Statistica Sinica: Supplement

Supplementary Material for “Risk consistency of

cross-validation with lasso-type procedures”

This supplementary material contains proofs of the theorems and lemmata contained in the

manuscript “Risk consistency of cross-validation with lasso-type procedures”

S1 Squared-error loss and quadratic forms

We can rewrite the various formulas for the risk from as quadratic forms.
Define the parameter to be v' := (=1, 87), with associated estimator 7, :=
(=180

R(B) =E,, (V- BTX)*] =~y (S1.1)

where 3, :=E, [ZZ].
. 1 N
R(B) =~ |IY = XBll; =S,
where 3, = n~! P AV AN
D 1 ~(v « ~(v
Ry, (t)= 22 > GEAY, (51.2)
’UEVTL
where 3, = Clp Ay AN %(u) = (—I,B\t(v))T, and
Et(v) = argmin ’yTi(v)’y,
BEB:

with Sy = (n — o)) 1 3,0, 2, 2]
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S2 Background Results

We use the following results in our proofs. First is a special case of Ne-
mirovski’s inequality. See Diimbgen et al. (2010) for more general formula-

tions.

Lemma 1 (Nemirovski’s inequality). Let (&;)ico be independent random
vectors in R?, for d > 3 with E[&] = 0 and E||&]]5 < oo. Then, for any

validation set v and distribution for the &;’s,

> &

1€V

E < (2elogd —e) > E||&]1% < 2elogd Y E[I&]1% -

2
00 1€V 1€V

Also, we need the following results about the Orlicz norms.

Lemma 2 (van der Vaart and Wellner 1996). For any ,.-Orlicz norm with

1 <r € N and sequence of R-valued random variables (¢;)j=1,. .m

max (;

1<j<m e,

< Wlog!"(m +1) max ||¢;
sjsm

T

where VU is a constant that depends only on .

Lemma 3 (Corollary 5.17 in Vershynin 2012). Let &y, ..., &, be iid centered

random variables and let ||§]|,, < k. Then for every § > 0,

)
P >nd | <2exp(—cnminqg —,— ,
— K? K

&
=1

where ¢ = 1/8¢€2.
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S3 Supporting Lemmas

Several times in our proof of the main results we need to bound a quadratic
form given by a symmetric matrix and an estimator indexed by a tuning

parameter. To this end, we state the following lemma.

Lemma 4. Suppose a € RP and A € RP*P. Then
2
a' Aa < ||a|[{ | Al .
where ||Al|, := max; ; |A;;| is the entry-wise max norm.

We use Lemma 1 to find the rate of convergence for the sample covari-

ance matrix to the population covariance.

Lemma 5. Let v C {1,2,...,n} be an index set and let |v| be its number
of elements. If u € F,, then there exists a constant C, depending only on

q, such that

(log p)+2/a

S, -5, :
v

E

.| <cC
o0

where it is understood that 2/o0o = 0.

Proof. (Lemma 5) Let & € R®+D” be the vectorized version of the zero-

mean matrix ﬁ(ZTZTT —EZZT). Then, by Jensen’s inequality

~ 2 ~ 2
(EHEv—zn )gEHEU—zn _E

2
)

2.6
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Using 1 with d = (p + 1)? and writing ||XH12(H) = E,X? we find

Zﬁr

rev

2

< 2elog ((p+1)?) Z

rev

< elog(p + 1)2 (( (log 2)Y/9~ D

rev

161

La(p)

)t

S toglp+ 1) 3 (108 (1 +1) Hum }

rev

)

< log(p + Ve 1|2 > (10g1/q (p+1)2+1)C )

rev

< C'log(p+1) | PZIogz/q (p+1)>+1)

rev

(log p)'*2/4

<C
v

Note that 1), is the Orlicz norm induced by the measure y,, and the third

inequality follows by 2. ]
Corollary 1. By the definition of .,
2 2 . 52 (5
P (|[IY]l; — nE[Y?]| = né) < 2exp ( —cnmin o ()
a “q
where ¢ = 1/8¢* is an absolute constant and C; = (log 2)a1C,.
Proof. This result follows immediately from 3 and the result

Iellu, < (log2) 1 [¢lly, < (log2)/71C, = C,
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S4 Proof of Main Results

Theorem 4. Let D,, E, be any two sets. Then we can make the following

decomposition:
P (E(t,t,) >6) =P (E(t,t,) >N D, NE,) +P(E(tt,) >6NDENE,)+
+P (W t,) > 6N D, NES) + P (E(Et,) > 6N DN EE)
<P(Ett,) >6ND,NE,) +2P(DE) +P(ES). (S4.3)
Also,

(111) (1)

where we use the notation 3, = B\(Bt). Now, for any t € T,,, EVTL (ﬂ —
Ry, (t) <0, by the definition of ¢, and thus (I1) < 0.
Let D,, = {tmax < 2nC’(’1/an} and E, ‘= {tpax > t,}. On the set F,,

(I11) < Ry, (tmax) — R <§tmax> =: (III). Taking the first term from Equa-

tion (S4.3) and combining it with the decomposition in Equation (54.4), we
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see that
P (£ t,) > 6N D, NE,) < IP’((I) > 6/3ﬁDn) +P<(/JVH) > 5/3mDnﬂEn)

n IP’((IV) > 5/3) (S4.5)

We break the remainder of this section into parts based on these terms.

Final predictor and cross-validation risk (/): Using the notation

introduced in S1, note that by equations (S1.1) and (S1.2)

= 35 ~ ~ 1 ~(v S ~v

R (6?) - RVn (D = ’7; En Yo — ? Z(%ﬁ(\ ))TEvfytS )
vEV

= 37 23— (5) 7] + ~

vEV,

~ - ~ 1 ~(v S ~(v
A (B0) 5 = DG TEAL )]

Addressing each of the terms in order,

2% =7 (Z0) %] =37 (T = E0) e < 511 ||Z0 = S|
where the inequality follows by Lemma 4.
Likewise,
~T(s\~ 1 SONTS A()
Yz (En> - 2.0 B
veEV,
~ATS ~ 1 ~(v S ~ 1 ~(v ~(v ~(v ~(v
= ( R DI I >) + (E SAINTEAY - 2 3G TEA >>
vEVR veEVR vEVR
1 ~ATH ~ ~(v o ~w 1 ~(v « S\~
== > (FSA—- G EAY) + (E SGT (B0-5) 5 )>
vEV, vEV,
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The last inequality follows as 77 is chosen to minimize ﬁtAT infy}, and so for

any v € V,,
WA < A TEAY. (54.6)

Continuing and using Lemma 4,

1 SONT ~w) 1 ~o|Plls S
7 O (B -5) a0 <EZ\ Ol B2
veV), eVn
=2 R () >
< - A S ooy, _ 5, )
_sz‘fyt 1 fe’e) [e%°)
Therefore,
. 1 T
~ 112 ~(v ~(v
@) < 1A [2n =S|+ 2 () (Ba-%.)3Y
Vi

< (1 + t)? (2 ]

1
T
K2

By 5 with V,, = {{1,...,n}} and ¢, = n,

142/
Al < ¢y osp)
(') n

while taking V,, = {v1,..., vk} shows,

1+2/q
o[ logp
’Ue n

Combining these two bounds together gives

JL)

B

]P’<(f) g 1D, ) < 3B 1n,]

n(log 2)1/4-1 / 1 1+2/q / 1 1+2/q

(S4.7)

IN
ol w
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Cross-validation risk and empirical risk (//7): Due to the discussion

—_~—

following Equation (S4.4), it is sufficient to bound (I17) instead. Recall that
i(v) = (’I’L — Cn) ngév Z ZT

Then,

~

RVn (tmax) - R (6tmax) K Z tmax vﬁ}/tmax - P)/tmdx En/ﬁ)?tmax

vEV,
== Z ( A )T EA e, — @) S ﬁ&@) +
vGVn
K Z ( fthax ’U Vt(mlx ﬁy\t—rrnaxzn;}?tmax)
vEV,

o5
(o]

2
7
1

1
<=
x 2

where the inequality follows by Lemma 4 and the fact that ?t(v) is chosen

to minimize (/v\t(f))Ti(vﬁff), which implies

Ao ) ) ene < At Z0) Vemas: (54.8)
As before,
LS 150 |PIIS, = Swll < Astn)?= 5, -
e e R ] (R X N}

We can use a straight-forward adaptation of Lemma 5 to show that

1 & (log p)t+2/a
SO RN R oD
’UEVn
Therefore,
]P((f/v) >4§/30D,NE ) %E[(I/ﬁ) 1p,]
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/ (1 1+2/q (1 )1+2/q
ng ng . (54.9)
n—c,

Empirical risk and expected risk (IV) The proof of these results is

given by Greenshtein and Ritov (2004). We include a somewhat different

proof for completeness. Observe

Using Lemma 4 (See S1 for notation)

sup |R(8) — R (8)] < =S| < (1+1)
BEBy, c 00 oo
Therefore,

IP’((IV) > 5/3) 2(1 +t,)? (04 W). (S4.10)

The proof follows by combining Equation (S4.3) with Equation (54.5)
and using the bounds from Equations (S4.7), (S4.9), and (S4.10).

Lastly, there are the various constants incurred in the course of this
proof. In Lemma 2, the constant ¥ can be chosen arbitrarily small based
on inspecting the proof of Lemma 2.2.2 in van der Vaart and Wellner (1996).

As this constant premultiplies every term in €2, ; and 2, 5, we can without
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loss of generality set the constant equal to one. For instance, in Lemma
5, the constant C' is upper bounded by 8el/?(log2)(2~9/208Y4C, W, This

constant can be taken arbitrarily small by choosing ¥ small enough. O

Lemma 6. Define the set D,, := {tmax < 2nC’C’I/an}, where a,, s the nor-

malizing rate defined in Corollary 5 and C; = C,(log 2)Y/a=1 Then, P(D¢) <

—Ccn

e

Proof. By Corollary 1,

Y15 o n(EY?] +9) N A
]P’( an22 aln < exp | —cnmin 0—;2,5(; .

Furthermore, E[Y?] < C7, so

p <||Y||§ . n<0g+6>) op <||Y||§ , (EDT] +6>> |

Qn, Qn Qn, Qp

Therefore, setting § = C; yields P(||Y][5 /an > 2nh/a,) < e~ O

Lemma 7. Define the set E, := {tmax > tn}. If ant, = o(n), then, for all

n > 2a,t, /E[Y?], P(ES) < exp{—cn}.

Proof. By Corollary 1,

2 21 _ 2
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for all § > 0. Setting 6 = E[Y{?] — a,t,/n therefore implies

P (tmax < tn) < exp (—cn min { (E[Y?] — anta/n)* E[Y?] - antn/n})

2 ’ c

q

oo (o (EIPP E[YY)
=~ exXp Cn 1min 40;2 s 20(; .

Since 0 < E[Y{?]/C; < 1, the result follows. O

Corollary 6. For the v/lasso, the result is nearly immediate as we are con-
sidering the same constraint set ||5]|, < ¢t and the same search space for
the tuning parameter 7 = [0, ||Y||3 /a,]. However, in Equations (S4.6) and
(S4.8), we rely on the empirical minimizer. The analogous results here are
TS < BT and (3 ) S0 T S T Z0) o TESPECHVELY,
but this implies that (S4.6) and (S4.8) hold.
For the group lasso with max, v/]g| = O(1), we have t > > gec ViIgl 1Bl >

||8]|; so that Lemma 7 still applies with ¢,,,x as before. We note that in

this case, the oracle group linear model is restricted to the ball By, = {f :

>gec V191 11Bglly < tn} rather than the larger set {8 : [|B][; < t.}. O
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