle tuning parameter

is inaccessible so one must use the data to select one. Common statistical practice

is to use a variant of cross-validation for this task. However, little is known about

the theoretical properties of the resulting predictions with such data-dependent

methods. We consider the high-dimensional setting with random design wherein

the number of predictors p grows with the number of observations n. Under typical

assumptions on the data generating process, similar to those in the literature, we

recover oracle rates up to a log factor when choosing the tuning parameter with

cross-validation. Under weaker conditions, when the true model is not necessarily

linear, we show that the lasso remains risk consistent relative to its linear ora-

cle. We also generalize these results to the group lasso and square-root lasso and

investigate the predictive and model selection performance of cross-validation via

simulation.
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1. Introduction

Following its introduction in the statistical (Tibshirani (1996)) and signal

processing (Chen, Donoho and Saunders (1998)) communities, ℓ1-regularized lin-

ear regression has become a fixture as both a data analysis tool and as a subject

for theoretical investigations. In particular, for a response vector Y ∈ Rn, design
matrix X ∈ Rn×p, and tuning parameter λ, we consider the lasso problem of

finding

β̂λ = argmin
β

1

n
||Y − Xβ||22 + λ ||β||1 (1.1)

for any λ, where ||·||2 and ||·||1 indicate the Euclidean and ℓ1-norms, respec-

tively. An equivalent but less computationally convenient specification of the

lasso problem given by (1.1) is the constrained optimization version:
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β̂t := β̂(Bt) ∈ argmin
β∈Bt

1

n
||Y − Xβ||22 , (1.2)

where Bt := {β : ||β||1 ≤ t}. By convexity, for each λ (or t), there is always

at least one solution to these optimization problems. While it is true that the

solution is not necessarily unique if rank(X) < p, this detail is unimportant for

our purposes, and we abuse notation slightly by referring to β̂λ as ‘the’ lasso

solution.

These two optimization problems are equivalent mathematically, but they

differ substantially in practice. Though the constrained optimization problem,

(1.2) can be solved via quadratic programming, most algorithms use the La-

grangian formulation (1.1). In this paper, we address both estimators as each is

more amenable to theoretical treatment in different contexts.

The literature contains numerous results regarding the statistical properties

of the lasso, and, while it is beyond the scope of this paper to give a complete

literature review, we highlight some of these results here. Early results about the

asymptotic distribution of the lasso solution are shown in Knight and Fu (2000)

under the assumption that the sample covariance matrix has a nonnegative def-

inite limit and p is fixed. Many authors (e.g. Donoho, Elad and Temlyakov

(2006); Meinshausen and Bühlmann (2006); Meinshausen and Yu (2009); Wain-

wright (2009); Zhao and Yu (2006); Zou (2006)) have investigated model selection

properties of the lasso—showing that when the best predicting model is linear

and sparse, the lasso will tend to asymptotically recover those predictors. The lit-

erature has considered this setting under various “irrepresentability” conditions

which ensure that the relevant predictors are not too highly correlated with irrel-

evant ones. Bickel, Ritov and Tsybakov (2009) analyze the lasso and the Dantzig

selector Candès and Tao (2007) under restricted eigenvalue conditions with an

oracle tuning parameter. Finally, Belloni, Chernozhukov and Wang (2014) de-

velop results for a related method, the square-root lasso, with heteroscedastic

noise and oracle tuning parameter.

Theoretical results such as these and others, depend critically on the choice of

tuning parameters and are typically of the form: if t = tn = o(n/ log p)1/4, then

β̂tn possesses some desired behavior (correct model selection, risk consistency,

sign consistency, et cetera). However comforting results of this type are, this

theoretical guidance says little about the properties of the lasso when the tuning

parameter is chosen in a data-dependent way.

In this paper, we show that the lasso under random design with cross-

validated tuning parameter is indeed risk consistent under some conditions on the
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joint distribution of the design matrix X and the response vector Y . Addition-

ally, we demonstrate that our framework can be used to show similar results for

other lasso-type methods. Our results build on the previous theory presented in

Homrighausen and McDonald (2014) and Homrighausen and McDonald (2013).

Homrighausen and McDonald (2014) proves risk consistency for cross-validation

under strong conditions on the data generating process, most notably n > p, and

on the cross-validation procedure (requiring leave-one-out CV). The results in

this paper differ from those in Homrighausen and McDonald (2013) in a number

of ways. The current paper examines the Lagrangian formulation of the lasso

problem under typical conditions, weakens the conditions on an upper bound for

t, provides more refined results via concentration inequalities, examines the in-

fluence of K, and includes related results for the group lasso and the square-root

lasso.

1.1. Overview of results

We focus on risk consistency, (alternatively known as persistence), inves-

tigating the difference between the prediction risk of the lasso estimator with

tuning parameter estimated by cross-validation and the risk of the best linear

oracle predictor (with oracle tuning parameter). Risk consistency of lasso has

previously been studied by Greenshtein and Ritov (2004); Bunea, Tsybakov and

Wegkamp (2007); van de Geer (2008); Bartlett, Mendelson and Neeman (2012).

Their results, in contrast to ours, assume that the tuning parameter is selected

in an oracle fashion.

We present two results that make progressively stronger assumptions on the

data generating process and use both forms of the lasso estimator. The first

imposes strong conditions on the design matrix, assumes the linear model is

true, and that this linear model is sparse. The second allows the true model

to be neither linear nor correctly specified. Our focus is on risk consistency

rather than estimation of a “true” parameter or correct identification of a “true”

sparsity pattern. Additionally, well-known results of Shao (1993) imply that

cross-validation leads to inconsistent model selection in general, suggesting that

results for sparse recovery may not exist. Although prediction is an important

goal, one is often interested in variable selection for more interpretable models

or follow-up experiments. In light of the negative results in Shao (1993), we are

unable to offer theoretical results that promise consistent model selection by cross

validation, but simulations in Section 4 suggest that it performs well nevertheless.

Both the estimation and sparse recovery settings are frequently studiedassuming
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the tuning parameter is the oracle and that the data generating model is linear

(e.g. Bunea, Tsybakov and Wegkamp (2007); Candès and Plan (2009); Donoho,

Elad and Temlyakov (2006); Leng, Lin and Wahba (2006); Meinshausen and

Bühlmann (2006); Meinshausen and Yu (2009)).

In our first case, when the truth is linear, we examine the Lagrangian for-

mulation in (1.1). We prove convergence rates which differ only by a log factor

relative to those achievable with the oracle tuning parameter (e.g. Negahban

et al. (2012); Bühlmann and van de Geer (2011); Bunea, Tsybakov and Wegkamp

(2007)). Thus for an s∗-sparse linear model with restricted isometry conditions on

the covariance of the design, the risk of the cross-validated estimator approaches

the oracle risk at a rate of O(s∗ log(p) log(n)/n). Under more general conditions,

we follow the approach of Greenshtein and Ritov (2004) and examine the con-

strained optimization form in (1.2). Using our methods, we require that the set

of candidate predictors, Btn , satisfies tn = o
(
n1/4/(mn(log p)

1/4+1/(2q))
)
where

mn is a sequence that approaches infinity and q characterizes the tail behavior of

the data. This is essentially as quickly as one could hope relative to Greenshtein

and Ritov (2004) under our more general assumptions on the design matrix. We

note however that, using empirical process techniques, Bartlett, Mendelson and

Neeman (2012) have been able to improve the rate shown in Greenshtein and

Ritov (2004) to tn = o(n1/2/(log3/2 n log3/2(np))) for sub-Gaussian design and

an oracle tuning parameter.

1.2. Tuning parameter selection methods and outline of the paper

There are several proposed data-dependent techniques for choosing t or λ.

Kato (2009) and Tibshirani and Taylor (2012) investigate estimating the “degrees

of freedom” of a lasso solution. With an unbiased estimator of the degrees of

freedom, the tuning parameter can be selected by minimizing the empirical risk

penalized by a function of this estimator. This approach requires an estimate of

the variance, which is nontrivial when p > n Giraud, Huet and Verzelen (2012).

Another risk estimator is the adapted Bayesian information criterion proposed by

Wang and Leng (2007) that uses a plug-in estimator based on the second-order

Taylor’s expansion of the risk. Arlot and Massart (2009) and Saumard (2011)

consider “slope heuristics” as a method for penalty selection with Gaussian noise,

paying particular attention to the regressogram estimator in the first case and

piecewise polynomials with p fixed in the second. Sun and Zhang (2012) present

an algorithm to jointly estimate the regression coefficients and the noise level;

this results in a data-driven value for the tuning parameter that possesses oracle
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properties under some regularity conditions.

Many authors (e.g Efron et al. (2004); Friedman, Hastie and Tibshirani

(2010); Greenshtein and Ritov (2004); Tibshirani (1996, 2011); Zou, Hastie and

Tibshirani (2007)) and as discussed by Bühlmann and van de Geer (2011),

Sec.2.4.1 recommend selecting t or λ in the lasso problem by minimizing a K-

fold cross-validation estimator of the risk (see Section 2 for the precise defini-

tion). Cross-validation is generally well-studied in a number of contexts, espe-

cially model selection and risk estimation. In the context of model selection,

Arlot and Celisse (2010) give a detailed survey of the literature emphasizing the

relationship between the sizes of the validation set and the training set, as well

as discussing the positive bias of cross-validation as a risk estimator.

Some results supporting the use of cross-validation for statistical methods

other than lasso are known. For instance, Stone (1974, 1977) outlines various

conditions under which cross-validated methods can result in good predictions.

Dudoit and van der Laan (2005) find finite sample bounds for various cross-

validation procedures. These results do not address the lasso nor parameter

spaces with increasing dimensions and, furthermore, apply to choosing the best

estimator from a finite collection of candidate estimators. Lecué and Mitchell

(2012) provide oracle inequalities related to using cross-validation with lasso,

however, they treat the problem as aggregating a dictionary of lasso estimators

with different tuning parameters, and the results are stated for fixed p rather

than the high-dimensional setting investigated here. Flynn, Hurvich and Si-

monoff (2013) investigate numerous methods for tuning parameter selection in

penalized regression, but the theoretical results hold only when p/n → 0 and

not for cross-validation. In particular, the authors state “to our knowledge the

asymptotic properties of [K]-fold CV have not been fully established in the con-

text of penalized regression” ((Flynn, Hurvich and Simonoff, 2013, p.1,033)).

Rather than cross-validation, one may use information criteria such as AIC

Akaike (1974) or BIC Schwarz (1978). These techniques are frequently advocated

(e.g. Bühlmann and van de Geer (2011); Wang, Li and Tsai (2007); Tibshirani

(1996); Fan and Li (2001)), but the classical asymptotic arguments underlying

these methods apply only for p fixed and rely on maximum likelihood estimates

(or Bayesian posteriors) for all parameters including the noise. The theory in

the high-dimensional setting supporting these methods is less complete. Recent

work has developed new information criteria with supporting asymptotic results if

rank(X) = p but is still allowed to increase. For example, the criterion developed

by Wang, Li and Leng (2009) selects the correct model asymptotically even if
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p → ∞ as long as p/n → 0. If p is allowed to increase more quickly than n,

theoretical results assume σ2 is known to get around the difficult task of high-

dimensional variance estimation (Chen and Chen (2012); Zhang and Shen (2010);

Kim, Kwon and Choi (2012); Fan and Tang (2013)).

In Section 2, we outline the mathematical setup for the lasso prediction

problem and discuss some empirical concerns. Section 3 contains the main re-

sult and associated conditions. Section 4 compares different choices of K for

cross-validation via simulation, while Section 5 presents some avenues for further

research.

2. Notation and Definitions

2.1. Preliminaries

Suppose we observe data Z⊤
i = (Yi, X

⊤
i ) consisting of predictor variables,

Xi ∈ Rpn , and response variables, Yi ∈ R, where Zi ∼ µn are independent and

identically distributed for i = 1, 2, . . . , n and the distribution µn is in some class

F to be specified. Here, we use the notation pn to allow the number of predictor

variables to change with n. Similarly, we index the distribution µn to emphasize

its dependence on n. For simplicity, we omit the subscript n when there is little

risk of confusion.

We consider the problem of estimating a linear functional f(X ) = X⊤β for

predicting Y, when Z⊤ = (Y,X⊤) ∼ µn is a new, independent random variable

from the same distribution as the data and β = (β1, . . . , βp)
⊤. For now, we

assume only the usual regression framework where Y = f∗(X ) + ϵ, with ϵ and X
independent and f∗ is some unknown function. We use zero-based indexing for

Z so that Z0 = Y. To measure performance, we use the L2-risk of the predictor

β:

R (β) := Eµn

[
(Y − X⊤β)2

]
. (2.1)

This is a conditional expectation: for any estimator β̂,

R
(
β̂
)
:= Eµn

[
(Y − X⊤β̂)2|Z1, . . . , Zn

]
, (2.2)

and the expectation is taken only over the new data Z and not over any observ-

ables which may be used to choose β̂.

Using the n independent observations Z1, . . . , Zn, we can form the response

vector Y := (Yi)
n
i=1 and the design matrix X := [X1, . . . , Xn]

⊤. Then, given a

vector β, we write the squared-error empirical risk function as
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R̂ (β) :=
1

n
||Y − Xβ||22 =

1

n

n∑
i=1

(Yi −X⊤
i β)

2. (2.3)

Analogously to (2.3), we write the K-fold cross-validation estimator of the risk

with respect to the tuning parameter t, abbreviated as CV-risk or just CV, as

R̂Vn
(t) = R̂Vn

(
β̂
(v1)
t , . . . , β̂

(vK)
t

)
:=

1

K

∑
v∈Vn

1

|v|
∑
r∈v

(
Yr −X⊤

r β̂
(v)
t

)2
. (2.4)

Here, Vn = {v1, . . . , vK} is a set of validation sets, β̂
(v)
t is the estimator in (1.2)

with the observations in the validation set v removed, and |v| indicates the cardi-
nality of v. In particular, the cross-validation estimator of the risk is a function

of t rather than a single predictor β—it uses K different predictors at a fixed t,

averaging over their performance on the respective held-out sets. Over the course

of the paper, we freely exchange λ for t in this definition.

The CV-risk minimizing choice of tuning parameter is

t̂ = argmin
t∈T

R̂Vn
(t) . (2.5)

In our setting, we take T (or Λ) as an interval subset of the nonnegative real

numbers that needs to be defined by the data-analyst. The choice of T is an

important part of the performance of β̂t̂ and requires some explanation. First,

we provide some insight into the computational load of using CV-risk to find t̂.

2.2. Computations

CV-risk is known to be time consuming and somewhat unstable due to the

randomness associated with forming Vn. For a fixed v ∈ Vn, suppose β̂(v)λ is found

for the entire lasso path via the lars Efron et al. (2004) algorithm, which can

be computed in the same computational complexity as a least squares fit. To fix

ideas, suppose n > p, which means lars has computational complexity O(np2 +

p3). Hence, as the feature matrix X with |v| rows removed has approximately

n(K − 1)/K rows, β̂
(v)
λ can be computed for all λ in O((n(K − 1)/K)p2 + p3)

time. Repeating this K times means the computational complexity for forming

R̂Vn
(λ) over all λ is O(n(K − 1)p2 + p3). If K is a fixed fraction of n, CV-risk

has computational complexity of order (np)2, which is a factor of n slower than

a single lasso fit.

Though more expensive on a single processor, CV-risk is readily parallelizable

over theK folds and therefore (ignoring communication costs between processors)

CV-risk could actually be faster to compute than R̂ (and hence β̂λ) as n(K −
1)/K < n. This advantage is lost if we ultimately compute β̂

λ̂
. However, this
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computational advantage would be maintained if we instead report

β̃ =
1

K

∑
v∈Vn

β̃(v), (2.6)

where β̃(v) is the lasso estimate trained on the observations in (v) with the tuning

parameter chosen by minimizing the empirical risk using the test observations

in v. For K = 4, for example, this provides a 25% reduction in computation

time. The properties of this approximation is an interesting avenue for further

investigation.

2.3. Choosing the sets Λ and T

The data analyst must be able to solve the optimization problem in Equation

(2.5). For Λ, we must choose a lower bound: Λ = [λn,∞). This implies we must

choose λn as a function of the data. While it is tempting to allow λn = 0,

this results in numerical and practical implementation issues if rank(X) < p

and is unnecessary as the theory will show. However, the lower bound has a

nontrivial impact on the quality of the recovery, as choosing a value too large

may eliminate the best solutions. We see that, under some assumptions on the

data generating process, one can safely choose a particular λn > 0 that allows

order log n coefficients to be selected without compromising the quality of the

estimator.

In the case of T , an upper bound must be selected for any grid-search opti-

mization procedure. As we impose much weaker conditions on the data gener-

ating process, choosing such an upper bound is more complicated. By (1.2), β̂t
must be in the ℓ1-ball with radius t. This constraint is only binding Osborne,

Presnell and Turlach (2000) if t < minη∈K ||β̂∞+η||1 =: t0, where β̂∞ = β̂(Rp) is
a least-squares solution and K := {a : Xa = 0}. Observe that K = {0} if n ≥ p

and otherwise K has dimension p − n, which implies β̂∞ is not unique. Both of

these statements assume that the columns of X contain a linearly independent

set of size min{n, p}. See Tibshirani (2013) for the more general situation. In

either case, if t ≥ t0, then β̂t is equal to a least-squares solution. Choosing the

upper bound to be tmax := ||β̂∞||1, where β̂∞ = (X⊤X)†X⊤Y is the least-squares

solution when (·)† is given by the Moore-Penrose inverse, suffers from numerical

and practical implementation issues if rank(X) < p. As well it grows much too

fast, at least order
√
n, therefore potentially including solutions which have low

bias but very high variance.

We take an upper bound based on a rudimentary variance estimator tmax :=
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||Y ||22 /an, where (an) is an increasing sequence of constants, and hence specify

the optimization interval T = [0, tmax]. We defer fixing a particular sequence

(an)

Remark 1. We emphasize here that using a cross-validated tuning parameter

involves more than simply allowing the tuning parameter to be selected in a data-

dependent manner. In order to meaningfully analyze tuning parameter selection,

we allow the search set T and the tuning parameter to be chosen based on the

data.

Remark 2. The computational implementation of CV for an interval Λ (or

T ) deserves some discussion. Two widely used algorithms for lasso are glmnet

Friedman, Hastie and Tibshirani (2010), which uses coordinate descent, and lars

Efron et al. (2004), which leverages the piece-wise linearity of the lasso solution as

λ varies (the lasso path). The package glmnet is much faster than lars; glmnet

examines a grid of values, λj ∈ Λ, j = 1, . . . , J say, and approximates the solution

at each λj with increasing accuracy depending on the number of iterations; lars

evaluates the entire solution path exactly, such that it is theoretically possible to

choose any λ ∈ Λ via numerical optimization. Optimizing (2.5) with standard

solvers can be difficult due to a possible lack of convexity. In both cases, the

extremes of the interval Λ affect the quality of the solution.

3. Main Results

In this section, we present results for both forms of the lasso estimator, (1.1)

and (1.2), under more and less restrictive assumptions, respectively. To define

the types of random variables Z we allow, we appeal to the notion of an Orlicz

norm.

Definition 1. For any random variable ξ and function ψ that is nondecreasing,

convex, and ψ(0) = 0, the ψ-Orlicz norm is

||ξ||ψ := inf

{
c > 0 : Eψ

(
|ξ|
c

)
≤ 1

}
.

For any integer r ≥ 1, we are interested in the Lr-norm ||ξ||r := (E|ξ|r)1/r

and the norm given by choosing ψ(x) = ψr(x) := exp(xr)− 1, ||ξ||ψr
. Note that

if ||ξ||ψr
< ∞, then for sufficiently large x, there are constants C1, c2 such that

P (|ξ| > x) ≤ C1 exp(−c2xr).
In the particular case of the ψ2-Orlicz norm, if ||ξ||ψ2

< κ it holds that P(|ξ| >
x) ≤ 2 exp(−x2/κ2) and E[|ξ|k] ≤ 2κkΓ(k/2 + 1), where Γ(t) =

∫∞
0 xt−1e−xdx is

the Gamma function. Additionally, (E|ξ|r)1/r = ||ξ||r ≤ r!||ξ||ψ1
and ||ξ||ψ1

≤
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(log 2)1/r−1||ξ||ψr
.

Definition 2. Let 1 ≤ q <∞ and Cq be a constant independent of n. Then

Fq :=
{
(µn) : µn is a measure on Rpn and max

1≤j,k≤p
||ξjξk − Eµn

ξjξk||ψq
≤ Cq

}
;

while the set F∞ contains the measures µn such that |ξj | ≤ Cq almost surely µn
for each j = 1, . . . , p.

Remark 3. To make subsequent expressions as a function of q make sense,

interpret for any 0 < c <∞, c/∞ = 0 and ∞/∞ = 1.

While µn is a measure on Rp, indexing with n is more natural than indexing

with p given that our results include pn increasing with n. Definition 2 specifies

a common moment condition (Greenshtein and Ritov (2004); Nardi and Rinaldo

(2008); Bartlett, Mendelson and Neeman (2012)) for showing risk consistency of

lasso-type methods in high dimensional settings.

We make the following condition about the size of the validation sets for CV.

Condition 1. The sequence of validation sets {Vn}∞n=1 is such that, as n→∞,

∀v ∈ Vn, |v| ≍ cn for some sequence cn.

Standard CVmethods satisfy this. For example, withK-fold cross-validation,

we can take cn = ⌊n/K⌋. For n design random variables X1, . . . , Xn and oracle

prediction function f∗, let f∗n := (f∗(X1), . . . , f
∗(Xn))

⊤.

3.1. Persistence when f∗ is linear

If we are willing to impose strong conditions on µn, as in Bunea, Tsybakov

andWegkamp (2007) and Meinshausen (2007), then we can obtain cross-validated

lasso estimators which achieve nearly oracle rates.

If E[Y | X ] = f∗(X ) = X⊤β∗, then we can write the risk of an estimator β̂
λ̂

as

R
(
β̂
λ̂

)
= R

(
β̂
λ̂

)
−R(β∗)︸ ︷︷ ︸

excess risk

+R(β∗)︸ ︷︷ ︸
noise

= R
(
β̂
λ̂

)
− σ2︸ ︷︷ ︸

excess risk

+ σ2︸︷︷︸
noise

,

where R(β∗) = E[(Y − X⊤β∗)2] = σ2. We write the excess risk as E(λ̂) :=

R(β̂
λ̂
) − σ2 and prove a convergence rate for E(λ̂). In this case, targeting the

excess risk is the same as estimating the conditional expectation of Y, but if

f∗(X ) is not linear (as in Section 3.2), the excess risk remains a meaningful way

of assessing prediction behavior. We require some conditions.

M1: There exists a constant Cq < ∞ independent of n such that |Xj | < Cq
almost surely for all j = 1, . . . , p.
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M2: E[X ] = 0 and E[XX⊤] = Σ.

M3: ϵ ∼ N(0, σ2).

M4: ∃0 < ν < 1 such that Σ and Σ−1 are diagonally dominant at level ν:

|σjj | ≥ ν +
∑

j ̸=i |σij | for all 1 ≤ j ≤ p.
M5: ||β∗||0 = s∗, independent of n.

M6: λmin ∝ (log n log p/n)1/2.

M7: log p = o(n/ log n).

Theorem 1. Under M1 - M7, E(λ̂) = Op ((s
∗ log n log p)/n) .

Here, condition M4 implies that Σ− (1− ν)diag(Σ) is positive semi-definite. As

s∗ is fixed, M6 and M7 ensure that λmin → 0 so that Λ eventually allows models

with s∗ covariates. Thus, the procedure is asymptotically consistent for model

selection Meinshausen (2007). Here, E(λ̂) is random due to the term R(β̂
λ̂
), so

we emphasize that R(β̂
λ̂
) is a function of the data: the conditional expectation

of a new test random variable Z given the observed data used to choose both λ̂

and β̂λ as in (2.2).

The conditions of Theorem 1 are typical of those used to prove persistence of

the lasso estimator with oracle tuning parameter (for the case of fixed design, see

Negahban et al. (2012)). For instance, Bunea, Tsybakov and Wegkamp (2007)

prove an oracle rate for the lasso of O(s∗ log p/n) with λmin ∝ σ
√

log p/n. Under

similar conditions, our result with cross-validated tuning parameter requires a

larger λmin (resulting in smaller models) and a slower convergence rate to the

oracle by a factor log n. A reasonable choice of Λ suggested by Theorem 1 is

Λ = [λmin, ∞) = [(log p log n/n)1/2, ∞).

Proof of Theorem 1. We have that, for all g > 0,

P
(
R(β̂

λ̂
)− σ2 > g

s∗ log n log p

n

)
≤ P

(
inf
λ∈Λ

(
R(β̂λ)− σ2

)
> g

s∗ log n log p

2n

)
+ 2P

(
sup
λ∈Λ

∣∣∣R(β̂λ)− σ2 − R̂(β̂λ)∣∣∣ > g
s∗ log n log p

2n

)
,

by the proof of Theorem 7 in Meinshausen (2007), write R̂(β̂λ) defined in (2.3).

The second term on the right hand side goes to 0 by that result. Now

P
(
inf
λ∈Λ

(
R(β̂λ)− σ2

)
> g

s∗ log n log p

n

)
≤ P

(
R(β̂λmin

)− σ2 > g
s∗ log n log p

n

)
.

By Corollary 1 in Bunea, Tsybakov and Wegkamp (2007), for any λ we have

P
(
R(β̂λ)− σ2 > g

s∗λ2

1− ν

)
≤ 10p2 exp

(
−c1nλ2

)
= 10 exp

(
2 log p− c1nλ2

)
.
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Setting λmin proportional to (log n log p/n)1/2 is enough for the upper bound to

go to zero as n→∞, yielding the result.

3.2. Persistence when f∗ is not linear

In order to derive results under more general conditions, we move to the

linear oracle estimation framework. For any t, the oracle estimator with respect

to t is

βt := argmin
β∈Bt

R (β) .

Suppose t̂ is an estimator, such as by cross-validation. Then we can decompose

the risk of an estimator β̂t̂ as

R
(
β̂t

)
= R

(
β̂t̂

)
−R (βt)︸ ︷︷ ︸

excess risk

+ R (βt)−R∗︸ ︷︷ ︸
approximation error

+ R∗︸︷︷︸
noise

,

where R∗ is the risk of the mean function f∗. Because the data generating

process is not necessarily linear, we study the performance of an estimator β̂t̂ via

the excess risk of β̂t̂ relative to βt,

E(t̂, t) := R
(
β̂t̂

)
−R (βt) . (3.1)

Here, E(t̂, t) depends on the cross-validated tuning parameter t̂ as well as the

oracle set through t. Focusing on (3.1) allows for meaningful theory when the

approximation error does not necessarily converge to zero as n grows. This is

important as we do not assume that the conditional expectation of Y given X is

linear. As t→∞, the approximation error decreases and hence we desire to take

t = tn for some increasing sequence (tn). Greenshtein and Ritov (2004) show that

if tn = o((n/ log p)1/4), then E(tn, tn) converges in probability to zero. Bartlett,

Mendelson and Neeman (2012) increase the size of this search set allowing tn =

o(n1/2/(log3/2 n log3/2(np))) while still having E(tn, tn)
P−→ 0.

Theorem 2. Let (µn) ∈ Fq and suppose that Condition 1 holds. Then for any

sequences (an), (tn) which satisfy antn = o(n),

Pµn

(
E(t̂, tn) > δ

)
≤ δ−1 (Ωn,1 +Ωn,2) + 2P(Dc

n) + P(Ecn), (3.2)

where,

Ωn,1 :=

[
1 +

2nC ′
q

an

]2√
(log p)1+2/q

(
n−1/2 + c−1/2

n + (n− cn)−1/2
)
,

Ωn,2 := (1 + tn)
2

√
(log p)1+2/q

n
,
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Dn :=

{
tmax ≤

2nC ′
q

an

}
,

En := {tmax ≥ tn},
C ′
q = Cq(log 2)

1/q−1.

Remark 4. The sets Dn, En account for cases wherein tmax = ||Y ||2 /an re-

sults in suboptimal sets T . If (an) is such that tmax grows too quickly with

non-negligible probability, then cross-validation may result in low-bias but high

variance solutions. On the other hand, if tmax is too small, then we rule out

possible estimators with lower risk. Here Dn calibrates a high-probability upper

bound on tmax based on (µn) and the choice of (an) while En ensures that tmax

will be large enough to include low risk estimators.

Remark 5. Usually in the oracle estimation framework, t̂ = tn and so the excess

risk is necessarily nonnegative because the oracle predictor, βtn , is selected as

the risk minimizer over Btn . In that case, (3.2) corresponds to convergence in

probability. As we are examining the case where the optimization set is estimated,

E(t̂, tn) may be negative. However, we are only interested in the case where the

estimator is worse than the oracle.

Let bn = min{n− cn, cn}, then (n−1/2 + c
−1/2
n + (n− cn)−1/2) ≤ 3b

−1/2
n .

Corollary 1. Under the conditions of Theorem 2, if an = n(log p)1/4+1/(2q)mn/

b
1/4
n and tn = o(b

1/4
n /mn(log p)

1/4+1/(2q)), where mn is any sequence which tends

toward infinity and mn = o(b
1/4
n ), for n large enough and p = o(exp{bq/(q+2)

n }),

Pµn

(
E(t̂, tn) > δ

)
≤ 1

m2
nδ

(
1 +

√
bn
n

)
+ 2 exp(− n

8e2
).

In particular, Pµn

(
E(t̂, tn) > δ

)
→ 0.

Remark 6. The rate at which δ can be taken to zero quantifies the decay of the

size of the ‘bad’ set where E(t̂, tn) is large. For the corollary, both mn = o(b
1/4
n )

and δ−1 = o(m2
n). Therefore, it is necessary for δ−1 = o(b

1/2
n ) and hence, δ must

go to zero at a slower rate than b
−1/2
n .

Remark 7. As q increases, which corresponds to (µn) ∈ Fq putting less mass

on the tails of the centered interactions of the components of Z, the faster the

oracle set given by Btn can grow. When q = ∞, the random variables have no

tails and we get the fastest rate of growth for tn, (b
1/4
n /(mn(log p)

1/4)).

The parameter bn controls the minimum size of the validation versus training

sets that comprise cross-validation. It must be true that bn is strictly less than
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n. To get the best guarantee, bn should increase as fast as possible. Hence,

our results advocate a cross-validation scheme where the validation and training

sets are asymptotically balanced, cn ≍ n − cn. This should be compared with

the results in Shao (1993), which state that for model selection consistency, one

should have cn/n→ 1. However, Shao (1993) presents results for model selection

while we focus on prediction error. Similarly, Dudoit and van der Laan (2005)

provide oracle inequalities for cross-validation and also advocate for the validation

set to grow as fast as possible. For K-fold cross-validation, cn = ⌊n/K⌋ so that

bn = O(n).

It is instructive to compare this choice of tmax with ||Y ||22 /n, a standard esti-

mate of the noise variance in high dimensions (e.g. (van de Geer and Bühlmann,

2011, p.104)). If an = n, then ||Y ||22 /an is an overestimate of the variance due

to the presence of the regression function f∗. Our results state that we must

choose an to increase slower than n, thereby increasing this overestimation and

enlarging the potential search set T . While an depends on several parameters,

bn, n, and p are known to the analyst. Also, the choice of q depends on how much

approximation error the analyst is willing to make. The mn term is required to

slow the growth of tn just slightly. While this shrinks the size of the set Btn rela-

tive to that used by Greenshtein and Ritov (2004), potentially eliminating some

better solutions, effectively mn quantifies their requirement tn = o((n/ log p)1/4),

making explicit the need for tn to grow more slowly than (n/ log p)1/4. As such,

if we set bn ≍ n and set q = ∞, we require the rate shown by Greenshtein and

Ritov (2004), where Corollary 1 implies that both Pµn

(
E(t̂, tn) > δ

)
→ 0 and

tn = o((n/ log p)1/4).

Proofs of Theorem 2 and Corollary 1 are in the supplementary material.

Our results generalize to other M -estimators which use an ℓ1-constraint.

In particular, relative to the set of coefficients β ∈ Btn with tn = o(b
1/4
n /

(mn(log p)
1/4+1/(2q))), an empirical estimator with cross-validated tuning param-

eter has a prediction risk that converges to the prediction risk of the oracle.

Corollary 2. For the group lasso Yuan and Lin (2006)

β̂t = argmin{n−1 ||Y − Xβ||22 :
∑
g∈G

√
|g| ||βg||2 ≤ t},

and the square-root lasso Belloni, Chernozhukov and Wang (2014)

β̂t = argmin{n−1 ||Y − Xβ||2 : ||β||1 ≤ t},

if tn and an are as in Corollary 1, then, for n large enough, log(p) = o(b
q/(q+2)
n ),

and maxg
√
|g| = O(1), we have
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Pµn

(
E(t̂, tn) > δ

)
≤ 1

m2
nδ

(
1 +

√
bn
n

)
+ 2e−n/8e

2

.

4. Simulations

We simulated the predictive and model selection performance ofK-fold cross-

validation for a range of K.

We considered three criteria: prediction risk, sensitivity, and specificity. For

prediction risk, we approximated R(β̂
λ̂
) by the empirical risk of 500 test obser-

vations. For sensitivity and specificity, the active set of a coefficient vector β

was S(β) := {j : |βj | > 0}, with S∗ := S(β∗) and Ŝ := S(β̂
λ̂
) as the active sets

of β∗ and β̂
λ̂
, respectively. Thus, sensitivity = |S∗ ∩ Ŝ|/|S∗| and specificity =

|(S∗)c ∩ Ŝc|/|(S∗)c|, where | · | counts the number of elements in a set and Ac

indicates the complement of a set A.

4.1. Simulation details

Conditions: We considered a wide range of possible conditions by varying

the correlation in the design, ρ; the number of parameters, p; the sparsity, α; and

the signal-to-noise ratio, SNR. In all cases, we let n = 100, p = 75, 350, 1, 000, and

set the measurement error variance σ2 = 1. We ran each simulation condition

combination 100 times, assuming that there existed a β∗ such that the regression

function f∗(X) = X⊤β∗ in order to make model selection meaningful.

The design matrices were produced in two steps. First, Xij
i.i.d.∼ N(0, 1) for

1 ≤ i ≤ n and 1 ≤ j ≤ p, formed the matrix X ∈ Rn×p. Second, correlations

were introduced by defining a matrix D with all off-diagonal elements equal to

ρ and diagonal elements equal to one. Then, we took X ← XD1/2. For these

simulations, we considered correlations ρ = 0.2, 0.5, 0.95.

For sparsity, we took s∗ = ⌈nα⌉ and generateg the s∗ non-zero elements of

β∗ from a Laplace distribution with parameter 1. We let α = 0.1, 0.33, 0.5. To

compensate for the random amount of signal in each observation, we varied the

signal-to-noise ratio, SNR = β⊤Dβ. We considered SNR = 1 and 10. As the

SNR increases the observations go from a high-noise and low-signal regime to

a low-noise and high-signal one. We considered ϵ ∼ N(0, 1) and ϵ ∼ 3−1/2t(3),

where t(3) is the t distribution with 3 degrees of freedom and the 3−1/2 term

makes the variance equal to 1. Finally, we took K = {3, 10, 25, 50, 75, 100},
the last case being leave-one-out CV.

4.2. Simulation results

Of the simulations, we have only included the most informative plots. For



1032 DARREN HOMRIGHAUSEN AND DANIEL J. MCDONALD

3 10 25 50 75 100

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

K

Pr
ed

ic
tio

n 
Ri

sk

p = 1, 000, α = 0.1 3 10 25 50 75 100

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

K

Pr
ed

ic
tio

n 
Ri

sk

p = 1, 000, α = 0.4 3 10 25 50 75 100

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

K

Pr
ed

ic
tio

n 
Ri

sk

p = 1, 000, α = 0.6

Figure 1. Prediction risk: The other parameters are set at: SNR = 1, ρ = 0.9.
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Figure 2. Sensitivity: The other parameters are set at: SNR = 1, ρ = 0.2.

prediction risk, all considered K’s resulted in remarkably similar prediction risks.

In Figure 1, for p = 1, 000, SNR = 1, and ρ = 0.9, we see that taking K = 3

or K = 10 results in slightly smaller prediction risks. This is comforting as

both of these values of K are used frequently by default and they are the least

computationally demanding.

For model selection, there is a more nuanced story. For sensitivity, which

describes how often we would correctly identify a coefficient as nonzero, larger

values of K tended to work better. For instance, in Figure 2, we see that K = 3 is

often decidedly worse than largerK, followed byK = 10. As is often the case, this

conclusion presents a trade-off with the results for specificity (Figure 3): smaller

values of K tended to work better. In general, β̂(λ̂) tended to have more nonzero

entries as K increased holding all else constant. As the correlation parameter

(ρ) or the signal to noise (SNR) increased, all values of K had approximately the

same performance.
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Figure 3. Specificity: The other parameters are set at: SNR = 1, ρ = 0.2.

5. Discussion

Our work leaves some interesting open questions. Our most general results

do not apply for leave-one-out cross-validation as cn = 1 for all n, and hence

the upper-bounds become trivial. Leave-one-out cross-validation is more compu-

tationally demanding than K-fold cross-validation, but is still used in practice.

Our results do not give any prescription for choosing K other than that it should

be o(n). Our simulation study indicates that all K ranging from 3 to n have

approximately the same predictive ability. For model selection, larger K tends

to produce more nonzero coefficients and hence has better sensitivity but poorer

specificity.

As there are many other methods for choosing the tuning parameter in the

lasso problem, a direct comparison of the behavior of the lasso estimator with

tuning parameter chosen via cross-validation versus a degrees-of-freedom-based

method is of substantial interest. Our results depend strongly on the upper bound

for T or the lower bound for Λ, but, in most cases, we never need to use tuning

parameters this extreme. It makes sense to attempt to find more subtle theory

to provide greater intuition for the behavior of lasso under cross-validation.

Supplementary Materials

Supplementary materials include proofs of theorems and lemmata.
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