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Abstract: An adaptive M -estimator of a regression parameter based on censored

and truncated data is developed by using B-splines to estimate the efficient score

function and a relatively simple cross validation method to determine the number

of knots. An iterative algorithm to compute the estimator is also provided. The

adaptive estimator is asymptotically efficient, and simulation studies of the finite-

sample performance of the adaptive estimator shows that it is superior to other M -

estimators for regression analysis of censored and truncated data in the literature.

An asymptotic theory of cross validation in the presence of censoring and truncation

is also developed in this connection.
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1. Introduction

Consider the linear regression model

yj = βTxj + εj (j = 1, 2, . . .), (1.1)

where the εj are i.i.d. random variables (representing unobservable disturbances)
with a common distribution function F , β is a d × 1 vector of unknown param-
eters, and the xj are either nonrandom or independent d × 1 random vectors
independent of {εn}. Suppose that the responses yj in (1.1) are not completely
observable due to left truncation and right censoring by random variables tj and
cj such that ∞ > tj ≥ −∞ and −∞ < cj ≤ ∞. It will be assumed that (tj , cj)
are i.i.d. and independent of (xj , εj). Let ỹj = yj ∧ cj and δj = I{yj≤cj}, where
we use ∧ and ∨ to denote minimum and maximum, respectively. In addition
to right censorship of the responses yj by cj , we shall also assume left trunca-
tion in the sense that (ỹj, δj , xj) can be observed only when ỹj ≥ tj. The data,
therefore, consist of n observations (ỹo

i , t
o
i , δ

o
i , x

o
i ) with ỹo

i ≥ toi , i = 1, . . . , n. The
special case ti ≡ −∞ corresponds to the “censored regression model” which is
of basic importance in statistical modelling and analysis of failure time data (cf.
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Kalbfleisch and Prentice (1980), Lawless (1982)). The special case ci ≡ ∞ cor-
responds to the “truncated regression model” in econometrics (cf. Tobin (1958),
Goldberger (1981), Amemiya (1985), Moon (1989)) and in astronomy (cf. Segal
(1975), Nicoll and Segal (1980)), which assumes the presence of truncation vari-
ables τj so that (xj , yj) can be observed only when yj ≤ τj (or equivalently, when
−yj ≥ −τj = tj). Left truncated responses that are also right censored arise
in prospective studies of a disease and other biomedical studies (cf. Andersen,
Borgan, Gill and Keiding (1993), Keiding, Holst and Green (1989), Gross and
Lai (1996)).

Lai and Ying (1991b, 1992) studied efficient estimation of β from the data
(ỹo

i , t
o
i , δ

o
i , x

o
i ) by developing asymptotic minimax bounds for the semiparametric

estimation problem and constructing rank estimators that attain these bounds.
Assuming that F has a continuously differentiable density function f so that
the hazard function λ = f/(1 − F ) is also continuously differentiable, their con-
struction of these rank estimators consists of (i) dividing the sample into two
disjoint subsets and evaluating a preliminary consistent estimate b̂j of β from
the jth subsample (j = 1, 2), (ii) finding from the uncensored residuals in the
jth subsample a smooth consistent estimate λ̂j of the hazard function λ, (iii)
smoothing λ̂′j/λ̂j to obtain a smooth consistent estimate ψ̂j of λ′/λ, and (iv) us-
ing ψ̂1 (respectively ψ̂2) as the weight function for the linear rank statistic of the
second (respectively first) sample of residuals ỹo

i − bTxo
i . The sum S(b) of these

two linear rank statistics is used to define the rank estimator as the minimizer of
‖S(b)‖. There are, however, practical difficulties in carrying out this procedure.

First, rank estimators are difficult to compute when β is multidimensional.
As noted by Lin and Geyer (1992), rank estimators of multidimensional β “re-
quire minimizing discrete objective functions with multiple local minima” and
“conventional optimization algorithms cannot be used to solve such optimiza-
tion problems”. Computationally intensive search algorithms, such as the simu-
lated annealing algorithm used by Lin and Geyer (1992), are needed to minimize
‖S(b)‖. Another difficulty lies in estimation of λ′/λ to form the ψ̂j . Although
there is an extensive literature on estimation of the hazard function λ and its
derivative λ′ for censored and truncated data, the problem of estimating λ′/λ
from left truncated and right censored (l.t.r.c.) data is relatively unexplored. As
will be shown in Section 2, simply plugging in λ̂′j/λ̂j and smoothing the plugged-
in estimate do not give good results unless the sample size is very large.

The present paper addresses these issues in constructing asymptotically effi-
cient estimates of β from l.t.r.c. data. Instead of using rank estimators, we use
M -estimators which have much lower computational complexity (cf. Kim and
Lai (1999)). These M -estimators are defined for l.t.r.c. data by the estimating
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equation

n∑
i=1

xo
i {δo

i ψ(ỹo
i (b)) + (1 − δo

i )
∫

u>ỹo
i (b)

ψ(u)dF̂b(u|ỹo
i (b))

−
∫

u≥toi (b)
ψ(u)dF̂b(u|toi (b)−)} = 0, (1.2)

where ỹo
i (b) = ỹo

i − bTxo
i , t

o
i (b) = toi − bTxo

i , ψ is the score function associated
with the M -estimator, and

F̂b(u|υ) = 1 −
∏

i:υ<ỹo
i (b)≤u,δo

i =1

{1 − ∆(b, ỹo
i (b))/N(b, ỹo

i (b))}, (1.3)

N(b, u) =
n∑

i=1

I(toi (b) ≤ u ≤ ỹo
i (b)), ∆(b, u) =

n∑
i=1

I(ỹo
i (b) = u, δo

i = 1), (1.4)

cf. Lai and Ying (1994). The notation F̂b(u|υ−) in (1.2) is used to denote (1.3)
in which “υ < ỹo

i (b)” is replaced by “υ ≤ ỹo
i (b)”. The function F̂b(u| − ∞) is

the product-limit estimate of the common distribution function F (u) of the εj in
(1.1). Note that F̂b(u|υ) is the product limit estimate of

F (u|υ) = P{εj ≤ u|εj > υ}. (1.5)

Lai and Ying (1994) have shown that an asymptotically optimal choice of ψ in
(1.2) is

ψ∗ = (λ′/λ) − λ, (1.6)

for which the M -estimator of β is asymptotically normal with covariance matrix
equal to that given by the information bound of the semiparametric estimation
problem. Indeed this M -estimator of β has the same asymptotic properties as
the asymptotically efficient rank estimator. Since the M -estimator has much
lower computational complexity than the rank estimator, it will be used for
adaptive estimation in which the asymptotically efficient score function (1.6) is
not assumed to be known a priori but has to be estimated from the data.

Section 2 discusses how (1.6) can be estimated. We use a spline approxima-
tion to ψ and a cross validation method to choose the number of knots. This is
shown to perform much better than the plug-in method in Lai and Ying (1991b)
based on estimating λ and λ′. Simulation results reported in Section 3 show that
the adaptive M -estimator of β, which uses this new approach to estimate the
optimal score function, outperforms other M -estimators based on l.t.r.c. data
in the literature. Because of the simplicity of the cross validation method that
involves only cross validating the two subsamples with each other, using this
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adaptive determination of the score function does not incur much increase in
computational cost.

For complete data, Bickel (1982) showed how an adaptive estimate of β can
be constructed so that it is asymptotically as efficient as the maximum likeli-
hood estimate that requires specification of the density function f of the εj . The
basic idea is to replace the unknown score function (logf)′ = f ′/f in the maxi-
mum likelihood estimate by f̂ ′η/f̂η, where f̂η is a kernel estimate of f involving a
bandwidth η that converges to 0 at a sufficiently slow rate as n→ ∞. Hsieh and
Manski (1987) reported simulation studies showing that the behavior of an adap-
tive estimate can be changed dramatically in samples of moderate size by using
different smoothing parameters η. They also proposed to choose the smooth-
ing parameter that minimizes, over a preselected set of smoothing parameters,
a bootstrap estimate of the mean squared error of β̂. Faraway (1992) used B-
splines to estimate logf so that the smoothing parameter is the number of knots
(instead of the bandwidth in the kernel method) and estimated the mean squared
error of β̂ via an asymptotic formula instead of using the bootstrap. Jin (1992)
used B-splines to estimate f ′/f directly and proposed another cross validation
method which we extend to l.t.r.c. data in Section 2, where alternative cross
validation methods for l.t.r.c. data are also developed.

2. Estimation of the Score Function (1.6)

In this section we assume known β = 0, so that the yj(= εj) are i.i.d. with
a common distribution function F that has a continuously differentiable density
function f and hazard function λ, and consider estimation of the score function
(1.6) based on l.t.r.c. data. An obvious approach is to apply directly a method
proposed by Uzunoḡullari and Wang (1992) for estimating λ and λ′ from l.t.r.c.
data. The method estimates λ(r)(z) (the rth derivative for r ≥ 1, with λ(0) = λ)
by λ̂(r)(z) =

∫
Kr,η(z − u)dΛ̂(u), where Λ̂ is the estimated cumulative hazard

function, Kr,η(z) = η−(r+1)Kr(z/η) and Kr is a kernel. The bandwidth η(= ηr,z)
to estimate λ(r)(z) is chosen by a locally adaptive method that attempts to
minimize the mean squared error of λ̂(r)(z), replacing the unknown parameters
in the mean squared error by their estimates. Once λ̂ and λ̂(1) have been obtained
by this procedure, one can estimate (1.6) by λ̂(1)(z)/λ̂(z) − λ̂(z). However, this
obvious estimate has difficulties when λ̂(z) is close to zero, as shown in Section
4.1. We next describe another method to estimate the score function (1.6). First
note that if f is the common density function of the yj(= εj) then

f ′/f = λ′/λ− λ. (2.1)

We shall approximate ψ∗ = f ′/f by B-splines, with knots located at certain
quantiles of the product-limit estimate of F and with the number of knots chosen
by cross validation for l.t.r.c. data.
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2.1. Spline approximations to the score function

In an interval (a,b), take k knots a < ξk,1 < · · · < ξk,k < b, and define the
linear B-spline basis {Bk,i: i = 0, . . . , k + 1} as follows:

Bk,i(y) =



(ξk,1 − y)/(ξk,1 − a) if a ≤ y ≤ ξk,1 and i = 0,
(y − ξk,i−1)/(ξk,i − ξk,i−1) if ξk,i−1 ≤ y ≤ ξk,i and 1 ≤ i ≤ k,

(ξk,i+1 − y)/(ξk,i+1 − ξk,i) if ξk,i < y ≤ ξk,i+1 and 1 ≤ i ≤ k,

(y − ξk,k)/(b− ξk,k) if ξk,k < y ≤ b and i = k + 1,
0 otherwise,

where we set ξk,0 = a and ξk,k+1 = b. We can define Bk,i on the whole real
line by setting Bk,i(y) = 0 for y 	∈ [a, b]. Let Dk,i(y) be the derivative of Bk,i

at y 	∈ {ξk,i−1, ξk,i, ξk,i+1} (or y 	∈ {a, ξk,1} if i = 0, y 	∈ {ξk,k, b} if i = k + 1).
Denote Bk(y) = (Bk,0(y), . . . , Bk,k+1(y))T , Dk(y) = (Dk,0(y), . . . ,Dk,k+1(y))T ,
Ak(y) = Bk(y)BT

k (y), and

Ak(F )=
∫ b

a
Ak(y)dF (y), Bk(F )=

∫ b

a
Bk(y)dF (y),Dk(F )=

∫ b

a
Dk(y)dF (y). (2.2)

Given the knots a < ξk,1 < · · · < ξk,k < b, the best linear spline approx-
imation to ψ∗ is defined as aT

k (F )Bk(x), where ak(F ) minimizes
∫ b
a (aT

kBk(y) −
ψ∗(y)))2dF (y) over ak ∈ Rk+2. Since ψ∗ = f ′/f , integration by parts gives∫∞
−∞Dk(y)f(y)dy =

∫∞
−∞ fdBk = − ∫∞−∞Bkψ

∗dF , and therefore

∫ b

a
(aT

kBk(y) − ψ∗(y))2dF (y)

= aT
k

(∫ b

a
Ak(y)dF (y)

)
ak − 2aT

k

∫ b

a
Bk(y)ψ∗(y)dF (y) +

∫ b

a
(ψ∗(y))2dF (y)

= aT
kAk(F )ak + 2aT

kDk(F ) +
∫ b

a
(ψ∗)2dF, (2.3)

noting that Bk vanishes outside [a, b]. Since minimizing (2.3) is equivalent to
minimizing aT

kAk(F )ak + 2aT
kDk(F ), it follows that ak(F ) = −A−1

k (F )Dk(F ).
In the case k = 0, we shall also denote the best linear approximation to ψ∗

on [a, b] by aT
0 (F )B0(y) to unify the notation, where we set B0(y) = (1, y − a)T .

2.2. Knot placement and Jin’s method for choosing the number of
knots

Since F in (2.3) is unknown, we replace it by the product-limit estimate F̂ ,
which is defined in (1.3)–(1.4) with υ = −∞ and (toi (b), ỹ

o
i (b)) replaced by (toi ,
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ỹo
i ). Take 0 < p < p∗ < 1 and set a = F̂−1(p), b = F̂−1(p∗). The knots ξk,i

(i = 1, . . . , k) are chosen to be the evenly spaced quantiles

ξk,i = F̂−1(p+ (p∗ − p)i/(k + 1)). (2.4)

Ideally we would like to choose the number of knots to minimize
∫ b
a (aT

k (F̂ )Bk(y)−
ψ∗(y))2dF (y), or equivalently, to minimize L(k, F̂ , F ), where

L(k,G, F ) = aT
k (G)Ak(F )ak(G) + 2aT

k (G)Dk(F ). (2.5)

Since F in (2.5) is unknown, one approach to implement the minimization of
(2.5) with G = F̂ is to extend Jin’s (1992) method for complete data to the
l.t.r.c. situation as follows.
1. Split the data into two subsamples {(ỹo

1, δ
o
1, t

o
1), . . . , (ỹ

o
n1
, δo

n1
, ton1

)}, {(ỹo
n1+1,

δo
n1+1, t

o
n1+1), . . . , (ỹo

n1+n2
, δo

n1+n2
, ton1+n2

)}, where n1 = [n/2] and n2 = n −
n1. Let F̂ (1) and F̂ (2) be the product-limit estimates based on these two
subsamples separately.

2. Compute L(k, F̂ (1), F̂ (2)) = aT
k (F̂ (1))Ak(F̂ (2))ak(F̂ (1))+2aT

k (F̂ (1))Dk(F̂ (2)) for
k = 1, 2, . . . , and find the first local minimizer k̂cv of L(k, F̂ (1), F̂ (2)), i.e.

L(0, F̂ (1), F̂ (2)) ≥ · · · ≥ L(k̂cv, F̂
(1), F̂ (2)) < L(k̂cv + 1, F̂ (1), F̂ (2)).

3. Interchange F̂ (1) and F̂ (2) in Step 2, yielding the first local minimizer k̂′cv of
L(k, F̂ (2), F̂ (1)).

4. Suppose k̂′cv ≤ k̂cv for definiteness. Compute ST (k, F̂ ) = k−1∑k−1
j=0

∫ b
a (aT

j (F̂ )
Bj(y) − aT

k (F̂ )Bk(y))2 dF̂ and find the first local minimizer k̂ of ST (k, F̂ )
over k ∈ I(n), where I(n) = {k : k̂′cv ≤ k ≤ k̂2

cv}. Thus ST (k̂′cv, F̂ ) ≥ · · · ≥
ST (k̂, F̂ ) < ST (k̂ + 1, F̂ ). If there is no such k̂ within I(n), choose k̂ = k̂2

cv.
This step is called “stationary correction” by Jin (1992), who explains its
motivation as an attempt to ensure that aT

k+1(F̂ )Bk+1 does not differ too
much from aT

k (F̂ )Bk for the chosen k and thereby to reduce the variance of k̂.

2.3. Alternative cross validation methods for truncated/censored data

To begin with, note that a simpler way to combine L(k, F̂ (1), F̂ (2)) and
L(k, F̂ (2), F̂ (1)) in Steps 2 and 3 above is to add them so that k̂ is defined as
the minimizer of L(k, F̂ (1), F̂ (2)) + L(k, F̂ (2), F̂ (1)) over 0 ≤ k ≤ Kn, some pre-
scribed upper bound, instead of using Jin’s stationary correction to combine the
two subsample results. This is in fact tantamount to two-fold cross validation,
as will be discussed below.

More generally, for m-fold cross validation, the dataset S = {(ỹo
1, δ

o
1 , t

o
1), . . . ,

(ỹo
n, δ

o
n, t

o
n)} is randomly divided into m disjoint subsets S1, . . . ,Sm with size
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[n/m] for the first m − 1 subsets and n − (m − 1)[n/m] for Sm. Let F̂ (ν) be
the product-limit estimate of F based on Sν and let Gν denote the product-limit
estimate of F based on S−Sν . We use S−Sν as the “training sample”, from which
estimates of the coefficients of the linear spline approximation are computed, and
use Sν as the “test sample”, leading to the measure L(k,Gν , F̂

(ν)) of the mean
squared error (of using the training sample estimates to predict the efficient
scores of the test sample values) minus

∫ b
a (ψ∗)2dF , in view of (2.3). The m-fold

cross validation approach chooses k̂ to be the minimizer of
∑m

ν=1 L(k,Gν , F̂
(ν))

over k ≤ Kn. This way of defining m-fold cross validation requires n/m to be
large enough so that F̂ (ν) estimates F reasonably well. In the case of complete
data, such requirement is actually not needed and one can in fact carry out
full (“leave one out”) cross validation with m = n, since h(yi) is an unbiased
estimate of

∫∞
−∞ hdF . Suppose h vanishes outside an interval (a, b). When yi is

not completely observable due to censoring and truncation, we can replace the
unobservable h(yi) by

hF (ỹo
i , δ

o
i , t

o
i ) = δo

i h(ỹ
o
i ) + (1 − δo

i )
∫

ỹo
i <y≤b

h(y)dF (y|ỹo
i )

+
∫

a≤y<toi

h(y)dF (y)/(1 − F (toi−)), (2.6)

where F (u|υ) is defined in (1.5); see Eq. (2.25) of Lai and Ying (1994). Although
F (y−) = F (y) since F is continuous, we still write F (toi−) in (2.6), where F will
be replaced later by the product-limit estimate which is discrete. In (2.6), it is
assumed that F is known; in fact, E{hF (ỹo

i , δ
o
i , t

o
i )} = (

∫ b
a hdF )/P{y1 ∧ c1 ≥ t1},

cf. Lemma 1 of Gross and Lai (1996). When F is unknown, we replace it in hF

by the product-limit estimate F̂ (ν) based on the test sample Sν when n/m is not
too small, or by the product-limit estimate F̂ based on entire sample otherwise.

Let ĥ(ν) = hF̂ (ν) , ĥ = hF̂ , and denote the size of the subsample Sν by #(Sν).
Setting first h = Ak and then h = Dk, an alternative to

∑m
ν=1 L(k,Gν , F̂

(ν)) as
the criterion for m-fold cross validation is

Cm(k) =
m∑

ν=1

{
∑

(ỹo
i ,δo

i ,toi )∈Sν

aT
k (Gν)Âk(ỹo

i , δ
o
i , t

o
i )ak(Gν)

+2aT
k (Gν)D̂k(ỹo

i , δ
o
i , t

o
i )}/#(Sν). (2.7)

In the censored case without truncation variables, if we replace Âk and D̂k in (2.7)
by Â(ν)

k and D̂(ν)
k , then (2.7) reduces to

∑m
ν=1 L(k,Gν , F̂

(ν)) as a consequence of
the following identity due to Susarla, Tsai and Van Ryzin (1984):∑

(yj ,δj)∈Sν

ĥ(ν)(yj, δj)/#(Sν) =
∫
h(y)dF̂ (ν)(y). (2.8)
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An advantage of (2.7) is that it does not involve F̂ (ν), and therefore it is applicable
also to the case of full cross validation (with m = n and #(S) = 1).

We next establish some asymptotic properties of m-fold or full cross valida-
tion with 2 ≤ m ≤ n. Let H(y) = P{tj ≤ y ≤ cj}. As pointed out by Lai and
Ying (1991a), F (y) may not be estimable over its entire support. In fact, toi ≥ τ

and ỹo
i ≤ τ∗ with probability 1, where

τ = inf{y : H(y) > 0}, τ∗ = {y > τ : H(y)(1 − F (y)) = 0}, (2.9)

and only the conditional distribution Fτ (y) = P{Y ≤ y|Y ≥ τ} can be nonpara-
metrically estimated from the data, and then only for y ≤ τ∗. With 0 < p < p∗

chosen in (2.4) such that Fτ (τ∗) > p∗, F̂ converges uniformly to Fτ in the interval
(F−1

τ (p), F−1
τ (p∗)) with probability 1, cf. Lai and Ying (1991a). Making use of

this, it is shown in the Appendix that

lim
n→∞Cn(k)/n = L(k, Fτ , Fτ )/[(1 − F (τ))P{y1 ∧ c1 ≥ t}] a.s., (2.10)

and that for any fixed m ≥ 2 or for m = m(n) → ∞ such that m(n)/n→ 0,

lim
n→∞Cm(k)/n = L(k, Fτ , Fτ )/[(1 − F (τ))P{y1 ∧ c1 ≥ t1}] a.s., (2.11)

in which the k knots associated with L(k, Fτ , Fτ ) via (2.5) are placed at the pop-
ulation values F−1

τ (p+(p∗−p)i/(k+1)), instead of at the sample quantiles (2.4).
Moreover, for any fixed m ≥ 2 or for m = m(n) → ∞ such that m(n)/n → 0,
limn→∞

∑m
ν=1 L(k,Gν , F̂

(ν))/m = L(k, Fτ , Fτ ) a.s. , since G(ν) and F̂ (ν) con-
verge uniformly to Fτ in the interval (F−1

τ (p), F−1
τ (p∗)) with probability 1. From

(2.3) and (2.5), it follows that

L(k, Fτ , Fτ )+
∫ F−1

τ (p∗)

F−1
τ (p)

(ψ∗)2dFτ =
∫ F−1

τ (p∗)

F−1
τ (p)

{aT
k (Fτ )Bk(y)−ψ∗(y)}2dFτ (y), (2.12)

where the k knots associated with Bk are placed at F−1
τ (p + (p∗ − p)i/(k + 1)).

Combining (2.10) or (2.11) with (2.12), we obtain the following.

Theorem 1. Suppose 0 < p < p∗ in (2.4) are so chosen that Fτ (τ∗) > p∗, where
τ and τ∗ are defined in (2.9). Let k̂ be the minimizer of Cn(k) (or of Cm(k))
over k ≤ Kn, where Kn → ∞ and m/n → 0. In the cross validation criterion
(2.7) defining Cm(k), we can replace Âk and D̂k by Â(ν)

k and D̂
(ν)
k if m = o(n).

Alternatively we can also replace (2.7) by
∑m

ν=1 L(k,Gν , F̂
(ν)).

(i) If ψ∗(y) = aT
k∗(Fτ )Bk∗(y) for some k∗ ≥ 0 and all F−1

τ (p) < y < F−1
τ (p∗),

then k̂ → k∗ a.s.
(ii) If

∫ F−1
τ (p∗)

F−1
τ (p)

{aT
k (Fτ )Bk(y)−ψ∗(y)}2dFτ (y) > 0 for every k, then k̂ → ∞ a.s.
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In Theorem 1, p and p∗ are assumed to be fixed positive constants with
p < p∗ and Fτ (τ∗) > p∗, and the objective is to estimate ψ∗ in the interval
(F−1

τ (p), F−1
τ (p∗)). We can also let p and p∗ be data-dependent and vary with n

so that F̂−1(p∗n) → τ∗, pn → 0 (so F̂−1(pn) → τ) and

∫ F̂−1(p∗n)

F̂−1(pn)
{aT

k̂
(F̂ )Bk̂(y) − ψ∗(y)}2dF (y) → 0 a.s.;

see Section 3 of Lai and Ying (1991a,b) for the basic ideas underlying such choice
of pn and p∗n. The details of the argument are quite technical and are omitted, as
they are mostly similar to those in Lai and Ying (1991a,b). In practice, taking
p = 0.05 and p∗ = 0.95, which amounts to omitting 5% of either tail of F̂ ,
suffices to provide an adequate range of y’s at which the score function (1.6)
can be approximated by splines for use in adaptive estimation problems, while
maintaining stability of the approximation. Some numerical results are presented
in Section 4.1.

We have followed Jin (1992) to use linear splines because of their simplicity.
Alternatively we can use smoother spline approximations to (1.6) instead. The
preceding cross validation methods can also be applied to determine the number
of knots for cubic or other B-splines used to approximate (1.6).

3. Adaptive M-estimators of Regression Parameters

Using the same notation and assumptions as those in the first paragraph
of Section 1, we develop in this section adaptive M -estimators of the regression
parameter β in model (1.1) based on l.t.r.c. data (ỹo

i , t
o
i , δ

o
i , x

o
i ), i = 1, . . . , n.

Following Lai and Ying (1991b) in their construction of asymptotically efficient
adaptive rank estimators, we divide the observed sample randomly into two sub-
samples, of sizes n1 = [n/2] and n2 = n − n1 respectively. For notational sim-
plicity, we shall relabel the original sample so that the two random subsamples
can be written as {(ỹo

i , t
o
i , δ

o
i , x

o
i ) : 1 ≤ i ≤ n1} and {(ỹo

i , t
o
i , δ

o
i , x

o
i ) : n1 < i ≤ n},

which will be referred to as the first and second subsample, respectively. The
construction of adaptive M -estimators of β consists of several steps which are
described in the next three subsections. Simulation results are also presented in
the last subsection.

3.1. Preliminary regression estimates and score estimation based on
the residuals from each subsample

To estimate the efficient score function (1.6), we use a modification of the
method in Section 2 which assumes known β = 0 so that εj = yj. Since β is now
unknown and need not be zero, we need preliminary estimates of β, one from each
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subsample, before we can apply the method of Section 2 to the residuals that
approximate the ỹo

i (β). The preliminary estimate b̂1 from the first subsample is
defined by (1.2)-(1.4) with n replaced by n1 and with the simple choice ψ(u) = u.
It can be computed by an iterative algorithm described in Section 3.3. Likewise
we can compute the preliminary estimate b̂2 from the second subsample. Having
computed the preliminary estimates b̂1 and b̂2, we can evaluate the residuals
{ỹo

i (b̂1) : 1 ≤ i ≤ n1} and {ỹo
i (b̂2) : n1 < i ≤ n} associated with the two

subsamples.
With the two sets of residuals {ỹo

i (b̂1) : 1 ≤ i ≤ n1} and {ỹo
i (b̂2) : n1 <

i ≤ n}, compute the product-limit estimates F̂1 and F̂2 defined by (1.3)-(1.4)
with υ = −∞ and b = b̂j(j = 1, 2). Evaluate from the first subsample the score
estimate ψ̂1(x) = aT

k (F̂1)Bk(x), with k chosen as the minimizer of L(k, F̂1, F̂2)
over k ≤ Kn, where ak, Bk and L are defined in Sections 2.1 and 2.2. Likewise
evaluate from the second subsample the score estimate ψ̂2(x) = aT

k (F̂2)Bk(x),
with k chosen as the minimizer of L(k, F̂1, F̂2) over k ≤ Kn. As pointed out
in Section 2.3, we can use smoother B-splines such as cubic B-splines instead of
linear B-splines.

3.2. Combining the two subsamples to form the adaptive M-estimator

As shown by Lai and Ying (1994), an asymptotically efficient estimator of
β is the M -estimator defined by the estimating equation (1.2) with ψ given by
(1.6). Since ψ is unknown, we replace ψ(ỹo

i (b)) in (1.2) by ψ̂2(ỹo
i (b)) for i ≤ n1

and by ψ̂1(ỹo
i (b)) for i > n1, leading to the following estimating equation that

defines the adaptive M -estimator:
n1∑
i=1

xo
i {δo

i ψ̂2(ỹo
i (b)) + (1 − δo

i )
∫

u>ỹo
i (b)

ψ̂2(u)dF̂b,1(u|ỹo
i (b))

−
∫

u≥toi (b)
ψ̂2(u)dF̂b,1(u|toi (b)−)} +

n∑
i=n1+1

xo
i {δo

i ψ̂1(ỹo
i (b))

+ (1 − δo
i )
∫

u>ỹo
i (b)

ψ̂1(u)dF̂b,2(u|ỹo
i (b)) −

∫
u≥toi (b)

ψ̂1(u)dF̂b,2(u|toi (b)−)}=0, (3.1)

where F̂b,j is the product-limit estimate based on the (δo
i , ỹ

o
i (b), t̃

o
i (b)) from the

jth subsample (y = 1, 2). Thus, we associate with the ỹo
i (b) in the first subsample

the score estimate ψ̂2 based on the second subsample, and the ỹo
i (b) in the second

subsample with the score estimate ψ̂1 based on the first subsample. If p and p∗ in
Section 2.2 are chosen to vary with n such that pn → 0 and F̂−1(p∗n) → τ∗ a.s. at
some rate, then the arguments in Section 5 of Lai and Ying (1994) and Sections
3 and 4 of Lai and Ying (1991b) can be used to show that the adaptive M -
estimator thus constructed using this sample splitting device is asymptotically
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efficient. However, as pointed out near the end of Section 2.3, such elaborate
choice of p and p∗ is typically not needed and choosing p = 0.05, p∗ = 0.95
already gives good results.

3.3. Implementation

To implement the adaptive estimation procedure described above, we need
to compute preliminary estimates b̂1, b̂2 from the two subsamples and also the
adaptive M -estimators defined by (3.1). Since they are all M -estimators defined
by estimating equations of the type (1.2), we can compute them using the algo-
rithm in Kim and Lai (1999), which is an extension to l.t.r.c. data of the standard
method to compute M -estimators from complete data. Specifically, let X denote
the N ×p matrix with row vectors xo

i
T , in which N = n1 (for the first subsample

estimate b̂1), or n2 (for the second subsample estimate b̂2), or n (for the adaptive
estimate defined by (3.1)). Letting β(k) denote the result after the kth iteration,
the algorithm consists of the following steps (in which (ỹo

i , t
o
i , δ

o
i , x

o
i ) may have

been relabeled according to the subsample chosen and F̂b may refer to F̂b,1 or
F̂b,2 or the F̂b for the whole sample).
1. Compute ỹo

i (β
(k)), i = 1, . . . , N .

2. Evaluate F̂β(k)(u|υ) or F̂β(k)(u|υ−) at u ∈ {ỹo
i (β

(k)) : δo
i = 1, i ≤ N} and

υ ∈ {ỹo
i (β

(k)) : i ≤ N}, u ≥ υ.
3. Compute the N × 1 vector Ψ(k), whose ith component is ψ(ỹo

i (β
(k))), where

ψ(u) = u for b̂1 or b̂2, while ψ(ỹo
i (b)) = ψ̂2(ỹo

i (b)) if i ≤ n1 and ψ(ỹo
i (b)) =

ψ̂1(ỹo
i (b)) if i > n1 for the adaptive estimate (3.1).

4. Solve the linear equation XTXz = XT Ψ(k) to find z = z(k).
5. Put β(k+1) = β(k) + z(k).
6. Increase counter from k to k + 1 and go to Step 1.

The rationale and the termination criteria for this iterative procedure are
described in Kim and Lai (1999). Concerning the choice of β(0), Kim and Lai
(1999) propose to use the weighted least squares estimate of Gross and Lai (1996),
which we can apply here to initialize the algorithm for b̂1 and b̂2. However, since
b̂1 and b̂2 have already been obtained before we can start the adaptive phase
(3.1) of the estimation procedure, we can initialize the solution of (3.1) with the
better estimate β(0) = (b̂1 + b̂2)/2. This procedure is applied in the simulation
study in Section 4.2.

3.4. Discussion

If the efficient score function ψ∗ were known, then taking ψ = ψ∗ in (1.2)
would lead to an asymptotically normal estimate of β with covariance matrix
n−1V ∗ such that VT − V ∗ is nonnegative definite, for the limiting covariance
matrix VT of

√
n(Tn − β) of any regular estimate Tn of β, cf. Lai and Ying
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(1994). In ignorance of ψ∗, if we can choose ψ in (1.2) such that ψ is close to
ψ∗ in the L1 sense that

∫ τ∗
τ |ψ − ψ∗|dF is small, then the asymptotic variance of

the M -estimator defined by (1.2) with score function ψ is close to n−1V ∗. This
follows from Theorem 1 of Lai and Ying (1994), noting that integration by parts
yields ∫ τ∗

u
(1 − Fu(s|u))ψ′(s)ds = −Fu(τ∗|u) +

∫ τ∗

u
ψ(s)dFu(s|u) .

Hence we need only estimate ψ well in an average (instead of pointwise) sense.
The sample splitting method used in (3.1) results in halving the sample size

in estimating ψ∗ for each subsample. To achieve reasonable (L1-) accuracy in
estimating ψ∗, n/2 cannot be too small. Our experience is that for n/2 ≥ 50 the
adaptive M -estimator defined by (3.1) is quite insensitive to the random selection
of the two subsamples. A simulation study involving a sample size of n = 100 is
given in Section 4.2 as an illustration.

Lai and Ying (1991b, 1994) proposed to use kernel estimates of λ and of
its derivative and to smooth the resultant λ̂(1)/λ̂ − λ̂ via a kernel method. Al-
though their asymptotic theory allows a wide choice of bandwidths and although
Uzunoḡullari and Wang (1992) have provided locally adaptive methods for choos-
ing the bandwidths for λ̂ and λ̂(1), it is not clear how the bandwidth should be
chosen to smooth λ̂(1)/λ̂− λ̂ in practice. Moreover, the locally adaptive determi-
nation of bandwidths for λ̂ and λ̂(1) involves considerable computational effort.
The use of B-spline approximations to ψ∗ and the associated cross validation
method to choose the number of knots provides a practical alternative to kernel
methods (that involve bandwidth choices for λ̂, λ̂(1) and λ̂(1)/λ̂ − λ̂, the last of
which is the most difficult) in constructing the ψ̂1 and ψ̂2 in (3.1).

4. Numerical Examples

4.1. Estimation of the score function (1.6)

To estimate the score function (1.6) in the case of i.i.d. yj, Section 2 first uses
kernel estimates λ̂ and λ̂(1) to estimate the hazard function λ and its derivative
λ′, thereby estimating (1.6) by ψ̂ = λ̂(1)/λ̂ − λ̂. As pointed out by Lai and
Ying (1991b), some smoothing of ψ̂ is needed, particularly when λ̂(z) is near
0. Figure 1 shows a steep peak in ψ̂ due to dividing by a small number. Such
peaks can be dampened by applying some smoother to the estimate. The l.t.r.c.
data in the figure consist of 200 observations (ỹo

i , δ
o
i , t

o
i ) generated from the model

of independent log yj ∼ N(0, 1), log tj ∼ N(−1, 1) and log cj ∼ N(1, 1), with
about 30% of the original sample being censored and truncated. The uncensored
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observations are represented by vertical bars along the horizontal axis. The
kernels used in λ̂ and λ̂(1) are

K0(y)=

{
(15/16)(1 − y2)2 if |y| ≤ 1
0 otherwise

, K1(y)=

{
(−15/4)y(1 − y2) if |y| ≤ 1
0 otherwise

.

Friedman’s supersmoother (cf. Härdle (1990)) is used to smooth λ̂(1)/λ̂− λ̂.
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Figure 1. True score function (solid curve) and its estimate λ̂(1)/λ̂−λ̂ (dotted
curve). The broken curve is obtained by smoothing the dotted curve using
Friedman’s supersmoother.

Section 2 considers spline approximations to the score function (1.6) and
develops several versions of cross validation for l.t.r.c. data to choose the number
of knots. Figure 2(a)–(d) represent the true and the estimated score functions
based on a simulated dataset of 200 observations (ỹo

i , δ
o
i , t

o
i ) generated from each

of the following models. The vertical line segments along the horizontal axis
represent the uncensored observations.
(a) Normal: yj

i.i.d.∼ N(0, 1) and tj
i.i.d.∼ N(−1, 1),

cj = tj + uj max{0.5, e−tj} with uj
i.i.d.∼ U [0, 0.1].

(b) Contaminated normal: yj
i.i.d.∼ 0.9N(0, 1/9)+0.1N(0, 9) and tj

i.i.d.∼ N(−1, 1),

cj
i.i.d.∼ N(0.8, 1).

(c) Lognormal: log yj
i.i.d.∼ N(0, 1) and log tj

i.i.d.∼ N(−1, 1),

log cj
i.i.d.∼ N [1, 1].

(d) Beta: yj
i.i.d.∼ Beta(2, 2) and tj

i.i.d.∼ U [−1, 1],

cj
i.i.d.∼ U [0.5, 1].
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There are four estimated score functions in each plot. They are labeled Kernel,
Spline(J), Spline(4) and Spline(CV) respectively. “Kernel” refers to the esti-
mate obtained by smoothing λ̂(1)/λ̂ − λ̂ using Friedman’s supersmoother. The
“Spline(·)” estimates refer to the estimated linear spline approximations using
different methods to choose the number of knots: Spline(J) uses the extension of
Jin’s method in Section 2.2; Spline(4) uses the 4-fold cross validation criterion∑4

ν=1 L(k,Gν , F
(ν)); Spline(CV) uses the full cross validation criterion Cn(k).
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Figure 2. True and estimated score functions based on censored and trun-
cated data from (a) normal, (b) contaminated normal, (c) lognormal, and
(d) Beta populations.

In Figure 2(b) and (d), all spline estimates choose the same number of knots
and therefore coincide with each other because of the way, (2.4), in which knots
are placed. In Figure 2(a), Jin’s method and 4-fold cross validation pick no knot
between a and b while full cross validation chooses 2 knots. In Figure 2(a)–(c),
all estimates are quite close to the true score function. However, in Figure 2(d),
the kernel estimate is relatively flat and differs substantially from the true score
function, which is well approximated by the spline estimates that coincide with
each other.
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Table 1 compares the mean squared errors MSE = E(ψ̂(Y ) − ψ∗(Y ))2 of
the estimates ψ̂ obtained from (ỹo

i , δ
o
i , t

o
i ), i = 1, . . . , 200, by these four methods,

where Y is generated from F and is independent of the (yj, cj , tj) underlying
the observed (ỹo

i , δ
o
i , t

o
i ). Each MSE in Table 1 is based on 100 simulations,

and its associated standard deviation (SD) is also included in the table. The
results in Table 1 show that the kernel estimate has considerably larger MSE
than the spline estimates, and that the spline estimate with full cross validation
has smaller MSE than the other spline estimates.

Table 1. Comparison of the mean squared errors (MSE) of different estimates
of the efficient score function in four models, whose censoring proportion pc

and truncation proportion pt are also indicated.

Model Estimate MSE SD

Normal Kernel 0.140 0.097
pc = 0.25 Spline(J) 0.071 0.024
pt = 0.24 Spline(4) 0.073 0.023

Spline(CV) 0.045 0.025
Contaminated Kernel 2.953 1.042
normal Spline(J) 1.597 0.739
pc = 0.23 Spline(4) 1.260 1.010
pt = 0.25 Spline(CV) 0.450 0.120
Lognormal Kernel 4.373 2.691
pc = 0.26 Spline(J) 1.429 0.538
pt = 0.28 Spline(4) 1.869 0.704

Spline(CV) 1.516 0.801
Beta Kernel 19.878 10.149
pc = 0.28 Spline(J) 7.482 7.288
pt = 0.27 Spline(4) 8.802 6.797

Spline(CV) 4.506 2.267

4.2. Estimation of regression parameters

Consider the simple linear regression model yj = βxj + εj, j = 1, . . . , 100,
where β = 1, the xj are i.i.d. U [−2, 1], and the εj are i.i.d. pN(−3, 1) + (1 −
p)N(3, 1). Suppose there are left truncation variables tj which are i.i.d. N(µ1 +
xj, 1) and right censoring variables cj are i.i.d. N(µ2 + xj, 1). Table 2 considers
five choices of (p, µ1, µ2) and compares the adaptive M -estimator (AdM) defined
by (3.1) with the weighted least squares estimate (WLS) of Gross and Lai (1996),
the Buckley-James-type M -estimator (BJ) corresponding to ψ(u) = u, and the
Huber-type M -estimator (H) corresponding to ψ(u) = (u∧1)∨(−1). It gives the
mean squared error E(β̂ − β)2, Eβ̂ and the first, second and third quartiles of
the sampling distribution of β̂, for the estimate β̂ of β(= 1) based on each of the
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four methods. The case p = 1 corresponds to normal εj, in which BJ and AdM
are both asymptotically efficient, and the results in the top panel of the table
are consistent with this. As p decreases, the amount of contamination increases
and BJ has an MSE which is over 3 times that of AdM when p = 0.5 (bottom
panel of the table). It is surprising that H, which is known to be effective for
the contaminated normal model in the case of complete data, has even worse
performance here than BJ in the bottom panel of the table. The reason is that
we have not used concomitant estimation of scale in H. It should be noted that
AdM automatically adapts to the scale and other features of the underlying
distribution F of the εj , and is therefore a significant improvement over H with
the wrong scale. Although WLS is computationally simplest among the four
methods as it has a closed-form solution that does not require iterations, its
computational simplicity comes at the expense of inferior performance. However,
its computational simplicity can be exploited to initialize the iterative scheme to
compute the BJ or H estimates, as is done in the algorithm of Kim and Lai
(1999).

Table 2. Comparison of the mean squared error (MSE) and other summaries
in the sampling distribution of the adaptive M -estimate (AdM) with those
of three other M -estimates (BJ, H, WLS).

First Third
( p, µ1, µ2) ψ MSE Mean quartile Median quartile

(1, -4, -2) BJ 0.006 1.003 0.958 1.005 1.046
H 0.006 1.001 0.959 1.006 1.042
WLS 0.034 1.141 1.060 1.127 1.213
AdM 0.006 1.003 0.963 0.998 1.047

(0.8, -4, 1) BJ 0.064 1.040 0.888 1.015 1.190
H 0.013 1.023 0.926 1.026 1.085
WLS 0.126 1.278 1.109 1.203 1.427
AdM 0.040 1.037 0.943 1.032 1.148

(0.6,-3.2,3.2) BJ 5.003 2.930 1.925 2.868 3.603
H 5.115 3.009 1.955 3.178 3.954
WLS 0.968 1.953 1.805 1.964 2.135
AdM 0.857 1.773 1.425 1.860 2.098

(0.6,-3.5,3.5) BJ 2.817 2.358 1.812 1.954 2.745
H 2.755 2.413 1.831 1.948 3.283
WLS 0.788 1.850 1.686 1.868 2.005
AdM 0.582 1.614 1.182 1.742 1.911

(0.5,-3.5,3.5) BJ 1.557 1.895 1.524 1.909 2.399
H 3.948 2.797 1.941 3.016 3.438
WLS 0.930 1.914 1.696 1.919 2.152
AdM 0.457 1.440 1.028 1.279 1.954
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5. Conclusion

For regression analysis with complete data, the least squares estimate that is
widely used because of its simplicity may have inferior performance if the errors
are non-normal. Using a nonlinear score function that differs from ψ(x) = x used
in the least squares estimate leads to an M -estimator with greater computational
complexity, but with better robustness properties. For l.t.r.c. data, there are no
computational advantages in choosing ψ(x) = x for the estimating equation
(1.2) defining M -estimators, and the simulation results in Lai and Ying (1994)
show that it can perform much worse than Huber’s score function. However, for
Huber’s score function to perform well, one needs a concomitant estimation of
scale, and in general proper choice of ψ depends on the underlying distribution F
of the εj . Our numerical study shows that for samples of size 100 and larger, one
can estimate ψ reasonably well and achieve good performance of the adaptive
M -estimator by using regression splines and cross validation, despite substantial
truncation and censoring of the response variable. In an extensive simulation
study, Moon (1989) has compared the Buckley-James estimator with several
other semiparamertic estimators in truncated regression models (which are called
“Tobit models” in econometrics) and has found that it “stands out, in terms
of short computation time and a smaller root mean square”, except in highly
nonnormal error distributions. The adaptive M -estimator developed here incurs
at most a few times the computational cost of the Buckley-James estimator but
can adapt to any underlying distribution of the εj . In this connection, a relatively
simple cross validation method is also developed for determining the number of
knots in regression splines based on l.t.r.c. data.
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Appendix

Proof of (2.10) and (2.11)

Since F̂ converges uniformly to Fτ in the interval (F−1
τ (p), F−1

τ (p∗)) with
probability 1, it follows from (2.4) that ξk,i converges a.s. to F−1

τ (p + (p∗ −
p)i/(k + 1)) for i = 1, . . . , k, and for every k ≥ 1. Moreover, letting h = Ak

(which is bounded and continuous), hF̂ converges a.s. to hF defined in (2.6)
but with a replaced by F−1

τ (p) and b replaced by F−1
τ (p∗), uniformly in the
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arguments (ỹo
i , δ

o
i , t

o
i ), noting that the last term in (2.6) vanishes if toi ≤ a. For any

ν = 1, . . . , n, let Gν be the product-limit estimate based on all the observations
with the exception of (ỹo

ν , δ
o
ν , t

o
ν). Then as n → ∞, ak(Gν) converges to ak(Fτ )

uniformly in 1 ≤ ν ≤ n with probability 1, as can be shown by using classical
exponential bounds (cf. proof of Lemma 1 of Lai and Ying (1991a)). Hence, as
n→ ∞,

n−1
n∑

ν=1

{
∑

(ỹo
i ,δo

i ,toi )∈Sν

aT
k (Gν)Âk(ỹo

i , δ
o
i , t

o
i )ak(Gν)}

= aT
k (Fτ ){ 1

n

n∑
ν=1

hF (ỹo
ν , δ

o
ν , t

o
ν)}aT

k (Fτ )+o(1)=
aT

k (Fτ )Ak(Fτ )ak(Fτ )
(1 − F (τ))P{y1 ∧ c1 ≥ t1} + o(1)

with probability 1, recalling that h = Ak and noting that the (ỹo
i , δ

o
i , t

o
i ) are i.i.d.

with E{hF (ỹo
i , δ

o
i , t

o
i )}

=
∫ b
a AkdF/P{y1 ∧ c1 ≥ t1} by Lemma 1 of Gross and Lai (1996). Although Dk,i

has three (or two in the case i = 0 or k + 1) jump discontinuities, we can use
the continuity of Fτ and a slight modification of the preceding argument to show
that as n→ ∞,

1
n

n∑
ν=1

{
∑

(ỹo
i ,δo

i ,toi )∈Sν

aT
k (Gν)D̂k(ỹo

i , δ
o
i , t

o
i )} → aT

k (Fτ )Dk(Fτ )
(1 − F (τ))P{y1 ∧ c1 ≥ t1} a.s.

Since #(Sν) = 1 in the case of full cross validation (with m = n), (2.10) then
follows from (2.7) and (2.5). The proof of (2.11) is similar.
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Uzunoḡullari, Ü. and Wang, J. L. (1992). A comparison of hazard rate estimators for left-

truncated and right-censored data. Biometrika 79, 297-310.

Department of Statistics, Stanford University, Stanford, CA 94305-4065, U.S.A.

Email: lait@stat.stanford.edu

Department of Statistics, Ewha Womans University, Seoul, 120-750, Korea.

Email: iron@mm.ewha.ac.kr

(Received February 1999; accepted December 1999)


