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Abstract: We propose a multivariate probit model that is defined by a confirmatory

factor analysis model with covariates for analyzing dichotomous data in medical re-

search. Our proposal is a generalization of several useful multivariate probit models,

and provides a flexible framework for practical applications. We implement a Monte

Carlo EM algorithm for maximum likelihood estimation of the model, and develop

a path sampling procedure to compute the observed-data log-likelihood for evalu-

ating the Bayesian Information Criterion for model comparison. Our methodology

is illustrated by analyzing two data sets in medical research.
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1. Introduction

Biological, medical, and social studies often yield binary or dichotomous

data due to the lack of adequate and direct continuous measurements. Indeed,

correlated dichotomous data arise in many settings, ranging from measurements

of random cross-section subjects to repeated measurements in longitudinal stud-

ies. The multivariate probit (MP) model is a popular method in biostatistics

for analyzing this kind of data. This model is described in terms of a correlated

multivariate normal distribution of the underlying latent variables that are man-

ifested as discrete variables through a threshold specification, and hence allows

the flexible modeling of the correlation structure and easy interpretation of the

parameters.

Since the pioneer work of Ashford and Sowden (1970), numerous attempts

have been made to solve the computational difficulty of evaluating the multivari-

ate normal orthant probabilities involved. Chib and Greenberg (1998) developed

a Bayesian approach and a maximum likelihood (ML) approach for a MP model

with a general residual covariance structure, and applied the method to various

data sets, including the canonical four-year dataset from the Six Cities Study

of health effects. Their Bayesian and ML approaches require the simulation of

observations from a multivariate truncated normal distribution involving an ar-

bitrary covariance matrix. Although observations from a multivariate truncated
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normal distributions can be sampled from a sequence of univariate truncated nor-

mal distributions, the computational effort is rather heavy for high dimensional

problems. Other methods that use much less restrictive covariance structures

have been proposed to reduce the computational burden of evaluating the prob-

abilities: see, for example, Kolakowski and Bock (1981) and Ochi and Prentice

(1984). In particular, Bock and Aitkin (1981) used the exploratory factor anal-

ysis (EFA) model for the covariance structure and applied an EM algorithm

(Dempster, Laird and Rubin (1977)) to obtain the ML solution. Recently, Bock

and Gibbons (1996), Gibbons and Lavigne (1998) and Gibbons and Wilcox-Gök

(1998) extended the Bock and Aitkin (1981) model to an exploratory factor

analysis model with fixed covariates, and provided novel applications to data

on the early childhood development of psychiatric disorders (Gould, Wunsch-

Hizig and Dohrenwend (1981) and Vikan (1985)), and health service utilization

and insurance (Link, Long and Settle (1980) and Wolfe and Goddeeris (1991)).

The approaches that were used by Bock and Aitkin (1981), Bock and Gibbons

(1996), Gibbons and Lavigne (1998) and Gibbons and Wilcox-Gök (1998) ap-

plied Gauss-Hermite quadrature to approximate the integrals in relation to the

marginal probabilities. Because item response models can be viewed as the fac-

tor analysis model for dichotomous variables (Takane and de Leeuw (1987)), the

models that were developed by Bock and Gibbons (1996), Gibbons and Lavigne

(1998) and Gibbons and Wilcox-Gök (1998) can be regarded as their generaliza-

tions. Note that the item response model has been found to be very useful for

analyzing quality of life data (Donglas (1999) and Wang, Douglas and Anderson

(2002)).

Meng and Schilling (1996) reanalyzed the EFA model of Bock and Aitkin

(1981) and pointed out some deficiencies in using Gauss-Hermite quadrature to

approximate the integrals that are associated with the marginal probabilities

(Meng and Schilling (1996, p.1256)). They then recommended a better approach

that is based on the Monte Carlo EM algorithm (Wei and Tanner (1990)). In

contrast to Chib and Greenberg (1998), the main focus of the above work for

analyzing the MP model with an EFA structure has been on estimation, and

there have been few model comparison results. The main reason is probably the

computational difficulty of evaluating the observed-data log-likelihood, which

involves complicated integrals.

In this article, we propose a MP model that is defined with a confirmatory

factor analysis model and covariates, and show that it is more general than

the Gibbons and Wilcox-Gök (1998) model. Based on the recommendation of

Meng and Schilling (1996), we implement a Monte Carlo EM (MCEM) algorithm

for obtaining the ML estimates of the unknown parameters. Computationally,

there are two key advantages of the proposed MCEM algorithm: its E-step can
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be completed by observations that are directly simulated from a comparatively
simple univariate truncated normal distribution; its M-step can be completed by

a closed form solution that is obtained on the basis of conditional maximization.

Consequently, the algorithm is rather efficient. Moreover, it can produce factor
score estimates as by-products. We also show that the ML solution for the MP

model that has an arbitrary covariance matrix of the residuals (see Chib and
Greenberg (1998)) can be obtained with the proposed model. The important

issue of model comparison is also addressed. Specifically, we utilize path sampling

(Gelman and Meng (1998)) to develop a procedure for computing the observed-
data log-likelihood, so that the Bayesian Information Criterion (BIC) can be

evaluated for model comparison (Kass and Raftery (1995)).
In Section 2, we describe the proposed model that is based on the confir-

matory factor analysis model with covariates. We consider ML estimation of
the model and describe the MCEM algorithm in Section 3. Section 4 develops

the path sampling procedure for computing the observed-data log-likelihood and

BIC. In Section 5 we provide illustrative examples that are based on real medical
datasets. Section 6 contains a discussion, and technical details are given in the

Appendices.

2. The MP Model

We assume that each subject has a covariate vector that can be any mixture

of discrete and continuous variables. Each subject produces J distinct quantal
responses or is classified with respect to J dichotomous categories. Specifically,

let ui = (ui1, . . . , uiJ)′ denote the collection of observed dichotomous 0/1 re-
sponses in J variables on the ith subject, i = 1, . . . , n, xij be a kj × 1 vector of

covariates, k = k1 + · · · + kJ , and

Xi =













x′

i1 0 · · · 0

0 x′

i2 · · · 0
...

...
...

...

0 0 · · · x′

iJ













be a J ×k matrix. The following MP model was formulated by Chib and Green-
berg (1998). Let zi = (zi1, . . . , ziJ)′ denote a J -variate normal vector of “response

strengths” such that
zi = XiB + εi, i = 1, . . . , n, (1)

where B′ = (b′

1, . . . ,b
′

J), bj is a kj × 1 unknown parameter vector, εi is a J × 1
vector of residuals that is distributed as N [0,Σ], and

uij =







1 zij > 0

0 otherwise
, j = 1, . . . , J. (2)
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In this model, the exact measurement of “response strengths” zi is not ob-

served, and its information is given by an observed dichotomous vector ui =

(ui1, . . . , uiJ )′ with uij given by (2). Here, B is k × 1 vector of regression coef-

ficients of zi on Xi. This MP model has seen quite wide application (see Chib

and Greenberg (1998) and the references therein). Inspired by Gibbons and

Wilcox-Gök (1998), Gibbons and Lavigne (1998), and the recent work in struc-

tural equation modeling (see, e.g., Lee and Song, (2003a)), we extend the above

model to the following MP model with a confirmatory factor analysis model for

the underlying “response strengths” zi:

zi = XiB + Λωi + δi, i = 1, . . . , n, (3)

where Λ is a J × q loading matrix of parameters which may be unknown or

known, ωi is a q× 1 vector of latent factors, and δi is a J × 1 vector of residuals.

We assume that ωi is independently distributed as N [0,Γ], δ i is independently

distributed as N [0,Ψ], where Γ is an arbitrary covariance or correlation matrix,

Ψ is a diagonal covariance matrix, and ωi and δi are uncorrelated. For brevity,

we call this the MPCFA model.

The MP model (Chib and Greenberg (1998)), as given at (1) and (2) with a

general correlation matrix Σ, can be analyzed with the MPCFA model by setting

Λ = I, εi = ωi + δi and Σ = Γ+Ψ. For any positive definite correlation matrix

Σ, there exists a value c such that Σ can be expressed a Γ + cIJ , where IJ is

an J -dimensional identity matrix, and Γ is a positive definite matrix for defining

the covariance matrix of the ωi. For most practical problems with moderate

correlations in Σ, it is not necessary to choose a very small c to make Γ be

positive definite; see the ‘Six Cities’ example in Section 5.1. For rare situations

where Σ is nearly singular, c has to be small. This may induce some problems

in the proposed approach for getting the ML estimates in the MP model.

If all xi1, . . . ,xiJ equal a k∗× 1 vector xi, then XiB in (3) can be written as

B∗xi, where B∗ is a J×k∗ matrix with rows equal to b′

1, . . . ,b
′

J . The form of (3)

then reduces to the model given by Gibbons and Wilcox-Gök (1998). Another

observation is that the covariance matrix of the latent factors in the MPCFA

model is a general covariance matrix Γ rather than an identity matrix as in the

Gibbons and Wilcox-Gök (1998) model. Our extension requires very little extra

computing effort in the MCEM algorithm (see (A.3) in Appendix I).

Another special case of the MPCFA model is given by

zi = Λωi + δi, i = 1, . . . , n, (4)

without any covariates. This model can be viewed as a confirmatory factor anal-

ysis model for dichotomous variables, or an item response model with correlated
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factors. It is further reduced to the model of Bock and Aitkin (1981) and Meng

and Schilling (1996) by restricting Γ to be an identity matrix. In psychomet-

rics, the model that was developed in Bock and Aitkin (1981) and Meng and

Schilling (1996) is called the “full-information item factor” model, and it has

wide applications in educational testing and psychology.

Consider the relationship between the factor analysis model that is defined

by ωi in (3) with the dichotomous variables in ui. Let Λ′

j and ψjj be the jth row

of Λ and the jth diagonal element of Ψ, respectively. It follows from equation

(2) that

Pr(uij = 1|ωi,bj ,Λj, ψjj) = Pr(zij > 0|ωi,bj ,Λj, ψjj)

= Φ∗{x′

ij(bj/ψ
1/2
jj ) + (Λj/ψ

1/2
jj )ωi}. (5)

Note that both bj , Λj and ψjj are not estimable, because Cbj/(Cψjj) = bj/ψjj,

and CΛj/(Cψ
1/2
jj ) = Λj/ψ

1/2
jj for any positive constant C. There are many ways

to solve this identification problem. Meng and Schilling (1996) suggested fixing

ψjj implicitly and estimating bj and Λj instead of both (bj ,Λj) and ψjj. We

fix Ψ to be a diagonal matrix with preassigned diagonal elements as in the Lee

and Song (2003a) model. Moreover, the factor analysis model is not identified

because zi = XiB+Λ∗
ω∗

i , where Λ∗ = ΛT−1, and ω∗

i = Tωi for any nonsingular

matrix T. A common method in factor analysis for solving this problem is to

fix the approximate elements in Λ and/or Γ at preassigned values. In most

applications of the confirmatory factor analysis model, the fixed values can be

decided on the basis of substantive theory. For example, see the analysis of the

multitrait-multimethod model that was given by DiMatteo and Heidi (1998). In

the following ML analysis of the MPCFA model, we assume that the model is

identified after fixing elements in Λ and/or Γ.

3. ML Estimation of the MPCFA Model

Let U = (u1, . . . ,un) be the observed data matrix of the dichotomous out-

comes, Z = (z1, . . . , zn) be the matrix of latent continuous measurements un-

derlying U, Ω = (ω1, . . . , ωn) be the matrix of latent variables, and θ be the

parameter vector that includes unknown parameters in B, Λ and Γ. Due to the

discrete nature of the dichotomous variables, the observed-data likelihood func-

tion P (U|θ) involves intractable multiple integrals. Obtaining ML estimates by

the direct maximization of this function is very difficult. Indeed, even the special

case with Γ = I is difficult to handle (see Gibbons and Wilcox-Gök (1998)).

Inspired by the useful strategy suggested by Rubin (1991), Meng and Schilling

(1996) and Lee and Shi (2001), we solve this problem by treating Z and Ω as

hypothetical missing quantities, reformulating the problem as a missing data
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problem that can be solved with the well-known EM algorithm (Dempster, Laird

and Rubin (1977)). Augmenting the observed dichotomous data U with (Z,Ω),

the complete-data set is (U,Z,Ω), and the complete-data likelihood is given by

P (U,Z,Ω|θ) = P (U|Z,Ω,θ)P (Z|Ω,θ)P (Ω|θ)

= (2π)−np/2
n
∏

i=1

exp{−
1

2
(zi −XiB−Λωi)

′Ψ−1(zi −XiB−Λωi)}I(zi ∈ Ai)

×(2π)−nq/2|Γ|−n/2 exp(−
1

2

n
∑

i=1

ω
′

iΓ
−1

ωi), (6)

where I(·) is an indicator function which takes value 1 if zi ∈ Ai and 0 otherwise,

and Ai is an appropriate J -dimensional cell corresponding to ui with its jth side

of the form (−∞, 0) or [0,∞), for j = 1, . . . , J . Note that for each zi, there is

only one Ai such that zi ∈ Ai and the corresponding value of the density function

is nonzero.

Note that P (U,Z,Ω|θ) involves no integrals and is much simpler than the

observed-data likelihood P (U|θ). Let Lc(U,Z,Ω|θ) = logP (U,Z,Ω|θ) be the

complete-data log-likelihood. The E-step at the rth iteration of the EM algorithm

with a current value θ
(r) is to evaluate Q(θ|θ(r)) = E{Lc(U,Z,Ω|θ)|U,θ(r)},

where the expectation is taken with respect to the joint conditional distribution

of Z and Ω given U and θ
(r). The M-step is to maximize Q(θ|θ(r)) with respect

to θ.

Due to the complexities of the MPCFA model and the dichotomous data,

the direct evaluation of the conditional expectations in the E-step is tedious. To

ease this problem, we use the idea of the MCEM algorithm (Wei and Tanner

(1990)) to approximate these conditional expectations via sample means of a

sequence of observations of (Z,Ω) that is generated from the conditional distri-

bution [Z,Ω|U,θ]. Simulation of these observations is done by using a MCMC

method, namely the Gibbs sampler (Geman and Geman (1984)), which itera-

tively simulates Z from [Z|Ω,U,θ] and Ω from [Ω|Z,U,θ]. Note that an es-

timate of any ωi in Ω can be obtained via the sample mean of the simulated

observations of ωi at the last iteration. Some details of the implementation of

this procedure are outlined in Appendix I.

Several approaches can be applied to complete the M-step. For example, as

proposed by Bock and Gibbons (1996) and Gibbons and Wilcox-Gök (1998), clas-

sical iterative procedures such as the Newton-Raphson algorithm and the scoring

algorithm can be considered for maximizing Q(θ|θ(r)). We use the method of

conditional maximization (Meng and Rubin (1993)), which gives a closed-form

solution and demands less computational effort. This method performs well in
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analyzing complex latent variable models in psychometrics (Lee and Zhu (2002)).

Brief details of its implementation are given in Appendix II.

As suggested by Meng and Schilling (1996) and Lee and Shi (2001), the

convergence of the MCEM algorithm is monitored by bridge sampling (Meng

and Wong (1996)), and standard error estimates are computed via the identity

that was given by Louis (1982). To save space, details are not presented.

4. Model Comparison

We now consider the problem of comparing alternative MPCFA models.

Typically, competing models arise from restrictions on the covariates and/or

different forms of the covariance structure Σ. One example of the restriction on

the covariates is that bj = b across the J responses. Examples of the different

forms of Σ are (i) Σ is an identity matrix; (ii) Σ is in the equi-correlated form

(1−ρ)IJ +ρ1J1
′

J , where |ρ| < 1 and 1J is a J×1 vector of 1’s; (iii) Σ = ΛΛ′+Ψ,

the covariance structure of an exploratory factor analysis model with a specific

number of q uncorrelated factors with variance 1; (iv) Σ = ΛΓΛ′+Ψ, in relation

to a confirmatory factor analysis with a specific number of q correlated factors;

and (v) Σ is an arbitrary correlation matrix.

The Bayesian Information Criterion (BIC) is used to compare two competi-

tive models, M1 and M2:

BIC12 = −2[log P (U|θ̂1,M1) − log P (U|θ̂2,M2)] + (d1 − d2) log n, (7)

where θ̂a is the ML estimate of the parameter vector θa under model Ma, and da

is the dimension of θa. See Raftery (1993) for some advantages of the BIC over

the likelihood ratio test. The interpretation of the BIC for model comparison was

given by Kass and Raftery (1995) in terms of Bayes factors. Negative values of

BIC12 provide evidence for M1, while positive values of BIC12 provide evidence

for M2. According to Kass and Raftery (1995), a value of BIC12 between 0 to 2 is

weak, between 2 to 6 is substantial, between 6 to 10 is strong, and greater than 10

is very strong. It can be seen from (7) that the evaluation of BIC12 involves the

computation of the observed-data log-likelihood functions, log P (U|θ̂1,M1) and

logP (U|θ̂2,M2). As we mentioned before, their computation involves intractable

multiple integrals. A procedure that is based on path sampling (Gelman and

Meng (1998)) is described below to solve this problem.

Path sampling is a powerful method for computing (ratios of) normalizing

constants of statistical models. We now apply it to computing log p(U|θ,M1)

under model M1 with any realization of its parameter vector θ, including θ =

θ̂1. First augment the observed data U with (Z,Ω), as in the estimation. We
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then select an auxiliary model M0, such that M0 ⊂ M1 and P (U|θ,M0) can be

computed easily. Consider a continuous path that is defined for t in [0, 1] by

v(t) =

∫

P (U,Z,Ω|θ, t)dZdΩ, (8)

where P (U,Z,Ω|θ, t) is a density function for each t, P (U,Z,Ω|θ, a) = P (U,Z,

Ω|θ,Ma), with P (U,Z,Ω|θ,Ma) denoting the complete-data likelihood under

model Ma, a = 0, 1. Hence,

v(a) =

∫

P (U,Z,Ω|θ,Ma)dZdΩ = P (U|θ,Ma), a = 0, 1 (9)

which is the observed-data likelihood under Ma. The problem is to evaluate the

integral in (9) to obtain v(1). Let V (U,Z,Ω,θ, t) = d log P (U,Z,Ω|θ, t)/dt, and

let {t(s)}
S
s=1 be fixed with t(0) = 0 < t(1) < · · · < t(S+1) = 1. It can be shown, by

reasoning similar to that of Gelman and Meng (1998), that (see Appendix III)

α = log

[

v(1)

v(0)

]

.
=

1

2

S
∑

s=1

(t(s+1) − t(s))(V̄(s+1) + V̄(s)), (10)

where

V̄(s) = L−1
L
∑

l=1

V (U,Z(l),Ω(l),θ, t(s)), (11)

with {(Z(l),Ω(l)), l = 1, . . . , L} being the simulated observations drawn from

P (Z,Ω|U,θ, t(s)). It follows from (10) that

log v(1) = log v(0) + α
.
= log v(0) +

1

2

S
∑

s=0

(t(s+1) − t(s))(V̄(s+1) + V̄(s)). (12)

As a program for simulating observations from p(Z,Ω|U,θ) has been constructed

in the ML estimation, the implementation of this procedure is simple. Another

advantage is that the summand in equation (12) is on a log scale, which is

generally more stable.

Finding an appropriate auxiliary model M0 and a good path v(t) to link M1

and M0 is important in applying the path sampling procedure. In practice, there

is a natural choice of M0 and t, as we illustrate below. Consider the general

MPCFA model

M1 : zi = XiB1 + Λ1ωi + δi, i = 1, . . . , n, (13)

with parameter matrices B1, Λ1, Γ1, and Ψ1. Let the auxiliary model be

M0 : zi = XiB1 + δi, i = 1, . . . , n. (14)
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Note that because Ψ is a diagonal matrix, the observed-data likelihood v(0) can

be computed easily. Models M1 and M0 can be linked via t in [0,1] as follows:

Mt10 : zi = XiB1 + tΛ1ωi + δi, i = 1, . . . , n. (15)

Consequently, we can obtain α via (10) and (11), and finally the observed-data

log-likelihood log v(1) via (12).

5. Illustrative Examples

5.1. Six cities study

The first example is based on a well-known data set from the Six Cities

study, a longitudinal study of the health effects of air pollution. This data set

was analyzed by Glonek and McCullagh (1995) and others with a multivariate

logit model, and by Chib and Greenberg (1998) with a multivariate probit model.

The data that were presented by Chib and Greenberg (1998) contain repeated

dichotomous measures of the wheezing status (1 = yes, 0 = no) of 537 children

from Stuebenvile, Ohio, at ages 7, 8, 9 and 10 years. The objective of this

longitudinal study is to model the probability of wheeze status over time as a

function of a dichotomous indicator variable that represents the mother’s smoking

habit during the first year of the study and the age of the child. Interpreting

age as category j, we fit the following three MP models (see (1)) to the data set

as did by Chib and Greenberg (1998): the full multivariate probit model where

Σ is an arbitrary correlation matrix, M1; the equi-correlated model where the

correlations are equal, M2; and the independent probit model where Σ is an

identity matrix, M3. In each MP model, the “response strengths” are specified

as

zij = b0 + b1xi1 + b2xi2 + b3xi3 + εi, (16)

where xi1 is the age of the child, centered at 9 years, xi2 is a binary indicator

that represents the mother’s smoking habit (1 = yes, 0 = no), and xi3 is an in-

teraction between smoking habit and age. Note that the regression parameter is

constrained to be constant across j. To avoid sampling from a multivariate trun-

cated normal distribution, we treat (16) as a special case of the MPCFA model

defined in (3), with zi = (zi1, . . . , zi4)
′, Xi = (1, xi1, xi2, xi3), B = (b0, b1, b2, b3)

′,

Λ = I4, a 4×4 identity matrix, and Ψ is fixed at 0.2I4 to identify the model. For

modelM1, Γ = (γij) is taken to be a symmetric matrix with unknown off-diagonal

elements, but the diagonal elements are all equal to 0.8 so that Σ = Γ + Ψ is

a correlation matrix. For M2, Γ = (0.8 − ρ)I4 + ρ141
′

4, so that Σ is again a

correlation matrix. For M3, Γ = 0.8I4, so that Σ is an identity matrix.

In the ML estimation, conditional expectations at the E-step of the MCEM

algorithm are approximated by 20 observations which are generated from the
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conditional distributions for the first 30 MCEM steps and 200 observations for

the later MCEM steps. The algorithm converges after about 50 iterations. To

be conservative, we take the parameters’ values at the 60th iteration as their

ML estimates. The results are reported in Table 1. Note that the ML estimates

and standard error estimates are close to those which were reported by Chib and

Greenberg (1998).

Table 1. ML estimates and their standard errors for M1, M2 and M3: Six

Cities data.

M1 M2 M3

MLE SE MLE SE MLE SE

b0 -1.118 0.066 -1.118 0.056 -1.122 0.046

b1 -0.077 0.031 -0.078 0.032 -0.074 0.034
b2 0.151 0.107 0.167 0.090 0.165 0.073

b3 0.037 0.052 0.038 0.052 0.035 0.056

γ21 0.599 0.076 0.601 0.012 –

γ31 0.592 0.053 – –

γ41 0.475 0.084 – –
γ23 0.687 0.056 – –

γ24 0.610 0.034 – –

γ34 0.653 0.082 – –

In computing p(U|θ̂a,Ma), a = 1, 2, 3, we use M0 : zi = XiB + δi as the

auxiliary model. Models Ma and M0 are linked by a model Mt via path t ∈ [0, 1]

as follows:

Mt : zi = XiB + tΛωi + δi, i = 1, . . . , n,

where ωi is the latent factor defined according to Ma. Clearly, Mt = Ma when

t = 1 and Mt = M0 when t = 0, and v(0) can be easily evaluated in closed form.

The observed-data log-likelihood logP (U|θ̂a,Ma), a = 1, 2, 3, as estimated by

the path sampling procedure, are −968.156, −976.842, and −990.471, respec-

tively. Hence, BIC12 = 14.058 and BIC23 = −20.972. These results give decisive

evidence against M1 andM3, and in favor of the equi-correlated modelM2. These

conclusions also agree with those of Chib and Greenberg (1998). The estimated

equation in relation to the “response strengths” under the selected model M2 is

given by (see Table 1) zij = −1.118 − 0.078xi1 + 0.167xi2 + 0.038xi3, and the

wheezing status across the ages of 7, 8, 9 and 10 is equi-correlated with a cor-

relation 0.601. Similar results are obtained with Ψ fixed at 0.1I4 to identify the

model, and with the diagonal elements of Γ adjusted accordingly.

A mixed effect model is defined by zi = XiB + Λ∗

i ωi + δi, where Λ∗

i is a

known design matrix rather than a matrix of parameters, and ω i and δi are
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independently distributed as N [0,Γ] and N [0, σ2I], respectively. As pointed out

by a reviewer, the data set in this example can be analyzed as a special case

of a mixed effect model in which Λ∗

i is fixed at the identity matrix such that

zi
D
=N [XiB,Γ + σ2I]. The main distinctions between a mixed effect model and

the MPCFA model are on the different natures and properties between Λ∗

i and

Λ, and the different dimensions of ωi, while a minor distinction is the covariance

matrix of δi.

5.2. A compliance study of patients

The purpose of this example is to illustrate the use of the MPCFA model

as a latent variable model with covariates. It has recently been pointed out that

patient adherence to prescribed medication is crucial to the success of medical

treatment (Czajkowski, Margaret and Ashley (1998)), and that nonadherence

leads to misjudgment of the effectiveness of medication (Rand and Kathleen

(1998)). In the promotion of adherence, it is desirable to establish a statisti-

cal model to study the correlation between nonadherence and its core factors

such as health condition, patient knowledge of medication, attitudes and be-

liefs concerning medication (Andre and Lynda (1991)), and so on. To enrich

existing knowledge about patient nonaderence, the Department of Medicine and

Therapeutics, Community and Family Medicine, and Pharmacy at the Chinese

University of Hong Kong conducted a survey of ethnic Chinese patients who had

been diagnosed as suffering from hypertension (Czajkowski et al. (1998)). One

objective was to measure and examine correlations among latent variables such as

physician advice and concern, patient knowledge and belief, social cognition, and

social influence, and the subsequent study reported nonadherence with reference

to a factor analysis model or a more general structural equation model. Because

the study involved many dichotomous variables and the manifest indicators for

the factors are influenced by covariates, the MPCFA model is useful.

To demonstrate the methodology, suppose we are interested in establishing a

MPCFA model with two fixed covariates about patient education (coded by 0, 1,

2, 3) and the existence of “side-effects” (coded by 0 and 1), as well as latent factors

of patient “nonadherence”, “knowledge of medication”, and “health condition”,

by analyzing the related portion of the whole data set. Nine dichotomous mani-

fest variables are selected as indicators of the latent variables mentioned above.

Translations of the corresponding questions from Chinese into English are listed

in Table 2, together with their frequencies. For brevity, we omit a small number

of observations with missing entries, and the remaining sample size is 837.

The resultant data set is analyzed using a MPCFA model (3). Although other

structures for the loading matrix can be considered, for clear interpretation we
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Table 2. Questions associated with the manifest variables. Frequencies of

(Yes ‘1’/No ‘0’) are in parentheses.

u1: Did you have any surplus in the previous prescribed drugs? (175/662)
u2: Did you stop/reduce/increase the dosage? (69/768)

u3: Did you forget to take medications? (391/446)

u4: Do you feel you have hypertension? (363/474)

u5: Do you know the reasons for taking drugs? (650/187)
u6: Do you know the reasons for taking drugs for a long term? (605/232)

u7: In the past two weeks, did you have emotional problems? (387/450)

u8: In the past two weeks, did your health cause any difficulties in daily activities?

(181/656)

u9: In the past two weeks, did your health cause any difficulties in social activities?
(177/660)

choose the structure that gives nonoverlapping latent factors. Hence, the follow-

ing specification of the loading matrix Λ is used:

Λ′ =







λ11 λ21 λ31 0 0 0 0 0 0

0 0 0 λ42 λ52 λ62 0 0 0

0 0 0 0 0 0 λ73 λ83 λ93






,

where the λijs are the unknown factor loading parameters, while the 0’s are fixed

in the estimation for achieving an identified model. From the meanings of the

questions (see Table 2), it is clear that this structure gives three nonoverlapping

factors (latent variables), which can be interpreted as the “nonadherence, ω1”,

“knowledge of medication, ω2” and “health condition, ω3” of the patients. To

identify the model, we also fix Ψ to be an identity matrix and Γ = (γij) to be a

correlation matrix.

We compare the following three models.

M1: An MPCFA model that involves covariates and correlated latent factors

with the above specification for the loading matrix Λ.

M2: An MPCFA model as in M1, but with uncorrelated latent factors that each

have variance 1, that is, Γ is an identity matrix.

M3: A MP model with diagonal Σ but without latent variables, so that ω i = 0.

In the ML estimation, conditional expectations at the E-step of the MCEM

algorithm are approximated by 20 observations generated from the conditional

distributions for the first 80 MCEM steps and 200 observations for the later

MCEM steps. The algorithm converges at the 100th iteration. The ML estimates

for models M1, M2 and M3 are reported in Table 3, together with their standard

error estimates. The observed log-likelihoods that correspond to M1,



A MULTIVARIATE PROBIT LATENT VARIABLE MODEL 657

Table 3. ML estimates and their standard errors for M1, M2 and M3 in the

Compliance Study.

M1 M2 M3

MLE SE MLE SE MLE SE

λ11 1.091 0.070 1.791 0.161 –

λ21 1.418 0.291 0.845 0.206 –

λ31 0.311 0.044 0.450 0.096 –

λ42 0.099 0.052 0.217 0.069 –
λ52 1.370 0.145 1.367 0.133 –

λ62 1.471 0.201 1.395 0.165 –

λ73 0.658 0.067 0.609 0.072 –

λ83 2.271 0.136 2.242 0.192 –
λ93 2.244 0.207 2.285 0.144 –

b11 -0.722 0.026 -1.006 0.054 -0.506 0.043
b21 -1.207 0.187 -0.935 0.083 -0.733 0.063

b31 -0.022 0.033 -0.023 0.034 -0.022 0.048

b41 -0.121 0.032 -0.123 0.035 -0.123 0.067

b51 0.876 0.068 0.891 0.076 0.532 0.051

b61 0.729 0.070 0.710 0.084 0.418 0.065
b71 -0.081 0.032 -0.085 0.039 -0.075 0.037

b81 -1.179 0.024 -1.162 0.034 -0.488 0.046

b91 -1.163 0.106 -1.180 0.145 -0.486 0.121

b12 0.097 0.137 0.090 0.210 0.024 0.176
b22 0.150 0.087 0.068 0.156 0.029 0.364

b32 0.099 0.088 0.117 0.122 0.102 0.166

b42 0.314 0.108 0.322 0.115 0.310 0.179

b52 0.267 0.155 0.328 0.185 0.237 0.139

b62 -0.076 0.211 -0.045 0.156 -0.016 0.186
b72 0.262 0.113 0.270 0.123 0.224 0.136

b82 0.545 0.195 0.504 0.144 0.198 0.132

b92 0.518 0.199 0.502 0.243 0.203 0.143

γ21 -0.425 0.072 – –

γ31 0.492 0.044 – –

γ23 -0.479 0.041 – –

M2 and M3 computed via the path sampling procedure are −5619.6, −5864.6

and −5898.7, respectively. Consequently, BIC12=-469.7 and BIC13 = −470.7.

These results give decisive evidence in favor of the MPCFA model M1. As both

M2 and M3 are nested in M1, we can consider the following likelihood ratio test

on the basis of LR1k = −2[log P (U|θ̂1,M1) − logP (U|θ̂k,Mk)], k = 2, 3. As

LR12 = 490.0 and LR13 = 558.2, models M2 and M3 are clearly rejected at

type I error 0.1, based on χ2-distributions with degrees of freedom 3 and 12,
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respectively. This is the conclusion obtained from the BIC.

On the basis of model M1 and the meaning of the questions (Table 2), the

most important interpretations of the ML estimates are as follows: (i) From

the estimates b̂11, . . . , b̂91 that correspond to the effects of the first covariate

about patient education, we see that higher education has (a) a negative effect

on the indicators for “nonadherence”; (b) a positive effect on the more relevant

indicators (u4 and u5) for “knowledge of medication”; and (c) a negative effect

on the indicators for weaker or worse “health condition”. (ii) From the estimates

b̂21, . . . , b̂29 that correspond to the effects of the second covariate about side-

effects, we see that the presence of the side-effects has (a) a positive effect on the

indicators for “nonadherence”; (b) a positive effect on the first two indicators for

“knowledge of medication”; and (c) a positive effect on the indicators for weaker

or worse “health condition”. (iii) As γ̂21 = −0.425, we know that “nonadherence”

is negatively correlated with “knowledge of medication”. (iv) As γ̂31 = 0.492, we

know that “nonadherence” is positively correlated with weaker or worse “health

condition”. (v) As expected, “knowledge of medication” is negatively correlated

with weaker and worse “health condition”, as γ̂23 = −0.479 indicates. Based on

the above results, we arrive at a conclusion that it is desirable to better educate

patients about their illness and encourage them to pay more attention to their

health.

6. Discussion

We propose a model for analyzing multivariate dichotomous data that com-

bines the MP model in biostatistics and the confirmatory factor analysis model

in psychometrics. Methods for ML estimation and model comparison are devel-

oped with such powerful tools of statistical computing as the MCEM algorithm,

the Gibbs sampler, and path sampling. It may be possible to fit the proposed

model with dichotomous data by using some software in psychometrics, for ex-

ample Mplus (Muthén and Muthén (2001)). However, one obtains neither the

ML estimates nor the value of the observed data log-likelihood in this way. Hence

estimates they give statistically less optimal and one cannot be used to do model

comparison.

The factor analysis model is a special case of the more general structural

equation models (SEMs) (Bentler (1992), Bollen (1989), Everitt (1984) and

Jöreskog and Sörbom(1996)). SEMs, which are sometimes called latent variable

models, have been extensively applied to behavioral, psychological, and social

research for assessing the latent traits of manifest variables. Recently, SEMs

and their submodels have also received much attention in biostatistics, and have

been widely applied to medical research (Douglas (1999), Lee and Song (2003a),

Bentler and Stein (1992), Beacon and Thompson (1998), Palta (1999) and Chan
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et al. (1996)). By integrating these psychometric models into biostatistics and

statistics computing methods, our development can be generalized to handle

complex models such as nonlinear SEMs with covariates (Lee and Song (2003b))

and two-level SEMs (Lee and Shi (2001) and Ansari and Jedidi (2000)), and such

other complex data structure as mixed continuous and polytomous data (Sammel,

Ryan and Legler (1997) and Shi and Lee (2000)) and missing data (Song and Lee

(2002)). Furthermore, the sensitivity of the ML results in relation to the model

and data inputs can be analyzed via the local and global influence approaches of

Zhu and Lee (2001) and Zhu, Lee, Wei and Zhou (2001), respectively.

If useful prior information about the parameters in the MPCFA model is

available, then the Monte Carlo simulation in the E-step of the proposed MCEM

algorithm can be extended to a full Bayesian analysis to achieve more accurate

results. The Bayes factor (see Berger and Perrichi (2001) and Kass and Raftery

(1995)) is an important statistic for Bayesian model comparison. It is well-

known that BIC is an asymptotic approximation to the Bayes factor. Hence, BIC

should be used with confidence only in situations where there is a large sample

size, relative to the number of parameters. Usually the number of unknown

parameters in MPCFA model is not small. However, as the sample sizes for

most studies in behavioral and social sciences are quite large, this problem is

not serious. For medical research that is not related to some rare disease, for

example the compliance study of patients in Section 5.2, it is also likely to have

large sample sizes. While BIC is an approximation of the Bayes factor with the

relative error O(1), see Kass and Raftery (1995), a more accurate approximation

has given by Berger and Perrichi (2001). Still, the model that is selected by

the BIC may not be the true model. Hence it is always desirable to examine

residuals (see (3)): δ̂i = ẑi − XiB̂ − Λ̂ω̂i, i = 1, . . . , n, where B̂ and Λ̂ are the

ML estimates, ẑi and ω̂i are the estimates of zi and ωi that can be obtained

from the simulated observations in the E-step of the last iteration of the MCEM

algorithm.

Based on similar reasoning as given in Appendix III, see also Lee and Song

(2003b, c), path sampling can be applied for computing Bayes factor B12 for

comparing MPCFA models M1 and M2 in a Bayesian context. Let θ be the

parameter vector that contains common and distinct parameters in M1 and M2,

and let V ∗(U,Z,Ω,θ, t) = dP (U,Z,Ω,θ|t)/dt. It can be shown that

logB12=̇
1

2

S
∑

s=1

(t(s+1) − t(s))(V̄
∗

(s+1) + V̄ ∗

(s)),

where V̄ ∗ = L−1∑L
l=1 V

∗(U,Z(l),Ω(l),θ(l), t(s)), with {(Z(l),Ω(l),θ(l)), l = 1,

. . . , L} being the simulated observations from the joint posterior distribution
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P (Z,Ω,θ|U, t(s)) via some Markov chain Monte Carlo method, such as the Gibbs

sampler. Note that the above expression for logB12 is similar to (10). The main

difference is that θ is not fixed in computing V̄ ∗, but a sequence of θ
(l) that is

simulated from the joint posterior distribution P (Z,Ω,θ|U, t(s)) is used.
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Appendix I. Implementation of the Gibbs Sampler

To implement the Gibbs sampler for simulating observations in the E-step,

we start with initial values (Z(0),Ω(0)), simulate (Z(1),Ω(1)), and continue as

follows. At the mth iteration with current (Z(m),Ω(m)):

(a) Generate Z(m+1) from [Z|Ω(m),U,θ],

(b) Generate Ω(m+1) from [Ω|Z(m+1),U,θ].
(A.1)

It has been shown (Geman and Geman (1984) and Geyer (1992)) that under mild

conditions and after a sufficiently large number of iterations, the joint distribu-

tion of (Z(m),Ω(m)) converges at an exponential rate to the desired posterior

distribution [Z,Ω|U,θ]. The required conditional distributions that are involved

in (A.1) are briefly derived below.

[Z|Ω,U,θ]: Let Λj be the j-row of Λ. As the zi are mutually independent, it

follows from (3) that

p(Z|Ω,U,θ) =
n
∏

i=1

P (zi|ωi,ui,θ) =
n
∏

i=1

J
∏

j=1

P (zij |ωi, uij ,θ), (A.2)

where

P (zij |ωi, uij ,θ) ∼

{

N [x′

ijbj + Λjωi, ψjj ]I(−∞,0)(zij), if uij = 0

N [x′

ijbj + Λjωi, ψjj]I(0,∞)(zij), if uij = 1,
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Note that (A.2) involves univariate rather than multivariate truncated normal
distributions. The commonly used inverse distribution method, as given by De-
vroye (1985), can be employed to simulate observations from this relatively simple
distribution.
[Ω|Z,U,θ]: As Ω is independent of U with Z given, and ω i, i = 1, . . . , n are
mutually independent,

P (Ω|Z,U,θ) = P (Ω|Z,θ) =
n
∏

i=1

P (ωi|zi,θi), (A.3)

where [ωi|zi,θ]
D
=N [Σ∗Λ′Ψ−1(zi − XiB),Σ∗], with Σ∗ = (Γ−1 + Λ′Ψ−1Λ)−1.

The simulation of observations from the standard normal distribution is fast and
straightforward. We emphasize here that an identity or an arbitrary correlation
matrix Γ requires the same computational effort in simulating ω i.

Appendix II. Conditional Maximization

At the M-step, we solve the system of equations

∂Q(θ|θ(r))

∂θ
= E

{

∂

∂θ
Lc(U,Z,Ω|θ)

∣

∣

∣

∣

U,θ(r)
}

= 0 (A.4)

by means of three conditional maximizations (see Meng and Rubin (1993)). The
solutions for updating B, Λ and Γ are:

B̂ = (
n
∑

i=1

XiX
′

i)
−1

n
∑

i=1

X′

iE[(zi −Λωi)|U,θ
(r)],

Λ̂j =

(

n
∑

i=1

E[ωiω
′

i|U,θ]

)

−1 n
∑

i=1

E[ωi(zij − x′

ijb̂j)|U,θ
(r)], (A.5)

Γ̂ =
1

n

n
∑

i=1

E(ωiω
′

i|U,θ
(r)).

The conditional expectations that are involved in (A.5) are approximated by the
simulated observations that are obtained with the Gibbs sampler at the E-step.

Appendix III. Proof of (10) in the Path Sampling Procedure

Equation (10) is proved on the basis of the definition of v(t) that is given in
(8) and reasoning which is similar to that of Gelman and Meng (1998). Assuming
the legitimacy of interchange of integration with differentiation, it follows from
(8) that

d log v(t)

dt
=

∫

P (Z,Ω|U,θ, t)
d log P (U,Z,Ω|θ, t)

dt
dZdΩ

= EZ,Ω[V (U,Z,Ω,θ, t)], (A.6)
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where EZ,Ω denotes the expectation with respect to the sampling distribution

of P (Z,Ω| U,θ, t), and V (U,Z,Ω,θ, t) = d log P (U,Z,Ω|θ, t)/dt. Integrating

(A.6) from 0 to 1, we have

α = log v(1) − log v(0) =

∫ 1

0
EZ,Ω[V (U,Z,Ω,θ, t)]dt. (A.7)

Let {t(s)}
S
s=1 be such that t(0) = 0 < t(1) < · · · < t(S+1) = 1. The integration of

the right hand side of (A.7) is estimated by (1/2)
∑S

s=0(t(s+1)−t(s))(V̄(s+1) + V̄(s)),

where V̄(s) = L−1∑L
l=1 V (U,Z(l),Ω(l),θ, t(s)), with {(Z(l),Ω(l)), l = 1, . . ., L}

being the simulated observations that are drawn from P (Z,Ω| U,θ, t(s)).
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