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Abstract: The sampling/importance resampling algorithm is an approximate nonit-

erative sampling method. The algorithm has been used on many occasions to select

an approximate random sample of size m from a target distribution from M in-

put random variates. The selection mechanism is an unequal probability sampling

with weights being the importance weights. As the weights are random, sampling

without replacement is not always possible and some input variates may have more

than one copy in the final sample.Duplication of values in the final output is unde-

sirable as it means dependence among the output variates. In this paper a general

and simple determination rule for M is proposed. It keeps the duplication problem

at a tolerably low level when a tight resampling method is used. We show that

(a) M = O(m) if and only if the importance weight is bounded above, (b) if the

importance weight has a moment generating function, the suggested M is of order

O(m ln(m)), and (c) M may need to be as large as O(mc/(c−1)) if the importance

weight has finite c-th moment for a c > 1. A procedure is suggested to determine M

numerically. The method is tested on the Pareto, Gamma and Beta distributions,

and gives satisfactory results.

Key words and phrases: Importance weight, Monte Carlo sampling, resampling

method, sample size, tight resampling algorithm.

1. Introduction

The increasing use of the Monte Carlo approach in statistics demands ef-

fective sampling algorithms. Difficult sampling problems are usually handled

by approximate methods. Markov chain Monte Carlo methods (see for example

Gilks, Richardson and Spiegelhalter (1996)), are a family of iterative sampling

algorithms commonly used for this purpose.

Rubin (1987, 1988) proposed a noniterative sampling procedure and called it

the sampling/importance resampling (SIR) algorithm. The SIR algorithm gen-

erates an approximately independent and identically distributed (i.i.d.) sample

of size m from the target probability density function (pdf) f(x). It starts by

generating M (M is usually larger than or equal to m) random numbers from a

pdf h(x) as inputs to the algorithm. The output is a weighted sample of size m

drawn from the M inputs, with weights being the importance weights ω(x). As
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expected, the output of the SIR algorithm is good if the inputs are good (i.e.,

h(x) is close to f(x)) or if M is large compared to m. An advantage of the SIR

algorithm is its simplicity. It can be easily understood and used as a general tool

for full Bayesian analysis (Albert (1993)). Because of its simple structure, we

know how h(x) and M affect the quality of the outputs (Li (2004)). It is worth

mentioning that Skare, Bølviken and Holden (2003) proposed an improved SIR

algorithm. In this paper, we consider only the standard form of the SIR algorithm

described above.

Not surprisingly, most of the applications of the SIR algorithm are in

Bayesian computation. It has been successfully applied in many statistical prob-

lems, see for example Gelfand and Smith (1990), McAllister, Pikitch, Punt and

Hilborn (1994), Newton and Raftery (1994), Raftery, Givens and Zeh (1995),

Berzuini, Best, Gilks and Larizza (1997), Lopes, Moreira and Schmidt (1999),

Davison and Louzada-Neto (2000), and Koop and Poirier (2001). Recently, Li

(2004) considered the subject in detail.

A fundamental problem for the SIR algorithm is the determination of M . A

good choice of M should depend on how close h(x) is to f(x). If h(x) = f(x),

we can set M = m. The poorer is h(x) as an approximation of f(x), the

larger is M compared to m. Rubin (1987, 1988) showed that the SIR algo-

rithm is exact when M/m approaches infinity. In practice, M is usually chosen

subjectively: M/m might be one (Albert (1993), Gordon, Salmond and Smith

(1993), Kitagawa (1996), Lancaster (1997)); Bunnin, Guo and Ren (2002) chose

M/m = 2; Tan, Tian and Ng (2003) considered two examples with M close to m

(M/m ≤ 1.25); Rubin (1987) considered M/m = 20; Smith and Gelfand (1992)

recommended M/m ≥ 10 in their example.

A theoretical determination of M requires a concrete objective function. Lee

(1997) suggested using M to control the mean squared error of the probability

estimate. McAllister and Ianelli (1997) required that the maximum ω(X) be less

than 0.04 of the total importance weight. As some inputs may be selected more

than once in the unequal probability sampling step, we encounter a duplication

problem. Many copies of a value in the output will lead to significant underesti-

mation of standard error in the subsequent analysis when the outputs are used

as if they are i.i.d. For this reason, Li (2004) proposed using M to keep the max-

imum number of duplicates in the output at a tolerably low level. We continue

Li’s (2004) work and give a general relation between M and m. In this paper, we

show that M depends mainly on the right-tail behaviour of ω(X): if the variance

of ω(X) is not finite, the required M is huge when compared with m; if ω(X) has

a moment generating function, the suggested M is of order O(m ln(m)), consis-

tent with Li’s (2004) finding when ω(X) follows a gamma distribution; the value

M is O(m) if and only if ω(X) is bounded above.
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This paper is organized as follows. The SIR algorithm is outlined in Section

2. The relation between M and m is studied in Section 3. Then we consider the

numerical determination of M in Section 4; and finally, a conclusion is made in

Section 5. The proofs of the main results are given in the appendix.

2. SIR Algorithm

The SIR algorithm consists of two steps: a sampling step and an importance

resampling step as given below.

Step 1. (Sampling Step) Generate X1, . . . ,XM i.i.d. from h(x), the support of

which includes that of f(x).

Step 2. (Importance Resampling Step) Draw m values {Y1, . . . , Ym} from {X1,

. . . ,XM} in such a way that

E (qi|X1, . . . ,XM ) =
mω(Xi)
M
∑

j=1
ω(Xj)

for i = 1, . . . ,M,

where qi is the number of copies of Xi in {Y1, . . . , Ym}, and ω(Xj) ∝
f(Xj)/h(Xj) for all j.

We call {X1, . . . ,XM} a pool of candidate values, {Y1, . . . , Ym} a resample, M

the pool size, m the resample size, h(x) the importance sampling pdf, and ω(X)

the importance weight of X. Clearly ω(X) has finite expected value, which we

denote by µ. The resample is used as an approximate random sample from f(x).

A variety of resampling algorithms can be used in the importance resampling

step to draw a weighted sample. Whether a resampling without replacement is

possible or not depends on the random weights, ω(X). A necessary and sufficient

condition for the existence of a without replacement resampling method is that

mω(Xi)
M
∑

j=1
ω(Xj)

≤ 1 (1)

for all i.

A resampling algorithm is called tight if for i = 1, . . . ,M ,
⌊

mω(Xi)
M
∑

j=1
ω(Xj)

⌋

≤ qi ≤
⌈

mω(Xi)
M
∑

j=1
ω(Xj)

⌉

,

where ⌈v⌉ is the smallest integer larger than or equal to v, and ⌊v⌋ is the largest

integer less than or equal to v. A tight resampling algorithm always generates a
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sample without replacement whenever (1) holds (Li (2004)). Li (2004) considered

how tight resampling algorithms might be constructed and recommended using

them to reduce the variability introduced by the qi’s in the subsequent analysis.

In this paper, we consider only tight resampling algorithms.

3. Relation between M and m

It was shown (Rubin (1987, 1988)) that the SIR algorithm generates i.i.d. sam-

ple from f(x) when M/m goes to infinity. In other words, given any fixed m,

the resample can be of as “high quality” as demanded when M is sufficiently

large. Here high quality means two things. First, the distribution of any Yi in

the resample should be close to f(x). Li (2004) discussed how the magnitude of

M alone affects the closeness of the distribution of each Yi to f(x). Second, Yi’s

should be “almost independent”. Li (2004) used maxi qi to measure the stochas-

tic dependence. The smaller the maxi qi, the better the resample. Li (2004)

proposed choosing M large enough that

Pr(max
i
qi ≤ b) ≥ 1 − γ (2)

for a given positive integer b (b < m), and a small positive value γ (0 < γ < 1). A

necessary condition for (2) is that M ≥ m/b. Therefore if m approaches infinity,

M goes to infinity at least at the same order as m. When a tight resampling

algorithm is used in the importance resampling step,

Pr(max
i
qi ≤ b) ≥ Pr

(

mmax
i
ω(Xi)

M
∑

j=1
ω(Xj)

≤ b

)

.

If Pr(c1 ≤ ω(X) ≤ c2) = 1 for 0 < c1 ≤ c2 < ∞, Pr(maxi qi ≤ b) is one when

M ≥ 1+(m−b)c2/(bc1). In particular, when f(x) = h(x), the inequality becomes

M ≥ m/b, the best lower bound for M .

Generally, it is hard to study (2) for finite m. In this paper, we consider only

the case where m approaches infinity - that is, a selection rule for M to make

lim inf
m→∞

Pr(max
i
qi ≤ b) ≥ 1 − γ. (3)

Denote the distribution function of ω(X) by G(ω). For any 0 ≤ p ≤ 1, define

ξp = min{ω : G(ω) ≥ p}. Clearly G(ξp) ≥ p. Let α = − ln(1 − γ). Then

Pr(max
i
qi ≤ b)

≥ Pr
(

ω(X1), . . . , ω(XM ) ≤ ξ1− α
M

)

Pr(max
i
qi ≤ b

∣

∣

∣
ω(X1), . . . , ω(XM ) ≤ ξ1− α

M
)
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≥GM (ξ1−α
M

) Pr

(

mmaxi ω(Xi)
M
∑

j=1
ω(Xj)

≤b
∣

∣

∣
ω(X1), . . . , ω(XM )≤ξ1−α

M

)

≥ (1− α

M
)M Pr

(mξ1−α
M

b
≤

M
∑

j=1

ω(Xj)
∣

∣

∣
ω(X1), . . . , ω(XM ) ≤ ξ1−α

M

)

. (4)

The last expression is a product of two terms. The first term converges to (1−γ)
as M approaches infinity. Inequality (3) holds if the second term goes to one.

The second term involves the sum of ω(Xj) whose distribution depends on M

because of the condition ω(Xj) ≤ ξ1−α/M . To study the limit of the second term,

we need the following lemma, the proof of which is given in Appendix A.1.

Lemma 1. Let ϕ(·) be a nonnegative nondecreasing real-valued function on

[0,∞). If E (ϕ(ω(X))) is finite, limM→∞ ϕ(ξ1−a/M )/M = 0 for any positive

constant a.

Using Lemma 1, we prove the following theorem in Appendix A.2.

Theorem 1. Suppose that E (ω(X)c) is finite for a fixed c, 1 ≤ c ≤ 2. When a

tight resampling algorithm is used, (3) holds if M is chosen such that

lim
m→∞

M −
mξ

1+
ln(1−γ)

M
bµ

√

Mξ2−c

1+ ln(1−γ)
M

= ∞. (5)

Since E(ω(X)) exists, from Lemma 1, limM→∞ ξ1+ln(1−γ)/M/M = 0. This

implies that

lim
M→∞

M
√

Mξ2−c

1+ ln(1−γ)
M

= lim
M→∞

√

√

√

√

√

M c−1

( ξ
1+

ln(1−γ)
M

M

)2−c
= ∞.

As a result, there always exists an M , a function of m, that satisfies (5).

Equation (5) provides valuable insight into the relation between M and m.

From Theorem 1 with c = 1, (5) becomes

lim
m→∞

M −
mξ

1+
ln(1−γ)

M
bµ

√

Mξ
1+ ln(1−γ)

M

= ∞.

Therefore, (3) holds if M ≥ kmξ1+ln(1−γ)/M/(bµ) for any fixed constant k > 1.

The following corollary considers the case when c > 1.
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Corollary 1. If E(ω(X)c) is finite for a c > 1, then limm→∞ Pr(maxi qi ≤ 1) = 1
when a tight resampling algorithm is used and M ≥ τmc/(c−1) for any fixed

positive constant τ .

In particular if ω(X) has finite variance, M may need to be of order O(m2).
From Corollary 1, if E (ω(X)c) exists for any positive value c, a sufficient condition
for limm→∞ Pr(maxi qi ≤ 1) = 1 is that M ≥ τmk for any fixed k > 1 and τ > 0.
In general, the condition cannot be weakened to M > τm for any fixed τ > 0.
The reason is obvious from the following corollary, the proof of which is given in
Appendix A.3.

Corollary 2. Suppose E (exp(tω(X))) is finite for a positive constant t. When

a tight resampling algorithm is used, limm→∞ Pr(maxi qi ≤ b) = 1 if M ≥
m{ln(m) + k ln(ln(m))}/(btµ) for any fixed constant k > 1.

Corollary 2 shows that when ω(X) has a moment generating function, the
required M is of order O(m ln(m)). This is consistent with the finding of Li
(2004) who considered only the case that ω(X) follows a gamma distribution.

All existing ad hoc rules for M are on the choice of the resampling ratio,
M/m. The following theorem studies the situation when M/m is close to a
constant. We use Φ(·) to denote the standard normal distribution function, and
zp to denote the lower 100p% point for the standard normal distribution (i.e.,
Φ(zp) = p).

Theorem 2. When a tight resampling algorithm is used, there is an M which is

of order O(m) to make (3) hold, if and only if ω(X) is bounded above. If ω(X)
is bounded above, (3) holds when

M ≥
{
√

ξ1m

bµ
+
(σz1−γ

2µ

)2
+
σz1−γ

2µ

}2

, (6)

where σ2 is the variance of ω(X).

4. Numerical Determination of M

As a practical matter, we need to determine M numerically. Equation (5)
does not lead to a unique value of M because it is not clear how to quantify the
concept of divergence to infinity. An important step in the proof of Theorem 1
in Appendix A.2 has that

lim inf
m→∞

Pr(max
i
qi ≤ b)

≥ lim inf
m→∞

(

1 +
ln(1 − γ)

M

)M
Φ

(

√
M
{

µ−
mξ

1+
ln(1−γ)

M
bM

}

√

ξ2−c

1+
ln(1−γ)

M

E(ω(X)c) − µ2

)

. (7)
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The first factor in (7) is (1−γ−O(1/M)). The expression in (7) is (1−γ−O(1/M))

if the second factor is (1−O(1/M)). This suggests a choice ofM to be the smallest

positive integer, not less than ⌈m/b⌉, such that

√
M
{

µ−
mξ

1+
ln(1−γ)

M
bM

}

√

ξ2−c

1+
ln(1−γ)

M

E(ω(X)c) − µ2
≥ z1− ǫ

M

for a positive constant ǫ. This is equivalent to finding M∗, the smallest positive

integer satisfying the inequality

M ≥ ψ(M) ≡
mξ

1+ ln(1−γ)
M

bµ
+ z1− ǫ

M

√

M
{

ξ2−c

1+ ln(1−γ)
M

E(ω(X)c)

µ2
− 1
}

. (8)

To determine M∗ numerically, choose M0 ≤ M∗, say M0 = ⌈m/b⌉. Define

Mi = ⌈ψ(Mi−1)⌉ for i = 1, . . .. It can be shown that (i) the function ψ(M) is

nondecreasing on M , (ii) M0 ≤M1 ≤M2 ≤ . . ., (iii) Mi ≤M∗ for all i, and (iv)

if Mi = Mi−1, then M∗ = Mi. As {Mi} is a nondecreasing sequence of integers

and is bounded above by M∗, from (iv), Mi must be equal to M∗ after a finite

number of iterations.

When ω(X) is bounded above, we can use either (6) or (8) to findM . Usually
different values of M are suggested. In the ideal case, h(x) = f(x), both (6) and

(8) suggest correctly that M ≥ m/b.

Li (2004) considered the case in which ω(X) follows a Gamma(θ, β) distri-

bution. He showed that when a tight resampling algorithm is used, (2) is fulfilled

if

M Pr(V > b/m | V ∼ Beta(θ, (M − 1)θ)) ≤ γ. (9)

The value M can then be determined as the smallest M value satisfying (9).

We study the performance of the M ’s suggested by (6), (8), and (9) using

three families of distributions, namely the Pareto(s, β), the Gamma(θ, β), and the

Beta(1, θ) distributions. Their density functions are (s/β)(1+x/β)−s−1 for x ≥ 0,

xθ−1 exp(−x/β)/{Γ(θ)βθ} for x ≥ 0, and θ(1 − x)θ−1 for 0 ≤ x ≤ 1 respectively.

The Pareto distribution has finite v-th moment only when v < s. The Gamma
distribution has a moment generating function. The Beta distribution takes

values in [0,1].

In the study, we take γ = 0.05 and m = 1, 000. To exclude cases in which

M is massive, we choose b to be the smallest positive integer such that the

corresponding M∗ is less than 1, 000, 000 when ǫ = 1. Table 1 lists the suggested

value of M for different distributions when (6), (8), or (9) is used. For each M ,

we give p̂ which is the relative frequency of ({mmaxi ω(Xi)/
∑M

j=1 ω(Xj)} ≤ b)

in 1,000 simulation runs. It estimates a lower bound for Pr(maxi qi ≤ b).
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Table 1. The suggested value of M and its corresponding p̂, the estimate of

Pr(maxi qi ≤ b) (γ = 0.05, m = 1, 000, ǫ = 1)

Distribution Formula used b Suggested M p̂

Pareto(1.5, β)∗ (8) with c = 1.4 49 963050 0.980

Pareto(2, β)∗ (8) with c = 1.9 5 832226 0.949
Pareto(2.5, β) (8) with c = 2 2 458764 0.954

Pareto(5, β) (8) with c = 2 1 63520 0.957

Pareto(10, β) (8) with c = 2 1 25050 0.956

Gamma(0.1, β) (8) with c = 2 (9) 1 105627 101009 0.979 0.955

Gamma(0.5, β) (8) with c = 2 (9) 1 23254 22373 0.969 0.952

Gamma(1, β) (8) with c = 2 (9) 1 12862 12418 0.961 0.948
Gamma(2, β) (8) with c = 2 (9) 1 7549 7320 0.968 0.955

Gamma(10, β) (8) with c = 2 (9) 1 2931 2873 0.973 0.949

Beta(1, 1) (8) with c = 2 (6) 1 2088 2043 1.000 0.952

Beta(1, 2) (8) with c = 2 (6) 1 3123 3065 1.000 0.997

Beta(1, 5) (8) with c = 2 (6) 1 5638 6109 0.993 1.000

Beta(1, 10) (8) with c = 2 (6) 1 7970 11159 0.980 1.000
Beta(1, 20) (8) with c = 2 (6) 1 9928 21229 0.977 1.000

* Variance is not finite.

From Table 1, the selection rules for M work quite well. Most of the p̂’s are

larger than (1 − γ) = 0.95. When the variance of ω(X) does not exist, the M ’s

are huge. For the Pareto(1.5, β) distribution, even if M/m = 963.05, there is

about 2% chance that there are values with 50 or more copies in the resample.

This huge M∗ value is in line with Corollary 1, which implies that for the Pareto

distribution the required M may need to be of order O(mη) for any η > 3. The

SIR algorithm should not be used when the variance of ω(X) does not exist. For

the Gamma distribution with θ less than or equal to 0.5, M/m is larger than

20, the threshold considered by Rubin (1987). For the Gamma distributions,

the performance of (9) looks good and is superior to (8). For the Beta(1, θ)

distributions, (8) is better than (6) when θ ≥ 5.

To use (8), we need to choose two constants, c and ǫ. If the variance of

ω(X) is finite, an obvious choice of c is 2. Fortunately ǫ, another user-specified

constant, appears only in the second term of ψ(M). From Lemma 1, the second

term of ψ(M) is of order less than M . As M∗ is the smallest integer satisfying

(8), M∗ is of the same order as the first term of ψ(M). Thus, the second term is

small compared with the first term, lessening the effect of different choices of ǫ

on M∗. To numerically investigate the effect of ǫ, we note that M∗ decreases as

ǫ increases. Therefore, to study the effect of different ǫ ∈ [u1, u2], we need only

compare the M∗ for ǫ = u1 with that for ǫ = u2. If the ratio is close to one, the

effect is minor. We consider only the distributions which have finite variance in
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Table 1. Take u1 = 0.1 and u2 = 20. The ratio of the M∗ for ǫ = 0.1 to that

for ǫ = 20 is computed. The values of the ratio for different distributions are

displayed in Figure 1. All the ratios are close to one.

1.00* P(2.5)

· G(010), P(005)

1.01* B(020), G(0.1), G(0.5), G(001), G(002), P(010)

· B(002), B(005), B(010)
1.02* B(001)

Figure 1. The ratio of M∗ for ǫ = 0.1 to that for ǫ = 20 when m = 1, 000,
b = 1, γ = 0.05 and c = 2 (B(θ): Beta(1, θ); G(θ): Gamma(θ, β); P(s):

Pareto(s, β))

We may want to determine M directly from Corollaries 1 or 2. However, ap-

plying the inequalities in the corollaries numerically requires specifying constants

that have significant effect on the suggested M . For Corollary 1, the constant is

τ ; for Corollary 2, the constant is t (usually t can be chosen from an interval).

Caution must be taken in using the inequalities. To demonstrate the problem,

let us consider Corollary 2. It suggests selecting a constant k > 1, and a value

of t, and setting

M =
⌈m{ln(m) + k ln(ln(m))}

btµ

⌉

. (10)

As an example, suppose m = 1, 000, b = 1 and ω(X) follows the Gamma(2, 1)

distribution. The moment generating function exists for t < 1. Take k = 1.1

and t = 0.95. Equation (10) gives M = 4, 755. This choice of M is poor

because based on 1,000 simulated random vectors of {ω(X1), . . . , ω(X4755)}, the

estimate of Pr(maxi qi ≤ b) is only 0.026. The reason for this poor performance

is that we use an asymptotic inequality, ξ1+ln(1−γ)/M ≤ ln(M)/t (see Appendix

A.3) in the proof of the corollary. This inequality is equivalent to exp{−(1 −
G(ln(M)/t))M} ≥ 1 − γ. We should check whether exp{−(1 −G(ln(M)/t))M}
is sufficiently close to one before using the value M in (10). For M = 4, 755 and

t = 0.95, exp{−(1 − G(ln(M)/t))M} = 0.0172, showing that the suggested M

is not large enough for the use of (10). If we choose a smaller t, say t = 0.6,

(10) gives M = 7, 529. The corresponding value of exp{−(1−G(ln(M)/t))M} =

0.9595, reasonably close to one. From Table 1, this choice of M is close to that

suggested by (8).

5. Conclusion

The SIR algorithm is an easy-to-use approximate sampling method. It is an

attractive tool for the Bayesian computation when we can sample from a decent
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approximate of f(x). We select M to make the values in the resample “less

dependent”, or formally, to fulfil requirement (3). This paper suggests a simple

selection rule for M when the resampling algorithm is tight. A simulation study

shows that it gives reliable result.

The SIR algorithm is a reasonable choice of approximate sampling method

when the importance weight has a moment generating function. The pool size

M is of manageable size because M/m diverges slowly at order O(ln(m)). The

divergence rate of M/m gets large when ω(X) does not have a moment gen-

erating function. It is not recommended to use the SIR algorithm when the

variance of ω(X) is not finite since M/m may diverge at the order O(m). Table

1 demonstrates that the required M is huge when variance does not exist.

In practice, we do not know the distribution of the importance weight. A

method then is to fit a parametric distribution to ω(X), and find the required M

for the fitted distribution. As an example, consider a univariate case with f(x) a

posterior pdf and h(x) the pdf of a normal distribution. Under mild conditions,

f(x) is close to a normal pdf. A plausible model is that ω(X) has the same

distribution as exp(θ1 + θ2Z + θ3Z
2) for a standard normal random variable Z.

We can estimate the parameters θ1, θ2, and θ3 from the observed ω(X)’s. An

overdispersed h(x) is preferred, as it likely leads to a negative θ3 and thus a

bounded ω(X).
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Appendix. Proofs

A.1. Proof of Lemma 1

Suppose that Lemma 1 is false, then there is a subsequence a < M1 < M2 <

. . . such that ϕ(ξ1−a/Mj
)/Mj converges to a positive value v (v can be infinity).

Furthermore, we can assume that Mj ≥ 2Mj−1 for all j. If U is U(0, 1), ξU
has the same distribution as ω(X). Therefore, E (ϕ(ω(X))) =

∫ 1
0 ϕ(ξu)du ≥

∑∞
j=1ϕ(ξ1−a/Mj

){(1 − a/Mj+1) − (1 − a/Mj)} = a
∑∞

j=1{ϕ(ξ1−a/Mj
)/Mj}(1 −

Mj/Mj+1) ≥ (a/2)
∑∞

j=1{ϕ(ξ1−a/Mj
)/Mj} = ∞, contradicting the fact that

E (ϕ(ω(X))) is finite.

A.2. Proof of Theorem 1

As µ always exists, from Lemma 1, limM→∞ ξ1−α/M/M = 0. Therefore,

for any fixed M1, there is M2 > M1 such that whenever M > M2, we have
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ξ1−α/M1
/M1>ξ1−α/M/M . Write ω(X) for the sample mean of ω(X1), . . . , ω(XM ).

For M > M2, the second factor in (4) is

Pr
(mξ1− α

M

bM
≤ ω(X) | ω(X1), . . . , ω(XM ) ≤ ξ1− α

M

)

≥ Pr
(mξ1− α

M1

bM1
≤ ω(X) | ω(X1), . . . , ω(XM ) ≤ ξ1− α

M1

)

.

By the Central Limit Theorem, the probability in the last expression converges

to

Φ

(

√
M
{

E (ω(X) | ω(X) ≤ ξ1− α
M1

) −
mξ1− α

M1
bM1

}

√

Var (ω(X) | ω(X) ≤ ξ1− α
M1

)

)

.

From (5), for sufficiently large M1, E (ω(X)| ω(X)≤ξ1−α/M1
)>mξ1−α/M1

/(bM1).

As

E
(

ω(X)2| ω(X)≤ξ1− α
M1

)

≤ξ2−c
1− α

M1

E
(

ω(X)c| ω(X)≤ξ1− α
M1

)

≤ξ2−c
1− α

M1

E (ω(X)c),

we have

lim inf
m→∞

Pr
(mξ1− α

M

bM
≤ ω(X) | ω(X1), . . . , ω(XM ) ≤ ξ1− α

M

)

≥ lim inf
m→∞

Φ

(
√
M1

{

E (ω(X) | ω(X) ≤ ξ1− α
M1

) −
mξ1− α

M1
bM1

}

√

Var (ω(X) | ω(X) ≤ ξ1− α
M1

)

)

≥ lim inf
m→∞

Φ

(

√
M1

{

µ−
mξ1− α

M1
bM1

}

√

ξ2−c
1− α

M1

E (ω(X)c) − µ2

)

.

Condition (5) implies that the probability above converges to one. This completes

the proof.

A.3. Proof of Corollary 2

Let γ be any value lying between 0 and 1. From Lemma 1, limM→∞

exp(tξ1−α/M )/M = 0. Therefore, for sufficiently large M , ξ1−α/M ≤ ln(M)/t.

The function {M −m ln(M)/(btµ)}/
√
M is increasing with respect to M when

M ≥ 8. Thus if M satisfies the inequality in the Corollary, for sufficiently large

m,
{

M −
mξ1− α

M
bµ

}

√
M

≥

{

M − m ln(M)
btµ

}

√
M
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≥

{

m{ln(m)+k ln(ln(m))}
btµ − m{ln(m)+ln{ln(m)+k ln(ln(m))}−ln(btµ)}

btµ

}

√

m{ln(m)+k ln(ln(m))}
btµ

=

√

m
btµ{k ln(ln(m)) − ln{ln(m) + k ln(ln(m))} + ln(btµ)}

√

ln(m) + k ln(ln(m))
,

which approaches infinity as m goes to infinity. This choice of M applies to all

γ. The Corollary follows from Theorem 1 with c = 2.

A.4. Proof of Theorem 2

[Necessity] Suppose that M ≤ am for a positive constant a. Then

Pr(max
i
qi ≤ b) = Pr

(mmaxi ω(Xi)

ω(X)M
≤ b
)

≤ Pr
(maxi ω(Xi)

ω(X)
≤ ab

)

.

By the Strong Law of Large Numbers, ω(X) converges to µ. The last expression

has finite limit inferior not less than (1 − γ) only if ω(X) is bounded above.

[Sufficiency] This can be proved with Theorem 1. To prove that (6) is sufficient

for (3), we find

Pr(max
i
qi ≤ b) = Pr

(mmaxi ω(Xi)

ω(X)M
≤ b
)

≥ Pr
( mξ1

ω(X)M
≤ b
)

.

By the Central Limit Theorem, the last expression converges to Φ(
√
M{µ −

mξ1/(Mb)}/σ), which is greater than or equal to (1−γ) if
√
M{µ−mξ1/(Mb)}/σ

≥ z1−γ . Equation (6) follows from simple manipulation of the last inequality.
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