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Abstract: “Competing risk” or “multiple cause” survival data arise in medical, crim-

inological, financial, engineering, and many other contexts when death or failure of

an individual or unit is classified into one of a variety of types or causes. Important

issues in the analysis of such data range from basic properties, such as consistency

of estimation of parameters, through more complex boundary hypothesis-testing

problems, such as whether a specified list of causes is “exhaustive” − as opposed

to the possibility that some individuals may be “immune” to all of these causes.

We give a carefully formulated parametric mixture model for competing risk data

which allows for censoring and immune individuals, and for which a large-sample

analysis can be developed. Under some mild assumptions, we are able to show

the existence, uniqueness (local to the true parameter values with probability ap-

proaching 1), consistency and asymptotic normality of the maximum likelihood

estimators when the parameters are interior to the parameter space. A formulation

using “cause-specific hazards” can be treated in the same way.

Consistent estimators also exist when the parameters are on the boundary of

the parameter space, as is the case for example when testing for exhaustiveness of

causes. The “deviance” statistic for testing this hypothesis is shown to have as its

large-sample distribution a 50-50 mixture of a chi-square distribution with 1 degree

of freedom, and a point mass at 0. Competing risks data with no censoring can be

analyzed similarly.

The large-sample results we give allow many of the data-analytic questions for

competing risks data to be formulated and answered in a satisfying way. The

methods and approaches are illustrated on a set of criminological (re-arrest) data

from Western Australia.

Key words and phrases: Competing risks, survival analysis, mixture models, cen-

sored data, causes of death, maximum likelihood estimation, likelihood ratio test.

1. Introduction

The analysis of competing risks data goes to the heart of modern preoccu-
pations in survival analysis, touching as it does on many of the major areas of
importance in the subject. The classification of death or failure by “type” or
“cause” is a natural extension of (single-cause) survival analysis, once we con-
sider alternative or “competing” causes of death or failure. The effort expended
in fitting and interpreting competing risks models of some sort, evident from
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a glance at the current literature, recommends them as a worthwhile object of
study. See, for example, Larson and Dinse (1985), David and Moeschberger
(1978), Kalbfleisch and Prentice (1980), Gaynor et al. (1993), Escarela, Francis
and Soothill (2000), Tai, Machin, White and Gebski (2001), and their references.

While there have been many investigations, often from the point of view
of counting process theory (e.g., Andersen, Borgan, Gill and Keiding (1993),
Fleming and Harrington (1991), Kalbfleisch and Prentice (1980)), of properties
of various formulations of competing risks models, a comprehensive large-sample
analysis of certain interesting aspects has not been given so far, especially for
the cases where the “true” values of parameters may be on the boundary of the
parameter space. This applies to a class of “mixture models”, used for example
in a paper by Larson and Dinse (1985) (see also Elandt-Johnson and Johnson
(1980, p.288), which plays a prominent role in the analysis of competing risks
and directly addresses the data-analytic questions of interest. To fill this need we
provide a rigorous analysis of the parametric mixture models and derive useful
large-sample properties of maximum likelihood estimators and test statistics,
which cover both interior and boundary cases.

Under an i.i.d. censoring model, we show that the mixture model approach
produces consistent estimates which are asymptotically normally distributed
when the parameters are in the interior of the parameter space (we refer to
this as the “interior” case). However, our main emphasis is on the large-sample
distributions of the likelihood ratio statistics which can be used to test naturally
arising hypotheses of interest. Some of the parameters of interest in the model,
namely the mixing probabilities, are constrained to a J-dimensional simplex, and
one of the interesting hypotheses requires those parameters to lie on the face of
the simplex. Recently derived theory of Vu and Zhou (1997) can be applied in
these “boundary-value” situations. Thus, in addition to “interior” results, we
derive the large sample distribution of the likelihood ratio statistic used to test
the boundary hypothesis of the exhaustiveness of failure causes − that is, that
the causes under consideration account for all causes of death or, in other words,
no individuals are “immune” to the currently considered causes of death. Note
that here the term “death” or “failure” could have a much wider sense which
includes, for example, re-arrest of a former prisoner (as in the criminology ex-
ample in Section 5), divorce in a marriage, bankruptcy of a company, failure of
a motor, etc.

The results can be easily applied, in particular, when the survival distri-
butions are those commonly adopted in survival analysis, such as exponential,
Weibull or Gamma distributions, as we show. They are illustrated on a crim-
inological data set in which second arrests of a number of releases from West
Australian prisons are classified into three categories: less, similar, and more
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“serious”, according to some criminological criteria, than the first arrest. In
a discussion section, some other applications and extensions of the results are
mentioned.

The paper is organized as follows. Section 2 describes the models. Large
sample properties of the maximum likelihood estimators and the boundary test
for the exhaustiveness of failure causes are provided in Sections 3 and 4, respec-
tively. The data analysis example is in Section 5. Section 6 gives some further
discussions, while the proofs of the theory in Sections 3−4 are deferred to
Section 7.

2. Parametric Mixture Models for Competing Risks

Following the approach in Larson and Dinse (1985), suppose that competing
risks data consist of observations t1, . . . , tn on the lifetimes of n individuals and
c1, . . . , cn on censor indicators, where

ci =




1 if individual i is uncensored

0 if individual i is censored,
(2.1)

and, if ci = 1, i.e., individual i dies, we also observe the cause of death, j(i), which
takes values in {1, . . . , J}, say. Thus we can define, and observe, the indicators

cij =




1 if individual i dies of cause j

0 otherwise
(2.2)

for 1 ≤ i ≤ n, 1 ≤ j ≤ J .

Suppose that the index set {1, . . . , J} is a classification of those causes of
death currently of interest to the researcher, and that we can define, for 1≤j≤J ,

pj = P{individual i dies (will die) from cause j} (2.3)

(and these do not depend on i; covariate models will be discussed in Section 6).
Let

p =
J∑
j=1

pj = P{ an individual is susceptible to some risk } (2.4)

with 0 < p ≤ 1. If p < 1, some individuals are not susceptible (are immune) to
any of the risks currently under consideration.

We assume an i.i.d. censoring model throughout, generalizing Farewell’s
(1977) formulation of a long-term survivor model. Associate with each indi-
vidual i random variables (rvs) Bi, (t∗i1, . . . , t∗iJ) and ui. For each i, ui is assumed
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independent of (t∗i1, . . . , t∗iJ ) and of Bi, and (Bi, t∗i1, . . . , t∗iJ , ui)1≤i≤n are i.i.d. The
ui are “censoring random variables” for the individuals (which may degenerate
to constants, for example in the case of a fixed followup time for each), and
have a common cumulative distribution function (c.d.f.) G, say. For most of
the paper, G is assumed proper, i.e., to have total mass 1, except in the remark
following Theorem 5, where it will be degenerate at infinity. The Bi, which are
not observed, are assumed discrete with probabilities

P{Bi = j} = pj , 1 ≤ j ≤ J, P{Bi = 0} = 1 −
J∑
j=1

pj = 1 − p. (2.5)

They can be interpreted as indicators of the cause of death of an individual:
Bi = j if i will die from cause j, whereas Bi = 0 if i is immune to all risks under
consideration. Let

Fj(t) = P{t∗ij ≤ t|Bi = j} (2.6)

denote the conditional c.d.f. of the t∗ij, given that the death is of type j. Each
Fj(t) is proper. Suppose that t∗i are random variables defined by

t∗i =



t∗ij on {Bi = j};
∞ on {Bi = 0}.

Then t∗i is independent of ui. For each i, t∗i has a c.d.f. F (t) given by

P{t∗i≤ t}=
J∑
j=0

P{t∗i≤ t|Bi=j}P{Bi=j}=
J∑
j=1

pjP{t∗ij≤ t|Bi=j}=
J∑
j=1

pjFj(t). (2.7)

Note that if p =
∑J

1 pj < 1 then F is improper. Finally, the observations ti, cij
and ci are rvs satisfying ti = min(t∗i , ui), cij = 1{t∗ij≤ui,Bi=j} and ci = 1{t∗i ≤ ui} =∑
j cij for j = 1, . . . , J ; i = 1, . . . , n (where 1E , the indicator of an event E, takes

value 1 if E occurs and 0 otherwise). The t∗i represent the “true” lifetimes of the
individuals, and the ti represent the observed, possibly censored, lifetimes.

We suppose that the data at hand constitute, for individual i, observations
on the random variables ti and ci, with cij also observed when ci = 1. Thus
(2.1)−(2.2) are satisfied if we follow the usual abuse of notation whereby obser-
vations on rvs are identified with the rvs themselves. At this stage we will make a
further assumption that each Fj(t) has a density function fj(t); this is not really
essential but simplifies the analysis.

The setup described in (2.3)−(2.7) provides a probabilistic foundation for a
mixture model approach to competing risks. An equivalent formulation can be
given via cause-specific distributions. This approach is described in Prentice et
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al. (1978) and Kalbfleisch and Prentice (1980, p.167). Like the mixture model, it
avoids the need to make assumptions about the joint distribution of the survival
times under the different causes. This model starts with the cause-specific hazards

λj(t)dt = P{t∗i ∈ (t, t+ dt), individual i dies from cause j | t∗i > t}, 1 ≤ j ≤ J,

(2.8)

where, as above, t∗i is the random variable representing the observed lifetime
of individual i. Adding over 1 ≤ j ≤ J in (2.8) produces the hazard function
associated with the c.d.f. F (t) of t∗i as λ(t) =

∑
j λj(t) = F ′(t)/(1 − F (t)).

From these the probability pj that individual i ultimately dies of cause j and the
survival distribution function Fj(t) under cause j can be expressed respectively
as

pj =
∫ ∞

0
λj(t)(1 − F (t))dt and Fj(t) =

1
pj

∫ t

0
λj(y)(1 − F (y))dy.

These correspond to (2.3) and (2.6). The (improper) c.d.f. pjFj(t) is referred to
as the cumulative incidence function.

Conversely, given (2.3)−(2.6), we can define cause-specific hazards by

λj(t) =
pjfj(t)

1 −∑J
j=1 pjFj(t)

=
pjfj(t)

1 − F (t)
, j = 1, . . . , J,

which have the same interpretation as in (2.8). Thus the two approaches give
rise to equivalent formulations.

3. Maximum Likelihood Estimators

The likelihood of the sample (conditional on {B1, . . . , Bn}, and apart from
a multiplicative constant) is

Ln =
n∏
i=1

(pj(i)fj(i)(ti))
ci (P (t∗i > t))1−ci =

n∏
i=1

(pj(i)fj(i)(ti))
ci
(
1−

J∑
j=1

pjFj(ti)
)1−ci

.

Letting tij = ti when cij = 1 (the tij need not be defined otherwise), we can
write

Ln = Ln(θ) =
n∏
i=1

( J∏
j=1

(pjfj(tij))cij
)(

1 −
J∑
j=1

pjFj(ti)
)1−ci

. (3.1)

The pj, 1 ≤ j ≤ J , constitute parameters to be estimated from the data. Fur-
ther parameters arise in the specification of the survival distributions for those
susceptible to one of the risks {1, . . . , J}. We assume a parameterization for Fj
of the form

Fj(t) = F (t, ψj), t ≥ 0. (3.2)
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Here ψj is an s-vector of parameters varying over an open subset Ψ of Rs. Collect
all parameters into an (s+1)J×1 vector: θ = (ψ1, . . . , ψJ , p1, . . . , pJ) ∈ R(s+1)J .

The “true” value of θ is taken to be θ0 = (ψ10, . . ., ψJ0, p10, . . ., pJ0), with ψj0 in
Ψ, 1 ≤ j ≤ J , and (p10, . . ., pJ0) constrained to lie in the simplex SJ defined by

SJ = {(p1, . . . , pJ), pj > 0, 1 ≤ j ≤ J, p1 + · · · + pJ ≤ 1} . (3.3)

The parameter space, the range of θ, can then be written as Θ = ΨJ × SJ .
We can write fj(t) = f(t, ψj) = ∂F (t, ψj)/∂t, t ≥ 0. Assume that the partial

derivatives ∂2f(t, ψ)/∂ψ∂ψT and ∂2F (t, ψ)/∂ψ∂ψT (as s× s-matrices) exist and
are finite at each ψ ∈ Ψ, and are continuous at each ψj0 for each t ≥ 0. Then,
letting Ln(θ) = log(Ln(θ)) be the log-likelihood function, the derivatives

Sn(θ) =
∂Ln(θ)
∂θ

and Fn(θ) = −∂
2Ln(θ)
∂θ∂θT

, (3.4)

the (s+ 1)J × 1 score vector and (s+ 1)J × (s+ 1)J negative second derivative
matrix of Ln(θ), exist and are finite for θ in Θ. Further regularity assumptions
needed are that, for any t ≥ 0,

∂F (t, ψ)
∂ψ

=
∫ t

0

∂f(y, ψ)
∂ψ

dy and
∂2F (t, ψ)
∂ψ∂ψT

=
∫ t

0

∂2f(y, ψ)
∂ψ∂ψT

dy. (3.5)

Our aim is to maximize Ln(θ) for θ in Θ, or in some restricted subset of Θ,
and to derive the large-sample distributions of the resulting estimators and test
statistics. Our first result, given in Theorem 1, shows the kinds of conditions
under which a maximum likelihood estimator (MLE) exists local to an interior
“true” point, and provides the large sample properties for such an MLE. Let
τG = sup{y > 0 : G(y) < 1} be the right extreme of G.

Theorem 1. Assume, for each j = 1, . . . , J , that

F (τG, ψj0) > 0, (3.6)

that, for each z ∈ Rs and a ∈ R, (z, a) �= 0,

P

{
zT
∂ log f(t∗ij, ψj0)

∂ψ
+ a = 0

}
= 0, (3.7)

and that, for some δ > 0,

E

(∫
[0,u]

sup
|ψ−ψj0|≤δ

∥∥∥∥∂2 log f(y, ψ)
∂ψ∂ψT

∥∥∥∥F (dy, ψj0)
)
<∞, (3.8)

E

(
sup

|ψ−ψj0|≤δ

(∥∥∥∥∂2F (u, ψ)
∂ψ∂ψT

∥∥∥∥ +
∣∣∣∣∂F (u, ψ)

∂ψ

∣∣∣∣2
))

<∞. (3.9)
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Then, with probability approaching 1 (WPA1) as n→ ∞, there exists an interior
maximum θ̂

(1)
n of Ln(θ) in Θ which is unique in a neighborhood of θ0 and is a

consistent estimator of θ0. Moreover, as n→ ∞,
√
n(θ̂(1)

n −θ0) D→ N(0,D), where
D = E(Fn(θ0))/n = E(F1(θ0)) is finite, nonsingular, and independent of n, and

(Fn(θ̂(1)
n ))T/2(θ̂(1)

n − θ0)
D→ N(0, I(s+1)J ). (3.10)

In (3.8)−(3.10), A
1
2 denotes the left Cholesky square root of a positive definite

matrix A (the lower triangular matrix such that A
1
2 (A

1
2 )T = A) and AT/2 is its

transpose, “D→” denotes convergence in distribution, N(0, Id) denotes a standard
normal random vector in d dimensions, and “‖ · ‖” is any matrix norm.

Theorem 1 tells us that θ̂(1)
n is

√
n-consistent for θ0 and, when normed by

an appropriate square root of the sample information matrix, the local MLE of
an interior true parameter vector θ0 is asymptotically standard normal. The
“studentized” form of (3.10) is preferred for practical purposes, as it is directly
usable, while D has to be estimated.

We next give a result for interior hypotheses. Let χ2
ν denote a chi-square

random variable with ν degrees of freedom.

Theorem 2 (Interior hypothesis). Let Sr be an r-dimensional subspace of
R(s+1)J , 0 ≤ r < (s+ 1)J , and let θ∗ be any specified point in the interior of Θ.
Consider the null hypothesis

H
(1)
0 : θ0 ∈ Ωr = (Sr + θ∗) ∩

(
ΨJ ×

{
(p1, . . . , pJ) ∈ SJ ,

J∑
j=1

pj < 1
})
.

Then, under the conditions of Theorem 1,
(i) WPA1, there exists a unique maximizer θ̂(2)

n over Ωr in a neighborhood of θ0
within Ωr, which is consistent for θ0; and

(ii) for testing H(1)
0 versus an unrestricted interior alternative (so p10+· · ·+pJ0 <

1), the deviance statistic

d(1)
n = 2(Ln(θ̂(1)

n ) − Ln(θ̂(2)
n )) D→ χ2

(s+1)J−r (3.11)

where θ̂(1)
n is as given in Theorem 1.

Remarks. (i) Theorem 2 tells us that the deviance statistic (−2× log-likelihood
ratio statistic) for testing “interior” hypotheses is asymptotically distributed as
chi-square, as we would expect. The hypothesis H(1)

0 in Theorem 2 allows testing
not only a hypothesis where the null parameter has some or all components
specified, but also relationships of practical interest between the components. As



732 ROSS A. MALLER AND XIAN ZHOU

a simple example, consider the hypothesis H(1)
0 : θ0 = θ∗, which specifies that θ0

equal some given vector θ∗. Then Theorem 2 applies with Ωr = {θ∗} (i.e., Sr =
{0}, r = 0) to give that d(1)

n = 2(Ln(θ̂(1)
n )−Ln(θ∗)) is asymptotically distributed

as chi-square with (s + 1)J degrees of freedom.
For another example, consider the null hypothesis p1 = p2 = p3, with p1 +

p2 + p3 < 1, which specifies equal probabilities of death from each of three
causes in a 3-cause study. Assume a Weibull mixture model, so that s = 2,
J = 3, (s + 1)J = 9 and θ = (θ1, . . . , θ9). Then the above null hypothesis can
be formulated as θ7 = θ8 = θ9, which is a version of H(1)

0 with Sr = S7 =
{(x1, . . . , x9) ∈ R9 : x7 = x8 = x9} and θ∗ = 0. The asymptotic distribution of
the deviance for testing this hypothesis is, according to Theorem 2, χ2

(9−7) = χ2
2.

Similarly, other hypotheses such as θ1 = 2θ2 = 4θ3 or θ2 − θ1 = θ3 − θ2, etc., can
be formulated in the form required in Theorem 2, as well.

(ii) The conditions of Theorem 1 are quite mild. To begin with, (3.6) is min-
imal: it merely specifies that uncensored survival times of those dying from each
cause can be observed with positive probability. Condition (3.7) guarantees D to
be nonsingular, but is much easier to verify (for most models) than checking this
fact directly. (In many treatments, this problem is simply assumed away.) For
absolutely continuous F (·, ψ) (as we have assumed), (3.7) holds if the function
zT∂ log f(t, ψj0)/∂ψ+a has no zeroes or only isolated zeros in t ∈ (0,∞), which is
often easy to verify. Conditions (3.8)−(3.9) are similar to those usually encoun-
tered in asymptotic analyses of MLE’s in parametric (and other) models, but are
considerably easier to check than most; in some treatments, conditions imposed
include, for example, uniform bounds on third derivatives of the log-likelihood,
or even assumptions on the (uniform) convergence of some stochastic quantities.

It is not difficult to verify that conditions (3.6)−(3.9) are satisfied for com-
monly used survival distributions such as exponential, Weibull and Gamma, with
no further assumptions than that the censoring distribution G is not degenerate
at 0, as we show in the next theorem.

Theorem 3. Suppose the censoring distribution G is not degenerate at 0. If
1. F (t, ψ) = 1 − e−λt is exponential, so s = 1, ψ = (λ), λ > 0, or
2. F (t, ψ) = 1− exp(−(λt)α) is Weibull, so s = 2, ψ = (λ, α), λ > 0, α > 0, or
3. f(t, ψ) = λrtr−1e−λt/Γ(r) is Gamma, so s = 2, ψ = (λ, r), λ > 0, r > 0,

then the conclusions of Theorems 1 and 2, including (3.10) and (3.11), hold.

Thus our results are directly applicable to a wide variety of practical situations.

4. Testing for Exhaustiveness of Causes

The above approach allows for the possibility that not all causes of death in
the population are represented among {1, . . . , J}. This is necessary in general
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because, with censored data, we may not know whether a censored individual will
die from one of the causes under consideration. To investigate this, we may wish
to test the hypothesis that the J specified causes do in fact include all those to
which individuals are susceptible, i.e., that

∑J
1 pj = 1. This hypothesis restricts

the pj’s to a boundary of the parameter space - one face of the simplex SJ - so we
do not expect a limiting chi-square distribution for the likelihood ratio statistic.
But the required result can be derived from the Vu and Zhou (1997) results. We
need the following notation: let F0(t) =

∑J
j=1 pj0Fj0(t) and

Hδ(t) = max
1≤j≤J

sup
|ψ−ψj0|≤δ

∣∣∣∣∂H(t, ψ)
∂ψ

∣∣∣∣, δ > 0, t ≥ 0. (4.1)

Theorem 4 (Boundary hypothesis, no immunes). Consider the hypothesis

H
(2)
0 : θ0 = (ψ10, . . . , ψJ0, p10, . . . , pJ0) ∈ ΨJ × SJ , p10 + · · · + pJ0 = 1. (4.2)

Assume (3.6)−(3.8), and that for some δ > 0 and for each 1 ≤ j ≤ J ,

E

(
eδHδ(u) sup

|ψ−ψj0|≤δ

∥∥∥∥∂2F (u, ψ)
∂ψ∂ψT

∥∥∥∥
)
<∞, (4.3)

E

(
eδHδ(u)

1 − F0(u)

(
1 + sup

|ψ−ψj0|≤δ

∣∣∣∣∂F (u, ψ)
∂ψ

∣∣∣∣2
))

<∞. (4.4)

Then with probability approaching 1 there exist, uniquely (local to θ0),
(i) an unrestricted maximizer θ̂(1)

n of Ln(θ) over the parameter space Θ; and
(ii) a restricted maximizer θ̂(3)

n of Ln(θ), subject to the restriction H
(2)
0 .

Both θ̂
(1)
n and θ̂

(3)
n are consistent for θ0 as n → ∞. Furthermore, the deviance

statistic d(2)
n = 2(Ln(θ̂(1)

n ) − Ln(θ̂(3)
n )) has, asymptotically, the same distribution

as N2
1 I(N1 ≥ 0), where N1 ∼ N(0, 1).

Theorem 4 tells us that the limiting distribution of the likelihood ratio statis-
tic for testing that no individuals are immune to all of the causes {1, . . . , J} is
that of a 50-50 mixture of a chi-square random variable with 1 degree of freedom
and a point mass at 0. Thus, for example, its 95th percentile is 2.71 (the 90th
percentile of the χ2

1 distribution).
We have not written down the limiting distribution of θ̂(3)

n itself, in Theorem
4. In the 1-cause case it can be seen in Theorem 3.2 of Zhou and Maller (1995).
This distribution is probably not of much interest in itself; more important we
think is the large-sample distribution of d(2)

n . This allows us to accept H(1)
0 (if the

observed value of d(2)
n does not exceed 2.71), thus concluding that all (significant)

causes of death in the study are included among {1, . . . , J}, or to reject H(1)
0 ,
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in which case we conclude that some individuals are “immune to” or “cured of”
causes {1, . . . , J}.

As a parallel to Theorem 3, we have

Theorem 5. Suppose the censoring distribution G is not degenerate at 0. If
F (t, ψ) is exponential or Gamma and, for some η > 0,

E(e(λm0+η)u) <∞, (4.5)

where λm0 = min(λ10, . . . , λJ0); or F (t, ψ) is Weibull and, for some η > 0,

E
(
exp

(
ηuαM0+η)) <∞, (4.6)

where αM0 = max(α10, . . . , αJ0), then the conclusions of Theorem 4 hold.

Remark. (iii) When there is no censoring and all failure times are observed,
we must have G(y) = 0 for all y ≥ 0 and a proper F , i.e., p1 + · · · + pJ = 1.
This situation is “boundary” with respect to the original setup but has true
value “interior” to the boundary subspace specified by p1 + · · · + pJ = 1 under
both the null and alternative hypotheses. Assuming in addition that (3.7) and
(3.8) (with u = ∞ a.s. in (3.8)) hold, then we can show that, with probability
approaching 1, there exist, uniquely (local to the true value, θ̃0, say), a maximizer
θ̃
(4)
n of Ln(θ) subject to p1 + · · · + pJ = 1, which is consistent for θ̃0 and satisfies

(Fn(θ̃(4)
n ))T/2(θ̃(4)

n − θ̃0)
D→ N(0, I(s+1)J−1). Similarly, we can obtain a consistent

maximizer θ̃(5)
n restricted to an r-dimensional subspace of R(J+1)s and subject to

p1 + · · ·+ pJ = 1, such that d(3)
n = 2(Ln(θ̃(4)

n )−Ln(θ̃(5)
n ) D→ χ2

(s+1)J−r. Moreover,
similar to Theorem 3, we can obtain asymptotic normality for MLE’s when there
is no censoring for exponential, Weibull, or Gamma models, with no further
assumptions required. We omit the proofs of these, which are similar to those of
Theorems 1−3.

5. Example: Time to First Re-Arrest

Figure 5.1 below shows “cumulative incidence curves” and fitted Weibull
distributions for 3,636 male Australian aborigines who had incurred at least one
arrest in the West Australian legal system over the period 1984-1996. The data
is extracted from a much larger database held by the University of Western
Australia Crime Research Center, which contains the entire arrest records of the
population over that period. As the diagram shows, followup of as much as 12
years is thus available for some individuals. The “survival time” of interest is the
time between the first and second arrests, if a second arrest occurred within the
limit of followup, otherwise the re-arrest time is censored.
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The second arrest, if it occurred, was classified into one of three types: less,
equal, or more serious than the first, where “seriousness” is based on crimino-
logical criteria which are not especially relevant here, but give a classification of
failure which we can use as an interesting (and important) example of a compet-
ing risks analysis.

The empirical cumulative incidence function (c.i.f.) is an estimator of the
theoretical c.i.f., and can be used as a convenient form of data display. For its
definition see Kalbfleisch and Prentice (1980, p.169), and for a good discussion
of its properties and an example of its use in a medical context see Gaynor et
al. (1993). The empirical c.i.f. for a given type of failure is constant except for
jumps at failure times of that type.

In Figure 5.1, empirical cumulative incidence functions of the three types are
shown with dots at their jump points for three rearrest types:
Type 1: Second offense less serious than first;
Type 2: Second offense equally as serious as first;
Type 3: Second offense more serious than first.
At around 2 years, the order is Type 2 > Type 1 > Type 3. They each level
at about 0.25 at their right-hand ends. The three incidence functions add to
the Kaplan-Meier (1958) estimator (KME) of the overall re-arrest times, without
regard to type and thus represent a disjoint decomposition of the KME into the
three competing types.

The three continuous curves in Figure 5.1 are Weibull distributions fitted by
the likelihood method of Section 3 (they are not fitted to the incidence functions
directly). As can be seen from the figure, the Weibull mixture model provides an
extremely good description of each of the three types of failure. The estimated
Weibull parameters with 95% confidence intervals in brackets (failure time is
measured in years) are:
Type 1: p̂n = 0.263 (0.244, 0.282), α̂n = 0.781 (0.728, 0.838), λ̂n = 0.531 (0.456,

0.618);
Type 2: p̂n = 0.244 (0.230, 0.261), α̂n = 0.765 (0.719, 0.813), λ̂n = 0.907 (0.804,

1.023);
Type 3: p̂n = 0.251 (0.234, 0.268), α̂n = 0.792 (0.740, 0.846), λ̂n = 0.655 (0.574,

0.747).

The fitted Weibull sub-distributions are easy to distinguish in Figure 5.1;
they each level at about 0.25, as indicated by their p̂n values, but their λ̂n values
appear different, and a test of H(3)

0 : λ10 = λ20 = λ30 gives a deviance value of
29.54. According to Theorem 2 we can take this as approximately χ2

2, and thus
it is highly significant. So the three types have significantly different rates of
failure. This is apparent from the figure, where the incidence function for Type
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2 rises significantly faster than for the other two types in the first two years or
so after the initial arrest. The α-parameters of the Weibull are significantly less
than 1, so the distribution of the data is exponential-like, with a rapid failure (re-
arrest) rate at small times. These kinds of conclusions have useful criminological
applications.

The test of H(2)
0 : p10 + p20 + p30 = 1 gives a deviance value of 89.7 which is

very significant by comparison with its critical value of 2.71, according to Theo-
rem 5. We deduce that there is a large “immune” component in the population,
about 25% of the population, who will not be expected to fail again (be rear-
rested) and clearly the amount of followup available in the data set contributes
to our confidence in this conclusion.

Incidence Functions

Followup Time in Years
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Figure 5.1. Empirical cumulative incidence functions and fitted Weibull
curves for a set of criminological data.

6. Discussion

The theoretical results provide the basic large-sample foundations for data
analysis using the mixture model in the single-sample case. The main findings
are that the basic properties of consistency and asymptotic normality hold in “in-
terior” cases, while the large-sample 50-50 chi-square distribution is appropriate
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for the boundary hypothesis test that none of the population is immune to the
J causes of death currently under consideration. With the intuition gained from
these results, we can extrapolate to more general setups, and we now explore
some of these. A useful backdrop to this discussion is Chapter 7 of Kalbfleisch
and Prentice (1980).

Covariates and More General Survival Distributions.
We restricted ourselves to identically distributed observations, which enables

us to give the clear formulations of Theorems 1−5, and thereby to build up
intuition as to which elements are important in the analysis of competing risks
data. The role of the censoring distribution becomes apparent from our analysis
− apart from the integrability and non-degeneracy assumptions, we need only the
minimal assumption (3.6) that uncensored survival times of those dying from each
cause can be observed, with positive probability. These are ways of representing
that the censoring not be too “heavy”.

Although we assumed in (3.2) that the survival distribution for each cause
is of the same type, there is no difficulty in principle in allowing different types
for different causes; e.g., we might have a Weibull for Cause 1 and a Gamma for
Cause 2. The methods can be extended to cover such cases.

The assumption of identical distributions can be relaxed by allowing the
parameters pj and ψj in Section 2 to depend on covariate information specific to
individual i by way of, e.g., logistic-linear and log-linear functions of covariate
vectors for pj and λj , in the exponential model. The manner of doing this is
detailed for example in Ghitany, Maller and Zhou (1994) and Vu, Maller and
Zhou (1998), for single-cause models, and much the same approach will work
here. Results can be obtained under conditions on the covariates which are
not too far from requiring that they be uniformly asymptotically negligible in
the sense spelled out in Maller (1993), for example; and under conditions for
the censoring distributions which reveal their role in the asymptotic analysis
by showing, in some way, the necessity for “sufficient followup” to exist in the
sample. Analyses like these add greatly to understanding the way censoring
and covariate information affect the inferences we can draw from the data, as
discussed in detail, for example in Ghitany, Maller and Zhou (1994) and Vu,
Maller and Zhou (1998) and Ghitany and Maller (1992).

Goodness of Fit and Sufficient Followup
Goodness of fit of parametric distributions to competing risks data can be

assessed informally using the cumulative incidence function as in Figure 5.1. To
proceed more formally we could use individual-cause PP plots, as exemplified in
Maller and Zhou (1996, Section 5.4, p.115) for the one-cause case, and simulate
percentage points of some measure of the linearity of the plots, as is done there.
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Similarly, “sufficient followup” in censored competing risks data could be assessed
by generalising the methods of Maller and Zhou (1996, p.37) for single-cause
survival data. These are important areas for future research.

Additional Causes, and Elimination of a Cause
The boundary hypothesis test proposed in Theorem 4 is essentially a test

for whether all causes of mortality affecting the population are listed among
{1, . . . , J}; or are there other potential causes? As a vivid illustration of the
possibilities here see the analysis by Larson and Dinse (1985) of the Stanford
heart transplant data, where they conjecture, in explanation for the fact that
their model fits poorly in respect to “other” causes of death, that at least one
other major cause should be listed. Larson and Dinse (1985) constrain their
pj, 1 ≤ j ≤ J , to add to 1, so they are operating in the restricted parameter space
of Theorem 4. It would be interesting to extend their analysis to the situation
of Theorem 1 to see if the fitting can be improved significantly by allowing the
sum of the pj to be less than 1.

The above discussion relates to the possibility of additional causes. The
obverse question is: can we test for the elimination of a cause? We may suppose
for example that a researcher believes a “cure” from Cause 1 has been effected,
and indeed in his/her data observes very few deaths from this cause. This cause
still exists in the population, since we do observe some deaths from it (otherwise
there is nothing to test), but is it “significant” in some sense, relative to the
other causes? This question is of great practical interest since surely a “cure” is
the ultimate aim or at least hope of any treatment. We have not addressed this
question here but it can be approached as a test for a significant increase in the
log-likelihood when Cause 1 is dropped from the list. This creates a degenerate
situation in that p1 = 0 implies complete elimination of ψ1 as well. Lemdani and
Pons (1997) have considered this issue in a related context (see below).

Early researchers debated ways of estimating the effects of remaining causes
if it were possible to eliminate one or more causes. Daniel Bernoulli, in 1760,
considered the effect on population mortality of the eradication of smallpox (just
recently become a reality!), for example. On this issue we concur with Prentice
et al. (1978, p.546), who stress that “the interpretation of such effects is ...
restricted to actual study conditions and there is no implication that the same
regression estimates would prevail ... (if) certain causes of failure have been
eliminated”. In line with this philosophy, and with the data-driven approach we
adopt, our analysis does not address this issue as such.

The Lemdani and Pons Model
Lemdani and Pons (1997) give an analysis of a “multiple cause” survival

model which differs from our formulation in that the different causes of death or
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failure are not identified. Their model is in fact an extension of the “long-term
survivor” model discussed in Maller and Zhou (1996). The different causes or
“susceptibility factors” are manifest in the model as a vector of probabilities to be
estimated. A major issue is then the identifiability of these mixing probabilities,
from data in which the different causes of death are not identified. Lemdani and
Pons’ analysis is by martingale methods and requires very stringent assumptions,
apart from identifiability assumptions. They obtain consistency and asymptotic
normality of the parameters in a parametric setup, and an analogue of Theorem
4 for the boundary value case when individuals are “totally susceptible” to death,
among other results. They also address the problem of the elimination of a cause,
as discussed above, providing an ingenious approach to it in their context.

Parametric or Nonparametric?
We have restricted ourselves to parametric models for competing risks but

this is not to deny the important role played by nonparametric methods, not only
for displaying the data, as in Section 6, but also as a vehicle for the estimation
and testing of effects. We expect that a development of nonparametric techniques
along the lines of that in Maller and Zhou (1996) for single-cause models would
throw a great deal of light on the important issue of sufficient followup, for
example. Including covariates in a nonparametric approach suggests a version of
the Cox proportional hazards model (Kalbfleisch and Prentice (1980, p.183), Cox
and Oakes (1984, p.143)). Useful approaches to nonparametrics in the competing
risks context such as that of Lagakos, Sommer and Zelen (1978) and Chapter IV
of Andersen et al. (1993) provide a basis for this development. For an interesting
discussion of some of the data-display issues, see Pepe and Mori (1993). Lin
(1997) gives an analysis of such methods using counting process methods, with
illuminating data displays as well.

7. Proofs of Theorems 1−5

For the most part our proofs will be by appeal to the results in Vu and
Zhou (1997) (see also Self and Liang (1987) and Lemdani and Pons (1997)),
where a very general approach to the boundary (and interior) hypothesis testing
problem for estimating functions is set out under some natural and fairly mild
conditions. Apart from second order differentiability of the log likelihood, the
parameter spaces specified by both the alternate and null hypotheses are required
to be (locally) cone-like near the true parameter point θ0, in the sense that
there is a cone which coincides with the parameter space under consideration
on a closed neighborhood of θ0. See conditions (A1), (A2), (A2′), (A3) of Vu
and Zhou (1997). These conditions are trivially satisfied in our setup once the
parameter spaces have been specified appropriately. The third type of condition,
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(B1)−(B5) of Vu and Zhou (1997), concerns the probabilistic properties of the
first and second derivatives of the log likelihood. Since our models have true
likelihoods (Vu and Zhou allow a more general estimating equation setup) we
can take Dn = Gn and V = I in their notation, thus simplifying their (B1) and
making their (B4) redundant. Furthermore, under our i.i.d. censoring model,
the (expected) information matrix, Dn = E(Fn(θ0)), equals nD, where D is the
(expected) information contributed by one individual. Thus we can recast Vu
and Zhou’s (B1)−(B5) as requiring, in our context:

(B1) E(Sn(θ0)) = 0 and E(Sn(θ0)(Sn(θ0))T ) = E(Fn(θ0)), a finite (7.1)
matrix;

(B2) λmin(D) > 0, i.e., D is nonsingular; (7.2)

(B3) sup
θ∈Nn(A)

∥∥∥∥ 1
n
Fn(θ) −D

∥∥∥∥ P−→ 0 as n→ ∞, for each A > 0 (7.3)

(here Nn(A) =
{
θ ∈ Θ : n(θ − θ0)TD(θ − θ0) ≤ A2

}
, for n ≥ 1 and A > 0); and

(B5) (B2) holds and D−1/2Sn(θ0)√
n

D→ N(0, I). (7.4)

(Here λmin(·) denotes the minimum eigenvalue of a symmetric matrix.) The
first equality in (B1) gives the “unbiasedness” of the estimating function derived
from the likelihood, while the second equality allows us to take Dn = Gn in Vu
and Zhou’s original (B1). (B2) is a necessary requirement for non-degeneracy
of the model, as is apparent from (B5). (B3) is the hardest condition to check.
Our i.i.d. assumptions and the Weak Law of Large Numbers immediately give
Fn(θ0)/n P−→ D as n→ ∞, but (7.3) requires some uniformity of convergence in
a neighborhood of θ0.

We stress that (B1)−(B5) (and likewise, (A2) and (A3)) must be checked
anew for each null hypothesis under test, and this may necessitate different con-
siderations and result in quite different conditions (such as the stronger integra-
bility conditions required in Theorems 4 and 5).

For the proofs we need the derivatives in Sn(θ) and Fn(θ). Let L(i) be the
contribution to the likelihood by individual i, so from (3.1) and (3.2) we can
write

L(i)(θ) =
J∑
j=1

(cij(log pj + log f(tij, ψj))) + (1 − ci) log(1 − F (ti))

where F (t) is defined in (2.7). Thus, for 1 ≤ j ≤ J ,

∂L(i)(θ)
∂ψj

= cij
∂ log f(tij, ψj)

∂ψ
− (1 − ci)pj

1 − F (ti)
∂F (ti, ψj)

∂ψ
, (7.5)
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∂L(i)(θ)
∂pj

=
cij
pj

− (1 − ci)F (ti, ψj)
1 − F (ti)

. (7.6)

These constitute the (s + 1)J components of Sn(θ) defined in (3.4). Second
derivatives are as follows:

−∂
2L(i)(θ)
∂ψj∂ψk

= −cij ∂
2 log f(tij, ψj)
∂ψ∂ψT

1{j=k} +
(1 − ci)pj
1 − F (ti)

∂2F (ti, ψj)
∂ψ∂ψT

1{j=k}

+
(1 − ci)pjpk
(1 − F (ti))2

∂F (ti, ψj)
∂ψ

∂F (ti, ψk)
∂ψT

, (7.7)

−∂
2L(i)(θ)
∂ψj∂pk

=
{

(1−ci)
1−F (ti)

∂F (ti, ψj)
∂ψ

}
1{j=k}+

(1−ci)pjF (ti, ψk)
(1−F (ti))2

∂F (ti, ψj)
∂ψ

, (7.8)

−∂
2L(i)(θ)
∂pjpk

=
cij
p2
j

1{j=k} +
(1 − ci)F (ti, ψj)F (ti, ψk)

(1 − F (ti))2
, (7.9)

for 1 ≤ j, k ≤ J . When added over 1 ≤ i ≤ n, these form the components of
Fn(θ), defined in (3.4).

Before proceeding, we give three lemmas, the first of which establishes (B1)
for the assumed model, and the next two of which contain sufficient conditions
for (B2) and (B3).

Lemma 7.1. We have

E

[
∂L(1)(θ)
∂θ

]
θ=θ0

= 0 and E

[
−∂

2L(1)(θ)
∂θ∂θT

]
θ=θ0

=E

[
∂L(1)(θ)
∂θ

∂L(1)(θ)
∂θT

]
θ=θ0

,

and the latter is a finite matrix.

Proof. The following formulae are useful. Let Q(·) be a measurable function
on R and write Fj0(y) = F (y, ψj0) for brevity. Then for any i, j, 1 ≤ i ≤ n,
1 ≤ j ≤ J ,

E(cijQ(ti))=E(cijQ(t∗ij))=E
(
Q(t∗ij)1{t∗ij≤ui,Bi=j}

)

= pj0E(E(Q(t∗ij)1{t∗ij≤ui}|ui, Bi=j))=pj0E
(∫ u

0
Q(y)dFj0(y)

)
, (7.10)

E((1 − ci)Q(ti)) = E
(
E(Q(ui)1{t∗i>ui}|ui, Bi)

)
= E (Q(u)(1 − F0(u)) , (7.11)

where u is a rv with c.d.f. G. The expectations on the right sides of (7.10)−(7.11)
are with respect to u, while those on the left sides are with respect to any distri-
butional setup (and specification of parameters) under which the i.i.d. censoring
model holds. Note that the independence of the t∗ij from ui, and of t∗i from ui, is
crucial in these calculations.
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The lemma follows straightforwardly by applying these formulae together
with the regularity assumptions in (3.5) to (7.5)−(7.9).

Lemma 7.2. Conditions (3.6) and (3.7) imply (7.2).

Proof. For brevity let Yi = ∂L(i)(θ0)/∂θ. Suppose by way of contradiction that
D is singular, so wTDw = 0 for some w = (w1, . . . , wJ , wJs+1, . . . , w(J+1)s) ∈
R(J+1)s, w �= 0, where wj ∈ Rs for j = 1, . . . , J and wj ∈ R for j = Js +
1, . . . , (J + 1)s. Then wTY1Y

T
1 w is a nonnegative r.v. with E(wTY1Y

T
1 w) =

wTDw = 0 by Lemma 7.1, which implies wTY1 = 0 a.s. As w �= 0, there
exists k ∈ {1, . . . , J} such that (wk, wJs+k) �= 0. For this k we define an event
Ak = {c1k = 1} = {t∗1k ≤ u1, B1 = k} and let

Zk = wTk
∂ log f(t∗1k, ψk0)

∂ψ
+
wJs+k
pk0

.

On Ak, c1j = 0 for j �= k, c1 = 1, and t1k = t∗1k, so that wTY1 = Zk by (7.5) and
(7.6). It follows that P (Zk �= 0, Ak) = P (wTY1 �= 0, Ak) ≤ P (wTY1 �= 0) = 0 and
so, by (3.6),

P (Zk = 0) ≥ P (Zk = 0, Ak) = P (Ak) = P (t∗1k ≤ u1, B1 = k)

=
∫

[0,∞)
P (t∗1k ≤ y,B1 = k)dG(y) = pk0

∫
[0,∞)

F (y, ψk0)dG(y) > 0.

This contradicts (3.7), so D is non-singular.

Lemma 7.3. Suppose (7.2) holds. Then (7.3) holds if, for some δ > 0,

(B3∗) E

(
sup

|θ−θ0|≤δ

∥∥∥∥∂
2L(1)(θ)
∂θ∂θT

∥∥∥∥
)
<∞. (7.12)

Proof. Assume (7.12) and write Fn(θ) = −∂2Ln(θ)/∂θ∂θT =
∑
iXi(θ), say,

where the Xi(θ) are (J + 1)s× (J + 1)s symmetric random matrices constructed
from the right hand sides of (7.7)−(7.9). Take δ > 0 and let N (δ) = {|θ−θ0| ≤ δ}
be a closed δ-neighborhood of θ0 in R(s+1)J . Note that

1
n

sup
θ∈N (δ)

∥∥∥∥Fn(θ)−nD
∥∥∥∥=

1
n

sup
θ∈N (δ)

∥∥∥∥
n∑
i=1

(Xi(θ) −EXi(θ0))
∥∥∥∥

≤
∥∥∥∥ 1
n

n∑
i=1

(Xi(θ0)−EXi(θ0))
∥∥∥∥+ 1

n

n∑
i=1

sup
θ∈N (δ)

‖Xi(θ)−Xi(θ0)‖ .

(7.13)

The first term on the right hand side of (7.13) is the average of n i.i.d. random
matrices with expected value 0, hence tends to 0 as n→ ∞ by the Weak Law of
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Large Numbers. The second term on the right hand side of (7.13) is the average
of n non-negative i.i.d. rvs, Yi(δ), say, which have finite expectations by (7.12)
and are monotone in δ. By the Weak Law of Large Numbers this term converges
in probability to EY1(δ). Take a sequence δk ↓ 0, and fix ε > 0. As X1(θ) is a.s.
continuous at θ0,

lim sup
k→∞

P (Y1(δk) > ε)

= lim sup
k→∞

P
(

sup
θ∈N (δk)

‖X1(θ) −X1(θ0)‖ > ε
)

≤ lim sup
k→∞

P (‖X1(θ)−X1(θ0)‖>ε for some θ ∈ N (δk) with rational coordinates)

≤ P (‖X1(θ) −X1(θ0)‖ > ε infinitely often for θ ∈ N (δk) as δk ↓ 0) = 0.

Thus Y1(δ)
P→ 0 as δ ↓ 0 and hence, by monotone convergence, EY1(δ) → 0 as

δ ↓ 0.
Now, given ε > 0, we can choose δ = δ(ε) > 0 so small that EY1(δ) ≤ ε.

Recall the definition of Nn(A) following (7.3), let A > 0 and take θ ∈ Nn(A). In
view of (7.2) and A2 ≥ n(θ − θ0)TD(θ − θ0) ≥ n|θ − θ0|2λmin(D), we see that
θ ∈ N (δ) if we choose n ≥ A2/(δ2λmin(D)).
Then for n this large,

P

(
1
n

sup
θ∈Nn(A)

‖Fn(θ) − nD‖ > 3ε
)
≤ P

(
1
n

sup
θ∈N (δ)

‖Fn(θ) − nD‖ > 3ε
)

≤ P

(
1
n

∥∥∥∥∥
n∑
i=1

Xi(θ0) − EXi(θ0)

∥∥∥∥∥ > ε

)
+P

(
1
n

n∑
i=1

Yi(δ) > EY1(δ) + ε

)
.

The last expression tends to 0 as n→ ∞, establishing (7.3), i.e., (B3).

Proof of Theorem 1. The Vu and Zhou (1997) formulation specifies subsets
τ and Ω of Θ over which maximization takes place. For Theorem 1 it suffices
to consider τ = Θ. Now τ is required to be locally cone-like in the sense that
there is a closed neighborhood N (δ) of θ0 in R(s+1)J with δ small enough, and
a containing cone Cτ with vertex at θ0, such that Cτ ∩ N (δ) = τ ∩ N (δ). This
holds with Cτ = R(s+1)J here, as clearly N (δ) ⊆ τ for sufficiently small δ, since
θ0 is an interior point of Θ. This establishes (A2) of Vu and Zhou (1997), for τ .
(A3) of Vu and Zhou (1997) requires Cτ to be rescaled and centered at 0, giving
a cone C̃τn which must “asymptotically coincide” with a cone C̃τ in the sense of
(A3), p.903 of Vu and Zhou (1997). Here C̃τ = R(s+1)J meets the requirement
as Cτ is trivially invariant under rescaling and centering.

Now suppose we have verified (B1)−(B5). Then Theorem 2.1 of Vu and
Zhou (1997) gives a local MLE θ̂

(1)
n (maximizer of Ln(θ) over τ), which is locally

uniquely determined interior to τ WPA1, and is consistent for θ0 as n→ ∞.
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Asymptotic distributions of the maximum estimators are not spelled out in
Vu and Zhou (1997) since they can be very complicated in boundary cases and
depend heavily on the particular situation. However, since θ̂(1)

n is an interior
maximum, i.e., Sn(θ̂

(1)
n ) = 0, it is a straightforward result of (B5) that

√
n(θ̂(1)

n −
θ0) converges in distribution to N(0,D), and then (3.10) follows from (B3) and
an application of the general studentization theorem of Vu, Maller and Klass
(1996).

It remains to verify (B1)−(B5). (B1) was proved in Lemma 7.1, and (B2)
follows from Lemma 7.2 and (3.6) and (3.7). For (B3) we use Lemma 7.3 and
verify that (B3∗) holds for the present setup under (3.8)−(3.9). (7.10) and (7.11)
are used to evaluate the integrals. Thus to deal with the first term on the right
hand side of (7.7), we need that

E

(
c1j sup

|ψ−ψj0|≤δ

∥∥∥∥∂2 log f(t1j , ψ)
∂ψ∂ψT

∥∥∥∥
)
<∞ (7.14)

for some δ > 0 and for each 1 ≤ j ≤ J . But by (7.10) this follows immediately
from (3.8).

The second term on the right hand side of (7.7) requires checking

E

(
(1 − c1) sup

|ψ−ψj0|≤δ
1

1 − F (t1)

∥∥∥∥∂2F (t1, ψ)
∂ψ∂ψT

∥∥∥∥
)
<∞, 1 ≤ j ≤ J, (7.15)

for some δ > 0. Now in this interior case we can ignore the factor of 1−F (t1) in
the denominator of (7.15), and likewise in the other terms in (7.7)−(7.9), because
when |ψ − ψj0| ≤ δ,

1−F (t1) = 1−
J∑
j=1

pj+
J∑
j=1

pj (1 − F (t1, ψj)) ≥ 1−
J∑
j=1

pj ≥ 1−
J∑
j=1

(pj0+δ) ≥ a0 > 0,

(7.16)

once δ < (1/2)(1−∑J
j=1 pj0) = a0, say. Now, using (7.11), we see that (7.15) is

implied by (3.9). The third term on the right hand side of (7.7) requires

E

(
sup

|ψ−ψj0|≤δ

∥∥∥∥∂F (t1, ψ)
∂ψ

∂F (t1, ψ)
∂ψT

∥∥∥∥
)
<∞,

and by the Cauchy-Schwarz inequality this follows from (3.9) in a similar way as
for the second term. We can similarly deal with (7.8), and (7.9) is integrable in
the interior case with no assumptions at all. Putting these together we get (B3∗)
and hence (B3).
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Finally, under our i.i.d assumptions, (B5) follows immediately from the mul-
tivariate Central Limit Theorem, since Sn(θ0) is a sum of i.i.d random vectors,
each with mean 0 and finite covariance matrix D.

Proof of Theorem 2. Again we use the Vu and Zhou (1997) formulation, but
for Theorem 2 we need to deal with Ω = Ωr, the subset of Θ to which θ0 is
confined under the null hypothesis. Ω is required to have similar properties as τ .
In the present proof this is straightforward. As θ0 and θ∗ are in the interior of Θ,
and Sr can be rescaled to Rr × {0}(J+1)s−r , CΩ = Sr + θ∗ and C̃Ωn = C̃Ω =
Rr × {0}(J+1)s−r satisfy the requirements in Vu and Zhou (1997). Therefore,
Theorem 2.1 of Vu and Zhou (1997) gives the required MLE θ̂

(2)
n over Ωr, while

their Theorem 2.2, in conjunction with the τ and θ̂(1)
n in the proof of Theorem 1,

concludes that

d(1)
n = 2{Ln(θ̂(1)

n ) − Ln(θ̂(2)
n )} D→ inf

θ∈Rr×{0}(J+1)s−r
|N − θ|2 − inf

θ∈R(s+1)J
|N − θ|2

= N2
r+1 + · · · +N2

(s+1)J − 0 ∼ χ2
(s+1)J−r,

where N = (N1, . . . , N(s+1)J ) is a standard normal random vector in (s + 1)J
dimensions. This proves (3.11).

Proof of Theorem 3. The proof is basically a straightforward checking of the
conditions of Theorem 1, though the details are lengthy. Here we give an outline
for the Weibull distribution, which of course covers the exponential distribution
as a special case. The arguments for the Gamma distribution are omitted for the
sake of brevity.

For the Weibull distribution, (3.6) is obvious provided G does not degenerate
at 0. Next, log f(t, ψ) = logα+ α log λ+ (α− 1) log t− (λt)α, so

∂ log f(t, ψ)
∂ψ

=


 α

λ − α(λt)α−1t

1
α + log(λt) − (λt)α log(λt)


 .

Thus for (z, a) = (z1, z2, a) ∈ R3 − {0},

zT
∂ log f(t, ψj0)

∂ψ
+ a = z1

αj0
λj0

(1 − y) +
z2
αj0

(1 + (1 − y) log y) + a,

where y = (λj0t)αj0 , which clearly has no zeroes or only isolated zeroes in t ∈
(0,∞), so (3.7) holds. Furthermore,

∂2 logf(t, ψ)
∂ψ∂ψT

=


 − α

λ2 − α(α − 1)(λt)α−2t2 1
λ−(λt)α−1t−αt(λt)α−1log(λt)

1
λ−(λt)α−1t−αt(λt)α−1log(λt) − 1

α2 − (λt)α log2(λt)


.
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For t near 0, the above matrix is O(1) and, for large t, it is O(tα+η) for some η > 0.
On the other hand F (dt, ψ) = f(t, ψ)dt is O(tα−1) for t near 0, and exponentially
small as t → ∞. Now for |ψ − ψj0| ≤ δ, λ and α are bounded above and below
by λj0 ± δ and αj0 ± δ respectively, provided we keep 0 < δ < minj(λj0, αj0). As
a result, the integral in (3.8) is uniformly bounded in u and |ψ − ψj0| ≤ δ, which
implies (3.8).

It remains to show (3.9). Since h(t, ψ) = αλ(λt)α−1 and H(t, ψ) = (λt)α, we
obtain

∂H(t, ψ)/∂ψ = [α(λt)α−1t (λt)α log(λt) ]T and

∂2H(t, ψ)
∂ψ∂ψT

=


 α(α − 1)(λt)α−2t2 (λt)α−1t+ αt(λt)α−1 log(λt)

(λt)α−1t+ αt(λt)α−1 log(λt) (λt)α log2(λt)


 .

These are bounded in norm by terms that are O(tα−η) for t near 0 and O(tα+η)
for t near ∞, where η > 0 can be arbitrarily small. Thus, as

∂F

∂ψ
= e−H

∂H

∂ψ
and

∂2F

∂ψ∂ψT
= e−H

∂2H

∂ψ∂ψT
− e−H

∂H

∂ψ

∂H

∂ψT
,

there exists a constant C such that∥∥∥∥∂2F (u, ψ)
∂ψ∂ψT

∥∥∥∥ +
∣∣∣∣∂F (u, ψ)

∂ψ

∣∣∣∣2 ≤ C exp(−(λu)α)(uα−2η + u2α+2η) (u > 0).

The last term is uniformly bounded in u and |ψ − ψj0| ≤ δ, provided δ and η are
sufficiently small. This proves (3.9).

Proof of Theorem 4. We proceed as in the proof of Theorem 2, but in order to
apply the Vu and Zhou (1997) results it turns out to be better here to transform
the parameter space from Θ = ΨJ × SJ to Θ′ = HΘ by the nonsingular linear
transform

H =

[
I 0

0 h

]
(s+1)J×(s+1)J

where h =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
1 1 · · · 1



J×J

.

This takes θ=(ψ1, . . . , ψJ , p1, . . . , pJ) to θ′=Hθ=(ψ1, . . . , ψJ , p1, . . . , pJ−1, p1 +
· · ·+pJ) with corresponding “true” value θ′0 =Hθ0 =(ψ10, . . . , ψJ0, p10, . . . , pJ−1,0

, 1) under H(2)
0 (see (4.2)).

The parameter set under the alternative, τ = Θ, transforms to τ ′ = Θ′ =
HΘ = {θ′ ∈ ΨJ × (0,∞)J : θ′sJ+1 + · · · + θ′(s+1)J−1 < θ′(s+1)J ≤ 1}. The corre-
sponding neighborhood of θ0 is

N ′(δ) =
J∏
j=1

s∏
	=1

[ψ(	)
j0 − δ, ψ

(	)
j0 + δ] ×

J−1∏
j=1

[pj0 − δ, pj0 + δ] × [1 − δ, 1 + δ]. (7.17)
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Here ψ(	)
j0 , 1 ≤ � ≤ s, denote the components of ψj0. When δ is sufficiently

small, τ ′ ∩ N ′(δ) has the same form as (7.17) except that the range of θ′(s+1)J

in τ ′ ∩ N ′(δ) is [1 − δ, 1] instead of [1 − δ, 1 + δ]. The containing cone Cτ ′ , with
vertex at θ′0, can be taken as Cτ ′ = R(s+1)J−1 × (−∞, 1], which coincides with τ ′

on N ′(δ), so (A2) of Vu and Zhou (1997) is satisfied for τ ′, Cτ ′ , and N ′(δ).
We must check that conditions (B1)−(B5) hold in the transformed parameter

space; call them (B1′)−(B5′). We will deduce them from (B1)−(B5), for which
much of the groundwork was laid in the proof of Theorem 1 because with H a
linear transform it is easy to go from the (B)-conditions to the (B′)-conditions.
For (B1′) we get

E
(
S′
n(θ

′
0)
)
=E

(
∂Ln(θ′)
∂θ′

) ∣∣∣∣
θ′=θ′0

=H−TE
(
∂Ln(θ)
∂θ

) ∣∣∣∣
θ=θ0

=H−TE (Sn(θ0)) = 0

(by (B1)), and the matrix nD′ = D′
n = E (S′

n(θ
′
0)) (S′

n(θ
′
0))

T = nH−TDH−1 is
obviously finite and nonsingular, so (B2′) holds. For (B3′), let A > 0, n ≥ 1, and
note that

N ′
n(A) =

{
θ′ : n(θ′ − θ′0)

TD′(θ′ − θ′0) ≤ A2
}

=
{
θ : n(θ − θ0)THT (H−TDH−1)H(θ − θ0) ≤ A2

}
= Nn(A),

so that, letting F ′
n(θ′) = ∂2Ln(θ′)/∂(θ′)∂(θ′)T = H−TFn(θ)H−1, we have

sup
θ′∈N ′

n(A)

∥∥∥∥ 1
n
F ′
n(θ

′) −D′
∥∥∥∥ ≤ ‖H−1‖2 sup

θ∈Nn(A)

∥∥∥∥ 1
n
Fn(θ) −D

∥∥∥∥ .
Hence (B3′) will follow from (B3); but we must check this for the current choice
of θ0 on the boundary. (3.8) is used to deal with (7.14) just as in the proof
of Theorem 1. But when it comes to the terms in (7.7)−(7.9) with the factor
(1 − F (ti)) in the denominator, we can no longer use (7.16) to keep this positive
since

∑
pj0 = 1 in the present case. This is where the more stringent integrability

conditions (4.3)−(4.4) are needed. To bound 1 − F (ti) below we proceed as
follows. Take δ > 0 and define Hδ(t) as in (4.1). Use Taylor’s expansion to write,
for ψ ∈ Ψ,

log

(
1 − F (t, ψ)

1 − F (t, ψj0)

)
= (ψ − ψj0)T

∂ log(1 − F (t, ξ))
∂ψ

= −(ψ − ψj0)T
∂H(t, ξ)
∂ψ

.

Here ξ = aψ+(1−a)ψj0 for some 0 ≤ a ≤ 1. Keep |ψ−ψj0| ≤ δ, so |ξ−ψj0| ≤ δ.
Then 1−F (t, ψ) ≥ e−δHδ(t)(1−F (t, ψj0)). Now choose δ < (min1≤j≤J pj0)/2, so
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that pj ≥ pj0 − δ ≥ (1/2)pj0, 1 ≤ j ≤ J . Thus

1 − F (t) = 1 −
J∑
j=1

pj +
J∑
j=1

pj (1 − F (t, ψj)) ≥ 1
2
e−δHδ(t)

J∑
j=1

pj0 (1 − F (t, ψj0))

= e−δHδ(t)(1 − F0(t))/2, (7.18)

where F0(t) is defined just before (4.1). By (7.11), any measurable function
integrated against 1−ci brings a factor of 1−F0(u) into the numerator, cancelling
any similar factor introduced by a factor of 1−F (ti) in the denominator via (7.18).
Thus the second term on the right hand side of (7.7) requires us to check the
finiteness of

E

[
sup

|ψ−ψj0|≤δ
1−c1

1−F (t1)

∥∥∥∥∂2F (t1, ψ)
∂ψ∂ψT

∥∥∥∥
]
≤ E

[
2eδHδ(t1)(1−c1)

1−F0(t1)
sup

|ψ−ψj0|≤δ

∥∥∥∥∂2F (t1, ψ)
∂ψ∂ψT

∥∥∥∥
]

= 2E

[
eδHδ(u) sup

|ψ−ψj0|≤δ

∥∥∥∥∂2F (u, ψ)
∂ψ∂ψT

∥∥∥∥
]
.

The last is finite by (4.3). For the third term on the right hand side of (7.7)
we look at

E

[
e2δHδ(t1)(1 − c1)
(1 − F0(t1))2

sup
|ψ−ψj0|≤δ

∣∣∣∣∂F (t1, ψ)
∂ψ

∣∣∣∣2
]
= E

[
e2δHδ(u)

1 − F0(u)
sup

|ψ−ψj0|≤δ

∣∣∣∣∂F (u, ψ)
∂ψ

∣∣∣∣2
]

and this is finite by (4.4) (note that we can replace 2δ by δ just by taking a larger
δ, if necessary). For (7.9) we need

E

[
(1 − c1) sup

|ψ−ψj0|≤δ
1

(1 − F (t1))2

]
≤ E

[
e2δHδ(u)

1 − F0(u)

]

and this is covered by the “1” in (4.4). Similarly we deal with (7.8) (use the
Cauchy-Schwartz inequality and (4.4) for the second term on the right hand side
of (7.8)). This completes the verification of (B3∗). Finally for (B5′), simply note
that (B5) implies

(D′)−1/2S
′
n(θ

′
0)√
n

= (H−TDH−1)−1/2H−TD1/2 D−1/2Sn(θ0)√
n

D→ N(0, I).

Now we return to the A-conditions. We found C ′
τ = R(s+1)J−1 × (−∞, 1], so

the centered, rescaled cone for the alternative is C̃τ ′n ={θ̃′=√
n(H−TDH−1)T/2

×(θ′−θ′0) : θ′ ∈ C ′
τ}. Because the Cholesky square root (H−TDH−1)T/2 is up-

per triangular, C̃τ ′n asymptotically coincides with C̃τ ′ = R(s+1)J−1 × (−∞, 0].
Now H

(2)
0 transforms to H

(2)′
0 : θ′ = θ′0 ∈ Ω′ = ΨJ × SJ−1 × {1}. N ′(δ)
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is already defined in (7.17) and for the containing cone for the null we take
CΩ′ = R(s+1)J−1 × {1}, which we re-center/scale to C̃Ω′

n
= R(s+1)J−1 × {0},

asymptotically coincident with C̃Ω′ = R(s+1)J−1 × {0}. Clearly (A2′) is satisfied
for Ω′, C̃Ω′ , N ′(δ), so Theorems 2.1 and 2.2 of Vu and Zhou (1997) give the local
uniqueness and consistency of θ̂(1)

n and θ̂(3)
n , and that

d(2)
n

D→ inf
θ∈R(s+1)J−1×{0}

|N − θ|2 − inf
θ∈R(s+1)J−1×(−∞,0]

|N − θ|2

= N2
(s+1)J−N2

(s+1)JI(N(s+1)J >0)=N2
(s+1)JI(N(s+1)J ≤0)∼N2

1 I(N1≥0).

Proof of Theorem 5. The proof is similar to those of Theorems 3 and 4, with
condition (4.5) or (4.6) taking care of (4.3)−(4.4). Details are omitted.
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