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Abstract: Let X1, . . . , Xn be independent observations with Xi ∼ N(θi, 1), where

(θ1, . . . , θn) is an unknown vector of normal means. Let fn(x) =
∑n

i=1(d/dx)Pn{Xi

≤ x}/n be the average marginal density of observations. We consider the problem

of testing H0 : fn ∈ F0, where F0 is a family of mixture densities. This includes

detecting nonzero normal means with F0 = {fδ0} and testing homogeneity in

mixture models with F0 = {fδµ}. We study a generalized likelihood ratio test

(GLRT) based on the generalized maximum likelihood estimator (GMLE, Robbins

(1950); Kiefer and Wolfowitz (1956)). We establish a large deviation inequality

that provides a divergence rate εn of the GLRT under the null hypothesis. The

inequality implies that the significance level of the test is of equal or smaller order

than nε2n. We show that the test can detect any alternative that is separated from

the null by Hellinger distance εn. For the two-component Gaussian mixture, it turns

out that the GLRT has full power asymptotically throughout the same region of

amplitude sparsity where the Neyman-Pearson likelihood ratio test separates the

two hypotheses completely (Donoho and Jin (2004)). We demonstrate the power

of the GLRT for moderate samples with numerical experiments.

Key words and phrases: Detection boundary, generalized likelihood ratio test, gen-

eralized maximum likelihood estimator, normal mixture, sparse normal means.

1. Introduction

In this paper we study a generalized likelihood ratio test (GLRT) based

on the generalized maximum likelihood estimator (GMLE) of the average of

marginal densities of normal observations. Let X1, . . . , Xn be independent ob-

servations with Xi ∼ N(θi, 1), where (θ1, . . . , θn) is an unknown vector of normal

means. Let fn(x) =
∑n

i=1(d/dx)Pn{Xi ≤ x}/n be the average marginal den-

sity of observations. We consider the problem of testing the null hypothesis

H0 : fn ∈ F0, where F0 is a family of mixture densities. It includes two im-

portant cases. One is detecting nonzero normal means with F0 = {fδ0} when

θ1, . . . , θn are deterministic conditional means, where δu is the probability dis-

tribution giving its entire mass to u. Another is testing homogeneity in mixture

models with F0 = {fδµ} when θ1, . . . , θn are i.i.d. conditional means.

Based on the GMLE, the GLRT assumes essentially no knowledge about

the unknown means but still aims to approximate the usual Neyman-Pearson
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likelihood ratio test (LRT). The idea of GMLE was suggested in an abstract

by Robbins (1950), and later received substantial theoretical development by

Kiefer and Wolfowitz (1956). Lindsay (1995) gave a comprehensive overview of

early works. Due to the prevalence of high-dimensional data and the rapid rise

of computing power, recently there is a revival of interest in it, both in theory

and computing. Zhang (2009) studied the convergence rate of the GMLE un-

der the Hellinger distance. Jiang and Zhang (2009) considered estimation of a

high-dimensional vector of normal means by GMLE. Jiang and Zhang (2010) in-

vestigated estimation of homoscedastic and heteroscedastic partial linear models.

Koenker and Mizera (2014) studied convex optimization to compute the GMLE.

They proposed an efficient R-package called REBayes. These works are all re-

lated to the compound estimation of normal means, where the oracle Bayes rule

can be explicitly expressed in terms of the average of the marginal densities of

the observations (Robbins (1956)). In view of these advances in estimation, a

natural question has to do with the performance of GMLE in hypothesis testing.

Recently, Gu, Koenker, and Volgushev (2013) considered testing homogeneity in

mixture models.

One needs a careful analysis of the GLRT. Liu and Shao (2003) showed

that under some general regularity conditions, the asymptotic distribution of the

GLRT is the supremum of certain Gaussian processes. Azäıs, Gassiat, and Mer-

cadier (2009) derived the distribution of the GLRT for a simple null hypothesis.

However, these results cannot be directly applied in statistical inference. In this

paper, we establish a large deviation inequality that provides a divergence rate

εn of the GLRT under the null hypothesis. The inequality implies that the sig-

nificance level of the test is of equal or smaller order than nε2n. This type of

result is new. We think it might be of independent interest as well. Meanwhile,

the test statistic grows to infinity at a rate faster than nε2n under an alternative,

provided the order of the Hellinger distance between the mixture densities under

the null and the alternative is of larger order than εn. Consequently, the test can

separate two hypotheses.

As an important case, we are interested in testing H∗
0 : fn = fδ0 . In the

deterministic conditional means case, this amounts to testing if all normal means

are zero. For the alternative, we consider testing against a sparse two-component

Gaussian mixture; we wish to detect a sparse vector where a majority of normal

means are zero and all the nonzero means are equal. There have recently been

some important papers on this problem. See Donoho and Jin (2004) on the higher

criticism approach (see also Ingster (1999, 2002)), Jager and Wellner (2007) on

goodness-of-fit tests, Hall and Jin (2010) on innovated higher criticism for cor-

related data, Cai, Jeng, and Jin (2011) on detecting heteroscedastic mixtures,

Greenshtein and Park (2012) on robust tests, Walther (2013) on the average
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likelihood ratio approach, and so on. It is known that for the two-component

Gaussian mixture there is a threshold effect for the LRT: the sum of Type I and

Type II errors tends to 0 or 1 depending on whether the value of nonzero means

exceeds a detection boundary or not (Jin (2002)). However, the LRT requires

the amplitude/sparsity parameters of the alternative to be known. This is not

realistic in practice. The higher criticism is adaptive to the unknown degrees of

heterogeneity in the detectable region. In this paper, we show that the GLRT

has full power asymptotically throughout the same region of amplitude sparsity

where the LRT separates the two hypotheses completely.

The rest of this paper is organized as follows. In Section 2 we introduce

the statistical model and the GMLE. In Section 3. we propose the GLRT and

study its significance level, power, and connection to the higher criticism. The

generalization to a location-scale mixture model is also discussed. In Section 4 we

provide some simulation results and data analysis. Section 5 contains conclusion.

Proofs are given in Section 6.

2. The Generalized MLE

In this section, we introduce a general model in which the observations are

independent and each observation is normally distributed given its latent condi-

tional mean. This includes the inid case of deterministic conditional means and

the i.i.d. case where the conditional means are themselves i.i.d., among other

possible data generating models.

2.1. The inid location-mixture model

Let Xi be independent observations with

Xi|θi ∼ N(θi, 1), i = 1, . . . , n, (2.1)

where (θ1, . . . , θn) is an unknown vector of normal means. We study the estima-

tion of the average marginal density of the observations:

fn(x) =
1

n

n∑
i=1

d

dx
Pn

{
Xi ≤ x

}
. (2.2)

This includes the cases of i.i.d. θi and completely deterministic θi under different

choices of the probability measure Pn, since a deterministic sequence of constants

can be treated as a sequence of degenerate random variables.

The average marginal density (2.2) can be explicitly written as a normal

mixture density. Define the standardized normal location-mixture density as

fG(x) =

∫
φ(x− u)dG(u), (2.3)
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where φ(x) = e−x2/2/
√
2π is the standard normal density. Let Gn be the average

of the distribution functions of the unknowns {θ1, . . . , θn} under Pn,

Gn(u) =
1

n

n∑
i=1

Pn

{
θi ≤ u

}
. (2.4)

Therefore, Gn is the distribution of θ1, . . . , θn in the i.i.d. case and the empirical

distribution of {θ1, . . . , θn} in the deterministic conditional means case. With

Φ(x) ≡
∫ x
−∞ φ(t)dt, Pn(Xi ≤ x) =

∫
Φ(x− u)dP{θi ≤ u}, we have

fn(x) =

∫
φ(x− u)dGn(u) (2.5)

as a location-mixture of standard normal densities.

2.2. The GMLE

Let G be the collection of all distributions in the real line R and take

F =
{
fG : G ∈ G

}
(2.6)

as the family of all location-mixture of normal densities with unit variance. Given

X1, . . . , Xn, the GMLE (Robbins (1950); Kiefer and Wolfowitz (1956)) of a nor-

mal mixture density is defined as

f̂n(x) = argmax
f∈F

n∏
i=1

f(Xi). (2.7)

Since the family F is indexed by the completely unknown mixing distribution

G, the GMLE in (2.7) can be written as

f̂n(x) = fĜn
(x), Ĝn = argmax

G∈G

n∏
i=1

fG(Xi). (2.8)

That is, f̂n itself is a mixture of normal density.

The GMLE in (2.7) and (2.8) is a sensible estimator for fn = fGn , since the

expectation of log-likelihood

En log

n∏
i=1

f(Xi) =

n∑
i=1

En log f(Xi) = n

∫ {
log f(x)

}
fGn(x)dx

is uniquely maximized at f = fGn . The GMLE is a generalization of usual

MLE in the following sense. Suppose θi’s are i.i.d. variables with distribution

G. To generate Xi’s, it works to directly sample i.i.d. Xi’s from density fG(x) =∫
φ(x− u)dG(u). However, without the i.i.d. assumption,

∏n
i=1 f(Xi) is not the

likelihood of X1, . . . , Xn for any f ∈ F . So that to generate Xi’s, we need first
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to generate the θi’s and then to sample Xi from the normal distribution with
mean θi and unit variance.

The maximization in (2.7) is done over an infinite-dimensional parameter
space F and Ĝn is a complete nonparametric estimator in G . It follows from
(2.3) and the definition of Ĝn in (2.8) that the support of Ĝn is always within
the range of the data X1, . . . , Xn due to the monotonicity of φ(x− u) in |x− u|.
There exists a discrete solution of Ĝn with no more than n support points (e.g.,
Lindsay (1995)). The computation of the GMLE in (2.8) is typically carried
out using iterative algorithms. For example, one may use the EM algorithm
to maximize over the subfamily of all discrete distributions G supported on a
fine grid in the range of data (Jiang and Zhang (2009)). Recently, Koenker and
Mizera (2014) formulated the computation as a convex optimization problem and
solved it by interior point methods. Our simulation presented in Section 4 used
their R-package REBayes.

3. Generalized Likelihood Ratio Test

Let X1, . . . , Xn be independent observations under model (2.1). Let fn be
the average marginal density and Gn be the average distribution function as in
(2.2) and (2.4), respectively. We consider testing

H0 : fn ∈ F0, (3.1)

where F0 ⊂ F . This amounts to testing if (θ1, . . . , θn) are random samples from
a certain distribution in G0 ≡

{
G : fG ∈ F0

}
in the i.i.d. case, or if the empirical

distribution of θi’s is in G0 in the deterministic conditional means case. The
GLRT is defined as

Λn =

n∑
i=1

log
f̂n(Xi)

f̂0,n(Xi)
, (3.2)

where f̂n is given by (2.7) and f̂0,n = argmaxf∈F0

∏n
i=1 f(Xi). It is natural to

directly study the asymptotic null distribution of the proposed test. Liu and Shao
(2003) showed that under some regularity conditions, the asymptotic distribution
of Λn is the supremum of certain Gaussian processes. However, its properties for
statistical inference are still unclear.

We divide this section into four subsections to study the significance level, the
power, the connection to the higher criticism and the generalization to location-
scale mixture model.

3.1. Main results

Our main result provides a large deviation inequality for the log-likelihood
ratio Λn at a divergence rate εn that depends on the moments of elements in G0.
The p-th weak moment of a distribution function G is
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µp(G) ≡
{
sup
x>0

xp
∫
|u|>x

G(du)

}1/p

. (3.3)

Due to the Markov inequality, the p-th weak moment is no greater than the stan-

dard p-th absolute moment:
{
µp(G)

}p ≤
∫
|u|pG(du). The p-th weak moment

of a distribution set G is defined as µp(G ) = supG∈G µp(G). The divergence rate

εn, as a function of the sample size n, the distribution set G0 and the power p of

the weak moment, is defined as

ε(n,G , p) ≡ max

{√
2 log n,

{
n1/p

√
log nµp(G )

}p/(2+2p)
}√

logn

n
. (3.4)

Theorem 1. Let X1, . . . , Xn be independent observations under (2.1). For test-

ing the null hypothesis H0 in (3.1), let f̂n and f̂0,n be defined as in (3.2). Then

under H0, there exists a universal constant k∗ > 0 such that for large n and all

k ≥ k∗,

PH0

{ n∑
i=1

log
f̂n(Xi)

f̂0,n(Xi)
≥ 3knε2n

}
≤ exp

(
− knε2n

2 log n

)
≤ n−k, (3.5)

where εn ≡ ε(n,G0, p) is defined as in (3.4) with G0 ≡
{
G : fG ∈ F0

}
. In

particular,

εn ≍
{
n−p/(2+2p)(log n)(2+3p)/(4+4p) if µp(G0) = O(1) for a fixed p,

n−1/2(log n) if G([−M,M ])=1 for every G∈G0, p=∞.

To construct a level-α test, we must find a critical value q(n, α) such that

PH0

{
Λn > q(n, α)

}
= α. (3.6)

It follows from (3.5) that q(n, α) is of equal or smaller order than nε2n. In par-

ticular,

nε2n ≍
{
n1/(1+p)(log n)(2+3p)/(2+2p) if µp(G0) = O(1) for a fixed p,

(log n)2 if G([−M,M ]) = 1 for every G ∈ G0, p = ∞.

An important and special case of (3.1) is testing

H∗
0 : fn = fδ0 , (3.7)

where δu is the probability distribution giving its entire mass to u. In the de-

terministic conditional means case, it amounts to testing if all normal means are

zero, while its complement is that some of observations have nonnull mean.

Corollary 1. Under H∗
0 in (3.7), εn ≍ (log n)/

√
n. Consequently, q(n, α) is of

equal or smaller order than (log n)2.
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The proof of Theorem 1 is enlightened by Zhang (2009), who studied the

convergence rate of the GMLE under the Hellinger distance. Same technique

can be employed in the divergence context. Theorem 1 depends on two elements.

One is an entropy bound that controls the size of the normal location-mixture

family F in (2.6) under the seminorm ∥h∥∞,M = sup|x|≤M |h(x)|. For any semi-

distance d, the ε-covering number N(ε,F , d) is the minimum number of balls of

radius ε needed to cover F . That is, with Ball(h0, ε, d0) ≡
{
h : d0(h, h0) < ε

}
,

N(ε,F , d) ≡ inf
{
N : F ⊆ ∪N

j=1Ball(hj , ε, d)
}
.

The other element is a large deviation inequality that bounds the likelihood ratio

for large observations. We state these elements in two lemmas whose proofs are

in Zhang (2009).

Lemma 1. Let L̃(y) =
√

− log(2πy2) be the inverse of y = φ(x). Then, for all

0 < η ≤ (2πe)−1/2,

logN(η∗,F , ∥ · ∥∞,M ) ≤
{
4
(
6L̃2(η) + 1

)( 2M

L̃(η)
+ 3

)
+ 2

}
| log η|, (3.8)

where η∗ = 4η. Consequently, there exists a universal constant C such that

logN(η,F , ∥ · ∥∞,M ) ≤ C(log η)2max
( M√

| log η|
, 1
)

(3.9)

for all 0 < η ≤ 4(2πe)−1/2 and M > 0.

Lemma 2. Let (Xi, θi) be independent random vectors with the conditional dis-

tribution Xi|θi ∼ N(θi, 1) under Pn. Let Gn and µp(G) be as in (2.4) and (3.3),

respectively. Then for all constants M ≥
√
8 log n, 0 < λ ≤ min(1, p/2) and

a > 0,

E

{ n∏
i=1

|aXi|I{|Xi|≥M}
}λ

≤ exp

{
2(aM)λ

(
2√
2πM

+ n
(2µp(Gn)

M

)p
)}

.

3.2. Power

We now consider testing H0 against a specific member in the complement.

The Hellinger distance between two densities f1 and f2 is

dH(f1, f2) =
(∫ (

f
1/2
1 (x)− f

1/2
2 (x)

)2
dx

)1/2
. (3.10)

For two density sets F1 and F2, the Hellinger distance is

dH(F1,F2) = inf
f1∈F1,f2∈F2

dH(f1, f2). (3.11)
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Theorem 2. Consider testing H0 : fn ∈ F0 against H
(n)
1 : fn ∈ F

(n)
1 where F0∩

F
(n)
1 = ∅ for every n ≥ 1. Let Λn and q(n, α) be defined as in (3.2) and (3.6),

respectively. Consider rejecting H0 when Λn > q(n, α). Let ηn = dH(F0,F
(n)
1 )

be the Hellinger distance between F0 and F
(n)
1 . Let εn ≡ ε(n,G0, p) be defined

as in (3.4) with G0 ≡
{
G : fG ∈ F0

}
. If ηn/εn → ∞, then the GLRT has full

power asymptotically:

P
H

(n)
1

{
Reject H0

}
→ 1, n → ∞.

Theorem 2 provides a sufficient condition under which the GLRT has full

power to detect the alternative. Roughly speaking, the test is able to detect any

alternative that is separated away from the null by distance εn.

Corollary 2. Consider testing H∗
0 in (3.7) against a simple alternative hypoth-

esis H
(n)
1 : fn ∈ F

(n)
1 where F

(n)
1 =

{
fG(n)

}
. Let Λn and q(n, α) be defined

as in (3.2) and (3.6) respectively. Consider rejecting H∗
0 when Λn > q(n, α).

Let ηn = dH(fδ0 , fG(n)) be the Hellinger distance between fδ0 and fG(n). If

nη2n/(log n)
2 → ∞, then the GLRT has full power asymptotically:

P
H

(n)
1

{
Reject H0

}
→ 1, n → ∞.

Theorem 2 is a consequence of the following.

Lemma 3. Consider testing H0 : fn ∈ F0 against H1 : fn ∈ F1 where F0∩F1 =

∅. Let f̂n and f̂0,n be defined as in (3.2). Let η = dH(F0,F1) be the Hellinger

distance between F0 and F1. Then for all n ≥ 1,

PH1

{ n∑
i=1

log
f̂n(Xi)

f̂0,n(Xi)
>

n

2
η2
}

≥ 1− exp
(
− n

4
η2
)
. (3.12)

Thus the likelihood ratio is exponentially large with probability exponentially

close to 1. The exponents are proportional to nη2, where η is the Hellinger

distance between F0 and F1. The inequality characterizes the divergence rate

of the likelihood ratio of GMLE of a normal mixture density. It can be regarded

as an extension of the likelihood ratio inequalities in Wong and Shen (1995).

3.3. GLRT in the two-component Gaussian mixture

In this subsection we focus on testing H∗
0 in (3.7) against

H
(n)
1 : fn = (1− ξn)fδ0 + ξnfδµn . (3.13)

In the deterministic conditional means case, (3.13) means a small fraction ξn
of θi’s has nonzero value µn. In the i.i.d. case, this problem is called that
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of detecting sparse mixtures. There have been some important papers on this

problem. An incomplete list of literature includes Donoho and Jin (2004) on the

higher criticism approach, Jager and Wellner (2007) on goodness-of-fit tests, Hall

and Jin (2010) on innovated higher criticism for correlated data, Cai, Jeng, and

Jin (2011) on detecting heteroscedastic mixture, Greenshtein and Park (2012) on

robust tests, Walther (2013) on the average likelihood ratio approach, and so on.

Let

ξn = n−β, µn =
√

2r log n, 0 < β < 1 (3.14)

be the calibration. Define

ρ∗(β) =


0, 0 < β ≤ 1

2 ,

β − 1
2 ,

1
2 < β ≤ 3

4 ,

(1−
√
1− β)2, 3

4 < β < 1.

(3.15)

For the usual likelihood ratio test (LRT) , ρ∗(β) defined in (3.15) partitions the

amplitude/sparsity (β, r) plane into two regions: the detectable region r > ρ∗(β)

and the undetectable region r < ρ∗(β). If the parameters are in the detectable

region, the sum of type I and type II error probabilities of the likelihood ratio

test vanishes asymptotically (Jin (2002)). It is well known that the higher crit-

icism has asymptotically full power in the detectable region (Donoho and Jin

(2004)). In the literature, 1/2 < β < 1 and 0 < β ≤ 1/2 are referred to as

the sparse regime and dense regime, respectively. Donoho and Jin (2015) gave a

comprehensive review on higher criticism for large-scale inference.

By analyzing the Hellinger distance between the mixture densities under

H∗
0 and H

(n)
1 , we show that the GLRT also yields asymptotically full power

for detection throughout the entire detectable region without the knowledge of

parameters (β, r).

Theorem 3. Consider testing H∗
0 in (3.7) against H

(n)
1 in (3.13). Let Λn and

q(n, α) be defined as in (3.2) and (3.6) respectively. Consider rejecting H∗
0 when

Λn > q(n, α). Let ξn = n−β for 0 < β < 1 and µn =
√
2r log n for 0 < r < 1.

Let G(n) = (1− ξn)δ0 + ξnδµn. Then nd2H(fδ0 , fG(n))/(log n)2 → ∞ if and only if

r > ρ∗(β) where ρ∗(β) is defined in (3.15). Consequently, for every alternative

H
(n)
1 in (3.13) with r exceeding the detection boundary ρ∗(β), the GLRT has full

power asymptotically.

3.4. Location-scale mixture

The inid location-scale normal model is best described by a sequence of

independent random vectors (Xi, ζi, τi) with the following conditional densities
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under Pn:

Xi|(ζi, τi)∼N(ζi, τ
2
i ), τi ≥ σ, i = 1, . . . , n, (3.16)

where σ > 0 is a known lower bound for the latent scale variables.
As far as the densities of the observations Xi are concerned, the location-

scale mixture model (3.16) is equivalent to the location model (2.1). This can
be seen as follows. Since the N(ζi/σ, τ

2
i /σ

2) density is the convolution of the
N(0, 1) and N(ζi/σ, τ

2
i /σ

2 − 1) densities,

d

dx
Pn

{Xi

σ
≤ x

}
= Enφ

(x− ζi/σ

τi/σ

)
= En

∫
φ(x− u)dΦ

( u− ζi/σ√
τ2i /σ

2 − 1

)
.

Thus, (2.1) holds with

Gn(u) =
1

n

n∑
i=1

Pn

{θi
σ

≤ u
}
=

1

n

n∑
i=1

EnΦ
( u− ζi/σ√

τ2i /σ
2 − 1

)
. (3.17)

This gives the equivalence between the two models (2.1) and (3.16).
Let

hn(x) =
1

n

n∑
i=1

d

dx
Pn

{Xi

σ
≤ x

}
(3.18)

be the average marginal density. Let

hL(x) =

∫ ∫
1

τ
φ
(x− ζ

τ

)
L(dζ, dτ) (3.19)

be the location-scale mixture where L(R× [σ,∞)) = 1 with a known lower bound
σ > 0 for the scale. Let L be the collection of all distributions on R × [σ,∞)
and take H =

{
hL : L ∈ L

}
. Consider testing

H0 : hn ∈ H0, (3.20)

where H0 ⊂ H . This amounts to test if (ζ1, τ1), . . . , (ζn, τn) are random samples
from a certain distribution L0 ∈ L0 ≡

{
L : hL ∈ H0

}
in the i.i.d. case, or to test

if the empirical distribution of (ζi, τi)’s is a certain L0 ∈ L0 in the deterministic
conditional means and variances case. The GLRT is defined as

Λ∗
n =

n∑
i=1

log
ĥn(Xi)

ĥ0,n(Xi)
, (3.21)

where ĥn = argmaxh∈H

∏n
i=1 h(Xi) and ĥ0,n = argmaxh∈H0

∏n
i=1 h(Xi). Simi-

larly, we take a critical value q∗(n, α) such that

PH0

{
Λ∗
n > q∗(n, α)

}
= α. (3.22)

The equivalence given in (3.17) naturally leads to the following.
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Theorem 4. Let X1, . . . , Xn be independent observations under location-scale

model (3.16). Consider testing the null hypothesis H0 in (3.20). Let ĥn and

ĥ0,n be defined as in (3.21). Let εn ≡ ε(n,G0, p), where G0 is the mapping of

L0 ≡
{
L : hL ∈ H0

}
under (3.17). Then under H0, there exists a universal

constant k∗ > 0 such that for large n and all k ≥ k∗,

PH0

{ n∑
i=1

log
ĥn(Xi)

ĥ0,n(Xi)
≥ 3knε2n

}
≤ exp

(
− knε2n

2 log n

)
≤ n−k. (3.23)

Moreover, (3.23) provides the divergence rate εn ≍ n−p/(2+2p)(log n)(2+3p)/(4+4p)

if

sup
x>0

xp

n

n∑
i=1

Pn

{
|ζi| > x

}
+

1

n

n∑
i=1

Enτ
p
i = O(1) (3.24)

for a fixed p > 0.

Theorem 5. Consider testing H0 in (3.20) against H
(n)
1 : hn ∈ H

(n)
1 . Let Λ∗

n

and q∗(n, α) be defined as in (3.21) and (3.22) respectively. Consider rejecting H0

when Λ∗
n > q∗(n, α). Let ηn = dH(H0,H

(n)
1 ) be the Hellinger distance between

H0 and H
(n)
1 . Let εn ≡ ε(n,G0, p) where G0 is the mapping of L0 ≡

{
L : hL ∈

H0

}
under (3.17). If ηn/εn → ∞, then the GLRT has full power asymptotically:

P
H

(n)
1

{
Reject H0

}
→ 1, n → ∞.

4. Numerical Studies

In this section we report on comparisons of the power of the GLRT with

that of other tests. We employed the R-package REBayes (Koenker and Mizera

(2014)) to compute the GLRT.

4.1. Null distribution

We studied the asymptotic null distribution of GLRT Λn under H∗
0 : fn = fδ0

by simulation. The top panels in Figure 1 display the histograms of 2Λn under

H∗
0 based on 104 replications with sample size n = 1, 000 and 5,000. Two curves

are added to the histograms: the density estimation curve and the pdf of χ2-

distribution with d.f. = 2 × Ave{Λn}. The bottom panels display the Q-Q

plots of 2Λn. These figures illustrate that the asymptotic null distribution of

2Λn is very close to χ2. We further studied the distribution of 2Λn. In Table

1, the mean, variance, skewness and kurtosis of 2Λn are displayed based on 104

replication. The latter three characteristics are compared with their counterparts

of χ2-distribution with the same mean. There are two messages from Table 1:

the finite samples indicate that the asymptotic distribution of 2Λn is not exactly

χ2, and the discrepancy between 2Λn and χ2 increases as sample size increases.
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Figure 1. Top panels: histograms of 2Λn. In each panel, the left curve
represents the kernel density estimation of the distribution of 2Λn. The right
one represents the density curve of χ2-distribution with d.f. = 2×Ave{Λn}.
Bottom panels: Q-Q plots of 2Λn. Left panels: n = 1, 000; right panels:
n = 5, 000. Each panel is based on 10,000 replications.

4.2. Power comparison

We evaluated the power of the GLRT in testingH∗
0 : fn = fδ0 . The simulation

includes the higher criticism (HC, Donoho and Jin (2004)), the HC+ (a variation
of HC), the Berk-Jones test (Jager and Wellner (2007)) and the Kolmogorov-
Smirnov test. Let pi be the p-value for the ith component null hypothesis and
p(1) < p(2) < . . . < p(n) be the ordered p-values. The HC is defined as

HC∗
n = max

1≤i≤α·n

√
n
[
i/n− p(i)

]√
p(i)(1− p(i))

.

The Berk-Jones test is BJ+n = n · max1≤i≤n/2K
+(i/n, p(i)) where K+(t, x) =(

t log(t/x) + (1− t) log((1− t)/(1− x))
)
I{0 < x < t < 1}.
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Table 1. Comparison between the empirical distribution of 2Λn under

H∗
0 : Xi

i.i.d.∼ N(0, 1) and the χ2-distribution with d.f. = 2×Ave{Λn}. Each
entry is based on 104 replications.

mean variance skewness kurtosis

n = 1, 000 2Λn 2.164 5.187 1.921 5.514
χ2 2.164 4.329 1.923 5.544

n = 3, 000 2Λn 2.277 5.756 1.997 6.066
χ2 2.277 4.554 1.874 5.270

n = 5, 000 2Λn 2.358 6.123 2.013 6.023
χ2 2.358 4.717 1.842 5.088

Table 2. Simulated critical values of various methods under H∗
0 : Xi

i.i.d.∼
N(0, 1) based on 104 replications. The HC, HC+ and the BJ are p-value
based procedures. Both the one-side and two-side p-values are considered.

α = 0.05 α = 0.1
GLRT HC HC+ BJ GLRT HC HC+ BJ

n = 1, 000 one-side 6.71 4.68 3.13 4.23 5.25 3.55 2.76 3.43
two-side — 4.66 3.16 4.30 — 3.61 2.80 3.48

n = 3, 000 one-side 7.06 4.75 3.21 4.42 5.36 3.63 2.83 3.61
two-side — 4.83 3.23 4.42 — 3.66 2.85 3.62

n = 5, 000 one-side 7.24 4.79 3.24 4.59 5.55 3.66 2.87 3.87
two-side — 4.92 3.22 4.54 — 3.65 2.84 3.68

n = 10, 000 one-side 7.37 4.78 3.24 4.58 5.62 3.64 2.89 3.79
two-side — 4.83 3.25 4.60 — 3.64 2.88 3.78

In Table 2, we report simulated critical values of various methods based on
104 replications. Since the HC, HC+, and the BJ are all p-value based procedures,
both critical values based on one-side and two-side p-values are reported.

In the first experiment we tested H∗
0 against the two-component Gaussian

mixtures model (3.13). We chose four combinations of parameters: (n, ξn) =
(1, 000, 0.01), (1, 000, 0.005), (5, 000, 0.005), and (5, 000, 0.001). Let
µ∗ =

√
2ρ∗(β) log n be the thresholding effect value of µ where ρ∗(β) is the

detection boundary in (3.15). The corresponding calibration gave (β, µ∗) =
(0.667, 1.517), (0.767, 1.923), (0.622, 1.442), and (0.811, 2.333). These settings
are quite sparse. We let the amplitude parameter µn range from 1.25 to 3 with
an increment of 0.25. This range always includes µ∗. We set the significance level
α = 0.05 and 0.1. Since the values of µn were always positive, we used the one-
sided p-value for the HC, HC+, and the BJ tests. Table 3 displays the powers of
the GLRT, the HC, and HC+ based on 1,000 replications. The boldface entries
denote the power over 0.5. In the two-component Gaussian mixture setting, the
power of GLRT is always between the HC and HC+.
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Table 3. Power comparison in the setting where nonzero θi have common
value µ. Each entry is based on 1,000 replications.

α µn 1.25 1.5 1.75 2 2.25 2.5 2.75 3
GLRT 0.104 0.151 0.200 0.358 0.503 0.655 0.843 0.937
HC 0.096 0.138 0.228 0.356 0.531 0.694 0.863 0.946

0.05 HC+ 0.115 0.172 0.229 0.370 0.480 0.611 0.782 0.875
BJ 0.115 0.177 0.231 0.390 0.538 0.691 0.857 0.947

n = 1, 000 KS 0.090 0.090 0.092 0.111 0.101 0.073 0.094 0.113
ξn = 0.01 GLRT 0.179 0.258 0.296 0.463 0.617 0.752 0.898 0.967

HC 0.168 0.260 0.358 0.550 0.671 0.831 0.942 0.977
0.1 HC+ 0.223 0.301 0.348 0.515 0.618 0.729 0.859 0.923

BJ 0.221 0.305 0.372 0.554 0.684 0.804 0.929 0.977
KS 0.165 0.164 0.173 0.182 0.204 0.157 0.166 0.193

GLRT 0.069 0.081 0.115 0.162 0.251 0.316 0.482 0.629
HC 0.079 0.088 0.134 0.237 0.304 0.397 0.576 0.751

0.05 HC+ 0.099 0.107 0.115 0.162 0.215 0.255 0.341 0.420
BJ 0.098 0.102 0.128 0.207 0.263 0.351 0.515 0.667

n = 1, 000 KS 0.067 0.063 0.081 0.058 0.076 0.076 0.084 0.064
ξn = 0.005 GLRT 0.125 0.143 0.188 0.255 0.342 0.417 0.582 0.735

HC 0.157 0.177 0.227 0.337 0.436 0.546 0.691 0.851
0.1 HC+ 0.173 0.189 0.202 0.260 0.327 0.389 0.477 0.565

BJ 0.173 0.189 0.208 0.308 0.381 0.485 0.615 0.785
KS 0.122 0.111 0.142 0.118 0.136 0.134 0.137 0.123

GLRT 0.111 0.163 0.261 0.455 0.658 0.861 0.967 0.998
HC 0.077 0.145 0.230 0.368 0.602 0.814 0.943 0.996

0.05 HC+ 0.134 0.191 0.288 0.476 0.667 0.863 0.968 0.991
BJ 0.119 0.192 0.277 0.479 0.671 0.872 0.967 0.998

n = 5, 000 KS 0.078 0.089 0.101 0.111 0.110 0.099 0.107 0.112
ξn = 0.005 GLRT 0.189 0.273 0.390 0.576 0.771 0.921 0.983 0.999

HC 0.170 0.253 0.385 0.564 0.780 0.919 0.979 0.999
0.1 HC+ 0.225 0.317 0.444 0.631 0.778 0.925 0.982 0.998

BJ 0.192 0.303 0.410 0.604 0.780 0.924 0.980 1.000
KS 0.142 0.155 0.175 0.197 0.218 0.184 0.185 0.183

GLRT 0.054 0.058 0.064 0.091 0.118 0.178 0.252 0.338
HC 0.052 0.075 0.066 0.109 0.163 0.237 0.348 0.473

0.05 HC+ 0.060 0.060 0.075 0.099 0.117 0.168 0.190 0.227
BJ 0.054 0.056 0.071 0.108 0.136 0.191 0.268 0.373

n = 5, 000 KS 0.060 0.051 0.053 0.062 0.059 0.066 0.046 0.051
ξn = 0.001 GLRT 0.124 0.113 0.129 0.170 0.195 0.264 0.372 0.453

HC 0.103 0.125 0.121 0.200 0.250 0.340 0.470 0.589
0.1 HC+ 0.122 0.130 0.154 0.166 0.181 0.249 0.282 0.361

BJ 0.102 0.113 0.134 0.171 0.209 0.270 0.372 0.471
KS 0.117 0.099 0.101 0.108 0.105 0.121 0.101 0.108
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In the second experiment we tested H∗
0 against the Gaussian hierarchical

model. For i = 1, . . . , n, we flipped a coin with probability ξn of landing heads.

When the coin landed tails, we drew an observation Xi from N(0, 1). When

the coin landed heads, we drew an observation µi from N(0, τ2) and then an

observation Xi from N(µi, 1). We let τ range from 1 to 4 with an increment

of 0.5. We still set (n, ξn) = (1, 000, 0.01), (1, 000, 0.005), (5, 000, 0.005) and

(5, 000, 0.001). The average powers over 1,000 replications are displayed in Table

4, which demonstrate that the GLRT is competitive to the HC and the BJ. The

results also suggest that the testing problem becomes easier as τ2 increases.

4.3. Data analysis

We use leukemia gene microarray data (Golub (1999)) to illustrate the use of

GLRT. We used the cleaned version published by Dettling (2004) that contains

measurements for 3,571 genes. There are 72 samples coming from two classes:

ALL (acute lymphoblastic leukemia) and AML (acute myeloid leukemia). Among

these 72 samples, there are 38 (27 in ALL and 11 in AML) training samples and

an independent collection of 34 (20 in ALL and 14 in AML) test samples.

We applied the proposed test to the gene microarray data. Let xij denote

the expression level for the ith sample and the jth gene, 1 ≤ i ≤ n, 1 ≤ j ≤ p.

Let C and D be the set of indices of samples from the training set and the

test set, respectively. For notational consistency with later sections, we only

used the data in the training set, but using the whole data gave similar results.

Write C = C1 ∪ C2, where C1 and C2 are the sets of indices of the training

samples from classes 1 and 2, respectively. Let x̄jk =
∑

i∈Ck
xij/|Ck| be the

average expression value of gene j for all samples in class k, k = 1, 2, and s2j =[∑
i∈C1

(xij− x̄j1)
2+

∑
i∈C2

(xij− x̄j2)
2
]
/(|C|−2) be the pooled variance. Define

the t-type statistic

z∗j =
1√

1/|C1|+ 1/|C2|
x̄j1 − x̄j2

sj
, j = 1, . . . , p.

We followed Efron’s suggestion (2004) to standardize z∗j :

Zj =
z∗j − z̄∗

sd(z∗)
, j = 1, . . . , p,

where z̄∗ and sd(z∗) represent the empirical mean and standard deviation of z∗j ’s,

respectively.

We applied procedures to the Zj ’s for the leukemia data. The resulting

GLRT score was 15.3588. The p-values associated with the score is ≈ 10−3. This

suggests the definite presence of signals scattered in the Z-vector. See Table 5

for other scores and p-values.
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Table 4. Power comparison in the setting where nonzero θi are sampled from
N(0, τ2). Each entry is based on 1,000 replications.

α τ 1 1.5 2 2.5 3 3.5 4
GLRT 0.098 0.252 0.523 0.746 0.888 0.957 0.981
HC 0.105 0.282 0.562 0.788 0.902 0.962 0.982

0.05 HC+ 0.070 0.141 0.268 0.381 0.489 0.618 0.708
BJ 0.074 0.231 0.506 0.751 0.872 0.953 0.978

n = 1, 000 KS 0.048 0.057 0.048 0.045 0.049 0.057 0.048
ξn = 0.01 GLRT 0.165 0.327 0.593 0.788 0.910 0.962 0.988

HC 0.171 0.360 0.632 0.832 0.932 0.973 0.991
0.1 HC+ 0.135 0.222 0.369 0.493 0.622 0.717 0.783

BJ 0.153 0.318 0.590 0.792 0.910 0.969 0.984
KS 0.103 0.104 0.095 0.081 0.107 0.105 0.104

GLRT 0.074 0.158 0.303 0.513 0.665 0.768 0.847
HC 0.081 0.160 0.345 0.552 0.718 0.796 0.864

0.05 HC+ 0.058 0.101 0.109 0.178 0.216 0.270 0.304
BJ 0.054 0.132 0.292 0.484 0.651 0.739 0.832

n = 1, 000 KS 0.060 0.045 0.051 0.056 0.050 0.058 0.058
ξn = 0.005 GLRT 0.143 0.222 0.376 0.569 0.716 0.808 0.872

HC 0.141 0.237 0.417 0.613 0.763 0.835 0.888
0.1 HC+ 0.127 0.165 0.196 0.276 0.315 0.372 0.403

BJ 0.135 0.209 0.375 0.562 0.715 0.796 0.868
KS 0.109 0.093 0.090 0.110 0.097 0.114 0.115

GLRT 0.088 0.313 0.750 0.948 0.993 1.000 1.000
HC 0.082 0.327 0.762 0.945 0.991 1.000 1.000

0.05 HC+ 0.076 0.193 0.488 0.737 0.886 0.965 0.988
BJ 0.083 0.296 0.723 0.939 0.990 0.999 1.000

n = 5, 000 KS 0.051 0.032 0.038 0.062 0.059 0.048 0.047
ξn = 0.005 GLRT 0.160 0.406 0.806 0.963 0.995 1.000 1.000

HC 0.148 0.414 0.836 0.967 0.994 1.000 1.000
0.1 HC+ 0.150 0.302 0.607 0.827 0.933 0.976 0.997

BJ 0.168 0.397 0.794 0.963 0.993 1.000 1.000
KS 0.101 0.086 0.082 0.112 0.109 0.107 0.103

GLRT 0.064 0.099 0.204 0.420 0.572 0.696 0.795
HC 0.059 0.113 0.248 0.446 0.619 0.729 0.822

0.05 HC+ 0.062 0.056 0.081 0.122 0.158 0.210 0.241
BJ 0.057 0.094 0.197 0.406 0.551 0.687 0.780

n = 5, 000 KS 0.057 0.047 0.042 0.041 0.058 0.054 0.055
ξn = 0.001 GLRT 0.128 0.176 0.285 0.480 0.628 0.744 0.827

HC 0.118 0.179 0.328 0.519 0.681 0.781 0.851
0.1 HC+ 0.118 0.137 0.157 0.221 0.261 0.317 0.354

BJ 0.113 0.165 0.293 0.459 0.606 0.728 0.826
KS 0.112 0.091 0.084 0.099 0.122 0.099 0.106
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Table 5. Analysis of leukemia microarray data.

GLRT HC HC+ BJ
training 15.3588 10.9105 6.1057 11.1536
p-value 10−3 0.01 5× 10−5 10−4

5. Conclusion

As mentioned in the introduction, a primary motivation of our investigation

is the compound estimation of normal means, where the oracle Bayes rule can

be explicitly expressed in terms of the average of the marginal densities of the

observations (2.2). In Jiang and Zhang (2009), an empirical Bayes estimator

based on GMLE was demonstrated to have superb numerical performance in a

wide range of situations, including sparse settings. Thus, a natural question is

that of the performance of GMLE in testing. We found an upper bound for the

significance level by establishing a large deviation inequality. This was a different

approach than in Azäıs, Gassiat, and Mercadier (2009).

Under H∗
0 : fn = fδ0 , Theorem 1 implies that q(n, α) is of equal or smaller

order than (log n)2 (Corollary 1). We believe that this rate can be improved.

This remains as future work. For the higher criticism, an innovated procedure

has been proposed for correlated data (Hall and Jin (2010)). It would also be

interesting to explore the effect of correlation on the proposed test. This problem

is beyond the scope of this paper and is an interesting topic for future research.

6. Proofs

Proof of Theorem 1. Let η = 1/n2 and M = 2nε2n/(log n)
3/2. For positive

functions h1 and h2, let Ln(h1, h2) =
∏n

i=1

{
h1(Xi)/h2(Xi)

}
. Define

f∗(x) = ηI
{
|x| ≤ M

}
+

ηM2

x2
I
{
|x| > M

}
. (6.1)

Let F = {fG : G ∈ G } be the family of all location-mixture of normal distribu-

tions with unit variance. Let {fj , j ≤ N} be an η-net of F under the seminorm

∥h∥∞,M ≡ sup|x|≤M |h(x)|, with N = N(η,F , ∥ · ∥∞,M ). For any f ∈ F , there

exists j ≤ N such that

f(x) ≤

{
fj(x) + η = fj(x) + f∗(x) if |x| ≤ M,

φ(0) = 1√
2π

if |x| > M ,

due to f∗(x) = η for |x| ≤ M and supf∈F f(x) = φ(0). Under H0, fn = fG0 for
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some fG0 ∈ F0. It follows that

sup
f∈F

n∏
i=1

f(Xi)/ sup
f∈F0

n∏
i=1

f(Xi)

≤ sup
j≤N

{ n∏
i=1

fj(Xi) + f∗(Xi)

fG0(Xi)
/

∏
|Xi|≥M

fj(Xi) + f∗(Xi)

fG0(Xi)

} ∏
|Xi|≥M

(2π)−1/2

fG0(Xi)

≤ sup
j≤N

Ln(fj + f∗, fG0)
∏

|Xi|≥M

(2π)−1/2

f∗(Xi)
.

Thus,

PG0

{
sup
f∈F

n∏
i=1

f(Xi)/ sup
f∈F0

n∏
i=1

f(Xi) ≥ exp
(
3knε2n

)}
≤ PG0

{
sup
j≤N

Ln(fj + f∗, fG0)
∏

|Xi|≥M

(2π)−1/2

f∗(Xi)
≥ exp

(
3knε2n

)}

≤ PG0

{
sup
j≤N

n∏
i=1

fj(Xi) + f∗(Xi)

fG0(Xi)
≥ exp

(knε2n
3

)}
+PG0

{ ∏
|Xi|≥M

(2π)−1/2

f∗(Xi)
≥ exp

(8knε2n
3

)}
. (6.2)

We derive large deviation inequalities for the right hind side of (6.2). For

the first term,

PG0

{ n∏
i=1

fj(Xi) + f∗(Xi)

fG0(Xi)
≥ exp

(knε2n
3

)}

≤ exp
(
− knε2n

6

) n∏
i=1

EG0

(fj(Xi) + f∗(Xi)

fG0(Xi)

)1/2

≤ exp

{
− knε2n

6
+

n∑
i=1

EG0

{(fj(Xi) + f∗(Xi)

fG0(Xi)

)1/2
− 1

}}
= exp

{
− knε2n

6
+ n

(∫ √
(fj + f∗)fG0 − 1

)}
. (6.3)

It follows from Jensen’s inequality and the definition of Hellinger distance that∫ √
(fj + f∗)fG0 − 1 ≤

∫ √
fjfG0 − 1 +

∫ √
f∗fG0

≤ −1

2
d2H(fj , fG0) +

(∫
f∗

)1/2
.
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This and
∫
f∗ = 4ηM by (6.1) yield∫ √

(fj + f∗)fG0 − 1 ≤
√

4ηM. (6.4)

It follows from (6.3), (6.4) and the entropy bound in (3.9) that

PG0

{
sup
j≤N

n∏
i=1

fj(Xi) + f∗(Xi)

fG0(Xi)
≥ exp

(knε2n
3

)}
≤ exp

(
logN + n

√
4ηM − knε2n

6

)
.

Since η = 1/n2 and M = 2nε2n/(log n)
3/2 ≥ 4

√
log n,

logN + n
√

4ηM ≤ C(2 log n)2max
( M√

2 log n
, 1
)
+

√
4M

≤
(k∗
24

)
M(log n)3/2 ≤

( k

12

)
nε2n

for large n and k∗ ≤ k. Thus,

PG0

{
sup
j≤N

n∏
i=1

fj(Xi) + f∗(Xi)

fG0(Xi)
≥ exp

(knε2n
3

)}
≤ exp

(
− knε2n

12

)
. (6.5)

By (6.1), 1/f∗(x) = x2/(ηM2) = (nx/M)2 for |x| ≥ M . So that

PG0

{ ∏
|Xi|≥M

(2π)−1/2

f∗(Xi)
≥ exp

(8knε2n
3

)}

≤ exp
(
− 4knε2n

3 log n

)
EG0

( ∏
|Xi|≥M

∣∣∣nXi

M

∣∣∣)1/ logn

. (6.6)

Since M = 2nε2n/(log n)
3/2 ≥ 4

√
logn, Lemma 2 is applicable with a = n/M and

λ = 1/ log n ≤ 1. This yields

EG0

{ ∏
|Xi|≥M

∣∣∣nXi

M

∣∣∣}1/ logn

≤ exp

{
e√

2π log n
+ 2en

(2µp(G0)

M

)p
}
. (6.7)

The definition of εn gives

nε2n/ log n

n
(
2µp(G0)/M

)p ≥ 1.
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Therefore, (6.6) and (6.7) give

PG0

{ ∏
|Xi|≥M

(2π)−1/2

f∗(Xi)
≥ exp

(8knε2n
3

)}

≤ exp

{
−

(4k
3

− 2e
) nε2n
log n

+
e√

2π log n

}
. (6.8)

Inserting (6.5) and (6.8) into (6.2), we find that for large n and k ≥ k∗,

PG0

{
sup
f∈F

n∏
i=1

f(Xi)/ sup
f∈F0

n∏
i=1

f(Xi) ≥ exp
(
3knε2n

)}
≤ exp

(
− knε2n

2 log n

)
≤ exp(−k log n) = n−k.

The rate εn ≍ n−p/(2+2p)(log n)(2+3p)/(4+4p) is clear from (3.4) under µp(G0)

= O(1). The rate εn ≍ n−1/2(log n) also follows immediately from (3.4) under

G([−M,M ]) = 1 for every G ∈ G0 and p = ∞. This completes the proof.

Proof of Lemma 3. By the definition of GMLE,
∑n

i=1 log f̂n(Xi) ≥
∑n

i=1

log fG(Xi) for every fG ∈ F . Under H1, fn = fG1 for some fG1 ∈ F1. Denote

f̂0,n = fG0 ∈ F0, then

PG1

{ n∑
i=1

log
f̂n(Xi)

f̂0,n(Xi)
>

n

2
η2
}
≥ PG1

{ n∑
i=1

log
fG1(Xi)

fG0(Xi)
>

n

2
η2
}

= 1− PG1

{ n∏
i=1

(fG0(Xi)

fG1(Xi)

)1/2
≥ exp

(
− n

4
η2
)}

.

It follows from the Chebyshev inequality and the definition of Hellinger distance

that

PG1

{ n∏
i=1

(fG0(Xi)

fG1(Xi)

)1/2
≥ exp

(
− n

4
η2
)}

≤ exp
(n
4
η2
){

EG1

(fG0

fG1

)1/2
}n

≤ exp
(n
4
η2
)(

1− η2

2

)n

≤ exp
(
− n

4
η2
)
.

The above two inequalities give (3.12).

Proof of Theorem 3. First of all, fG(n)(x) = (1− ξn)φ(x) + ξnφ(x− µn). We
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divide the analysis of the Hellinger distance into two parts:

d2H(fδ0 , fG(n)) =

∫ (√
φ(x)−

√
(1− ξn)φ(x) + ξnφ(x− µn)

)2
dx

=

∫ (
1−

√
1− n−β + n−β exp(

xµn − µ2
n

2
)
)2

φ(x)dx

△
=

∫ (β/µn) logn+µn/2

−∞
+

∫ +∞

(β/µn) logn+µn/2
. (6.9)

When x < (β/µn) log n+ µn/2, the Taylor series gives that√
1− n−β + n−β exp(xµn − µ2

n

2
)

= 1− 1

2

(
1 + o(1)

)
n−β

{
1− exp

(
xµn − µ2

n

2

)}
. (6.10)

Then for the first piece of integration in (6.9),∫ (β/µn) logn+(µn/2)

−∞

(
1−

√
1− n−β + n−β exp(xµn − µ2

n

2
)
)2

φ(x)dx

=
(
1 + o(1)

) ∫ (β/µn) logn+µn/2

−∞

1

4
n−2β

{
1− exp

(
xµn − µ2

n

2

)}2
φ(x)dx

=
(
1 + o(1)

)1
4
n−2β

∫ (β/µn) logn+µn/2

−∞

{
1− 2 exp

(
xµn − µ2

n

2

)
+exp(2xµn − µ2

n)
}
φ(x)dx

△
=

(
1 + o(1)

)
(I1 + I2 + I3). (6.11)

Notice that I1 ≡ n−2βΦ
(
(β/µn) log n+ µn/2

)
/4 = O(n−2β),

I1 ≫
(log n)2

n
, 0 < β <

1

2
. (6.12)

For the cross product, we have

I2 ≡ −1

2
n−2β

∫ (β/µn) logn+µn/2

−∞
exp

(
xµn − µ2

n

2

)
φ(x)dx

= −1

2
n−2βΦ

( β

µn
log n− µn

2

)
≤ O(n−2β). (6.13)
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The analysis of I3 is a little complicated. Direct calculations show that

I3 ≡
1

4
n−2β

∫ (β/µn) logn+µn/2

−∞
exp(2xµn − µ2

n)φ(x)dx

=
1

4
n2(r−β)Φ

((√β2

2r
− 3

√
r

2

)√
log n

)
. (6.14)

There are two cases. The first case is r ≤ β/3, in which I3 = O(n2(r−β)) by

(6.14). Simple algebra shows that

I3 ≫ (log n)2/n iff r > β − 1/2, for 1/2 < β ≤ 3/4. (6.15)

The other case is r>β/3. Due to Φ(−x) = (1+o(1))φ(x)/x, I3 = O(n−(r+β)2/(4r)

/
√
log n), and then

I3 ≫ (logn)2

n iff r > (1−
√
1− β)2, for 3/4 < β < 1. (6.16)

We turn to the second piece of integration in (6.9). When x ≥ (β/µn) log n+

µn/2, n
−β exp(xµn − µ2

n/2) in the square root is the main term. So that

I4 ≡
∫ +∞

(β/µn) logn+µn/2

(
1−

√
1− n−β + n−β exp(xµn − µ2

n/2)
)2

φ(x)dx

= O(1)n−β

∫ +∞

(β/µn) logn+µn/2
exp

(
xµn − µ2

n

2

)
φ(x)dx

= O(1)n−βΦ
((√r

2
−
√

β2

2r

)√
log n

)
. (6.17)

There are still two cases. The first case is r ≥ β, in which I4 = O(n−β) ≫
(log n)2/n by (6.17). The other case is r < β. Due to Φ(−x) = (1+ o(1))φ(x)/x,

I4 = O(n−(r+β)2/(4r)/
√
log n), and then

I4 ≫ (logn)2

n iff r > (1−
√
1− β)2, for 1

2 < β < 1. (6.18)

Combining d2H(fδ0 , fG(n)) =
(
1+o(1)

)
(I1+I2+I3)+I4, (6.12), (6.13), (6.15),

(6.16), and (6.18), we have that nd2H(fδ0 , fG(n))/(log n)2 → ∞ if and only if (3.15)

holds. It follows immediately from Corollary 2 that for every alternative H
(n)
1

with r > ρ∗(β), the GLRT has full power asymptotically.

Proof of Theorem 4. Due to the equivalence between (3.16) and (2.1), it

suffices to translate the rate εn = ε(n,G , p) into functionals of the moments of

ζi and τi, where Gn is as in (3.17). We assume σ = 1 without loss of generality.

By (3.17), we may write θi|(ζi, τi) ∼ N(ζi, τ
2
i − 1), so that θi = ζi + Zi

√
τ2i − 1,
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where Zi are i.i.d. N(0, 1) random variables independent of (ζi, τi). For the p-th

weak moment, (3.24) implies

{
µp(Gn)

}p ≤ sup
x>0

xp

n

n∑
i=1

Pn

{
|θi + Ziτi| > x

}
≤ sup

x>0

xp

n

n∑
i=1

Pn

{
|θi| >

x

2

}
+

2p

n

n∑
i=1

En|Zi|pEnτ
p
i = O(1).

The conclusion follows from Theorem 1.
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