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OPTIMAL DESIGNS FOR POLYNOMIAL REGRESSION

WHEN THE DEGREE IS NOT KNOWN

Holger Dette and William J. Studden

Technische Universit�at Dresden and Purdue University

Abstract: This paper considers the problem of determining e�cient designs for poly-

nomial regression models when only an upper bound for the degree of the polynomial

is known by the experimenter before the experiments are carried out. The optimality

criterion maximizes a weighted p-mean of the relative D-e�ciencies in the di�erent

models. The optimal (model robust) design is completely determined in terms of its

canonical moments which form the unique solution of a system of nonlinear equations.

The e�ciency of the optimal designs with respect to di�erent criteria is investigated

by several examples.
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1. Introduction

Consider the polynomial regression model

g`(x) =
X̀
j=0

ajx
j
;

where x 2 [�1; 1] and 1 � ` � n. The experimenter chooses experimental condi-

tions x 2 [�1; 1] and then observes a real valued response with expectation g`(x)

and variance �2, where di�erent observations are assumed to be uncorrelated.

An experimental design is a probability measure on [�1; 1] and the performance

of a design � in the model g`, is evaluated through its information matrix

M`(�) =

1Z
�1

f`(x)f
T
` (x)d�(x);

where f`(x) = (1; x; : : : ; x`)T , ` = 1; : : : ; n. It is well known (Hoel (1958)) that

the D-optimal design �
D
` in the model g`(x) puts equal masses at the zeros of

the polynomial (x2 � 1)P 0`(x) where P`(x) is the `th Legendre polynomial. In
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order to examine how a given design � behaves in the model g` with respect to

the D-optimality criterion one uses the D-e�ciency

e�`(�) =

� jM`(�)j
jM`(�

D
` )j

� 1
`+1

: (1:1)

An obvious drawback of the D-optimal design �D` is that it is not necessarily very

e�cient in polynomial regression models with degree di�erent from `. As an ex-

ample consider the D-optimal design �D1 for linear regression which puts equal

masses at the points �1 and 1 and has e�ciency 0 in the quadratic model. Con-

versely, the D-optimal design �D2 for the quadratic model has only 82% e�ciency

in the linear model. Because in many applications of polynomial regression mod-

els the degree of the polynomial is not known before the experiments are carried

out, the D-optimal design �D` is not used very often in practice.

In this paper we consider the somewhat more realistic situation that the

experimenter knows an upper bound for the polynomial regression, say n 2 IN .

In order to �nd a design which has good e�ciencies in all polynomials up to degree

n we maximize a concave function of the e�ciencies in (1.1). More precisely, we

de�ne

�p;�(�) =

"
nX

`=1

�`(e�`(�))
p

# 1
p

; (1:2)

where p 2 [�1; 1] and � = (�1; : : : ; �n) is a prior distribution on the set

f1; : : : ; ng with �n > 0 which re
ects the experimenters belief about the ade-

quacy of the di�erent models. Here the cases p = �1 and p = 0 have to be

understood as the corresponding limits, that is

�
�1

(�) =
n

min
`=1

fe�`(�) j �` > 0g; �0;�(�) =
nY

`=1

(e�`(�))
�` : (1:3)

A design �p;� is called �p;�-optimal (with respect to the prior �) if it maximizes

the function in (1.2) or (1.3). The case of the geometric mean p = 0 was intro-

duced by L�auter (1974) and a solution of this problem in the case of polynomial

regression models can be found in Dette (1990).

In this paper we present a complete solution of the �p;�-optimal design prob-

lem for all p 2 [�1; 1]. The �p;�-optimal design with respect to the prior � is

determined as the design whose canonical moments form the unique solution of a

system of n�1 nonlinear equations. These equations can be solved very easily by

standard numerical methods as the Newton Raphson algorithm. The proofs are

based on a combination of equivalence theorems for mixtures of information func-

tions (see e.g. Pukelsheim (1993, p: 283-293)), the theory of canonical moments



DESIGNS FOR POLYNOMIAL REGRESSION 461

(see e.g. Studden (1980, 1982) or Lau (1983)) and a one to one correspondence

between the set of (symmetric) probability measures on [�1; 1] and the set of

optimality criteria in (1.2) (see e.g. Dette (1991)). In Section 2 some preliminary

results are given which will be needed throughout the paper. Section 3 deals

with the case p > �1. The case p = �1 (for which the solution of the optimal

design problem is more transparent) is treated in Section 4 and some examples

are given in Section 5.

2. Preliminaries

The general equivalence theory for mixtures of optimality criteria is described

in Pukelsheim (1993, p: 283-293). For the �p;�-optimality criterion we obtain

from these results the following Lemma.

Lemma 2.1. A design �
� is �p;�-optimal (for some given p > �1) if and

only if it is �0;�0-optimal with respect to the prior �0 = (�01; : : : ; �
0

n) where �
0

l =

�l(e�l(�
�))p=

Pn
j=1 �j(e�j(�

�))p.

Let N (�
�1

) = f1 � j � nj �j > 0; �
�1

(�
�1

) = e�j(��1)g, then a design

�
�1

is �
�1

-optimal if and only if there exists a prior � = (�1; : : : ; �n) with

�l = 0 for all l =2 N (�
�1

) such that �
�1

is �0;�-optimal.

Equivalence theorems provide a general method for investigating if a given

design is optimal and are the basis for many numerical algorithms (see e.g. Wynn

(1972), L�auter (1974)). For the special case of polynomial regression the theory

of canonical moments provides a very useful tool for the determination of optimal

designs (see e.g. Studden (1980, 1982) or Lau (1983)). For a given probability

measure � on the interval [�1; 1] let cj =
R 1
�1 x

j
d�(x), j = 0; 1; 2; : : :, denote the

ordinary moments. If c0; : : : ; ci�1 is a given set of moments (of �) de�ne c+i as the

maximum of the ith moment over set of all probability measures � with given

moments c0; : : : ; ci�1. Similarly let c�i denote the corresponding minimum value.

The canonical moments are de�ned by

pi =
ci � c

�

i

c
+
i � c

�

i

i = 1; 2; : : :

if c+i > c
�

i and are unde�ned whenever c+i = c
�

i . A design � on [�1; 1] is
symmetric if and only if p2i�1 = 1

2
for all i 2 IN for which p2i�1 is de�ned

(see e.g. Lau (1983)). The determinants of the information matrices M`(�) can

easily be expressed in terms of the canonical moments of � (see Studden (1980)

or Lau (1983)) and for a symmetric design on the interval [�1; 1] we have as a
special case

jM`(�)j =
Ỳ
j=1

(q2j�2p2j)
`+1�j

; if � is symmetric; (2:1)
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where q2j = 1� p2j, j � 1, and q0 = 1. The canonical moments of the D-optimal

design �D` for the model g` are given by

p2j =
`� j + 1

2(`� j) + 1
; p2j�1 =

1

2
; j = 1; : : : ; `;

and we obtain from (2.1)

jM`(�
D
` )j =

�
`

2`� 1

�` Ỳ
j=2

�
(`� j + 1)2

(2(`� j) + 1)(2(` � j) + 3)

�`+1�j

: (2:2)

It is well known (see e.g. Lau (1983)) that � has canonical moments 0 < pj < 1,

j = 1; : : : ; 2n�1, p2n = 1 if and only if � is supported at n+1 points including�1
and 1 (which means that �D` has `�1 support points in the open interval (�1; 1)).
The following result shows that there exists an intimate relation between these

probability measures and the solutions of the �0;�-optimal design problem and

this is an immediate consequence of Theorem 2.3 in Dette (1991).

Theorem 2.2. Let �(n) denote the class of all symmetric probability measures

� on [�1; 1] with n+ 1 support points including �1 and 1 such that

1� 2
q2`

p2`
+
q2`q2`+2

p2`p2`+2
� 0; ` = 1; : : : ; n; (2:3)

(here pj denote the canonical moments of � and q2n+2 = 0). The mapping

 : (�1; : : : ; �n) �! �0;� = arg max
�

�0;�(�)

is one to one from the set of all prior distributions (�1; : : : ; �n) on f1; : : : ; ng
with �n > 0 onto the set �(n). Moreover, if � 2 �(n) has canonical moments (of

even order) p2; : : : ; p2n�2; p2n = 1, then the inverse of  is given by  �1(�) =

(��1 ; : : : ; �
�

n) where

�
�

` =
`+ 1

2� (q2=p2)

`�1Y
j=1

q2j

p2j

�
1� 2

q2`

p2`
+
q2`q2`+2

p2`p2`+2

�
; ` = 1; : : : ; n: (2:4)

3. �p;�-Optimal Designs

In this section we consider the criterion (1.2) for all p 2 (�1; 1]. The case

p = 0 was already solved by Dette (1990), the general case (p 6= 0) is more

complicated and stated in the following theorem.
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Theorem 3.1. Let p 2 (�1; 1], then the �p;�-optimal design is uniquely deter-

mined by its canonical moments ( 1
2
; p2;

1
2
; : : : ; p2n�2;

1
2
; 1) where (p2; : : : ; p2n�2) is

the unique solution of the system of equations

�`+1

`+ 2

�
1� 2

q2`

p2`
+
q2`q2`+2

p2`p2`+2

�0@`+1Y
j=1

(q2j�2p2j)
j

1
A

p=(`+1)(`+2)

=
�`

`+ 1

q2`

p2`

�
1� 2

q2`+2

p2`+2
+
q2`+2q2`+4

p2`+2p2`+4

�
C

p
` ; ` = 1; : : : ; n� 1; (3:1)

which satis�es (2:3). Here

C` =
jM`+1(�

D
`+1)j

1
`+2

jM`(�
D
` )j

1
`+1

=

2
4``2(`+ 1)(`+1)

2

(2`� 1)`

(2`+ 1)(`+1)(2`+1)

Ỳ
j=2

�
(`+ 1� j)2

(2(` � j) + 1)(2(` � j) + 3)

��(`+1�j)35
1=(`+1)(`+2)

; (3:2)

` = 1; : : : ; n� 1, and the `th equation in (3:1) has to be replaced by the equation

1� 2
q2`

p2`
+
q2`q2`+2

p2`p2`+2
= 0 (3:3)

whenever �` = 0, ` = 1; : : : ; n� 1.

Proof. Let p2; : : : ; p2n�2 denote the canonical moments (of even order) of the

�p;�-optimal design �p;�. From Lemma 2.1 it follows that �p;� is �0;�0-optimal

where the prior distribution �0 = (�01; : : : ; �
0

n) is given by �
0

`=�`(e�`(�p;�))
p
=
Pn

j=1

�j(e�j(�p;�))
p. Because the map  in Theorem 2.2 is one to one we have

(�01; : : : ; �
0

n) =  
�1(�p;�) = (��1 ; : : : ; �

�

n); (3:4)

where ��` is de�ned in (2.4) and consequently the canonical moments of �p;�
satisfy (2.3). On the other hand, if �` 6= 0, we obtain from (3.4) and (2.4)

�`+1(e�`+1(�p;�))
p

�`(e�`(�p;�))p
=

�
0

`+1

�0`

=

(`+ 2)
Q̀
j=1

q2j
p2j

�
1� 2

q2`+2

p2`+2
+

q2`+2q2`+4

p2`+2p2`+4

�

(`+ 1)
`�1Q
j=1

q2j
p2j

�
1� 2 q2`

p2`
+ q2`q2`+2

p2`p2`+2

� ;

which is equivalent to (3.1). If �` = 0, (3.3) follows directly from (3.4) and (2.4).

This shows that the canonical moments (of even order) of �p;� form a solution of

the system of equations de�ned in Theorem 3.1.
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Finally, let (p�2; : : : ; p
�

2n�2) denote a second solution of the system of equations

in Theorem 3.1 that satis�es (2.3) and let �� 2 �(n) denote the corresponding

design. By Theorem 2.2 it follows that �� is �0;��-optimal for the prior �� =

(��1 ; : : : ; �
�

n) where (p
�

2n = 1; q�2n+2 = 0)

�
�

` =
`+ 1

1� q�2=p
�

2

`�1Y
j=1

q
�

2j

p�2j

 
1� 2

q
�

2`

p�2`

+
q
�

2`q
�

2`+2

p�2`p
�

2`+2

!
; ` = 1; : : : ; n: (3:5)

An application of Lemma 2.1 shows that �� is �p;~�-optimal with respect to the

prior ~� = (~�1; : : : ; ~�n) where

~�` =
�
�

` (e�`(�
�))�pPn

`=1 �
�

` (e�`(��))�p
= �`; ` = 1; : : : ; n:

Here the last identity is a consequence of (2.2), (3.5) and the fact that (p�2; : : :,

p
�

2n�2) is a solution of the system of equations in Theorem 3.1. It follows from

standard arguments of optimal design theory, that the �p;�-optimal design is

unique and consequently we conclude that �� = �p;�. But this is equivalent to

the fact p�2j = p2j , j = 1; : : : ; n, and proves the assertion of the theorem.

Remark 3.2. It is worthwhile to mention that a more complicated proof of

Theorem 3.1 can be obtained from Theorem 3.3 in Dette (1994) by observing

that a �p;�-optimal design �� is also a �c
p;
-optimal discriminating design (in the

sense of Dette (1994)) where 
` is proportional to

jM`�1(�
�)jp

jM`(��)jp
nX
j=l

�j(e�(�
�))p

j + 1
:

It should also be noted that, in general, every �c
p;
-optimal discriminating design

is also �0;�-optimal for an appropriate prior � but not necessarily �p;�0-optimal

for p 6= 0 (in the case of negative weights �l Lemma 2.1 is not applicable).

In general, the system of equations in Theorem 3.1 has to be solved numer-

ically except in the case p = 0 where it can be shown that the solution of (3.1)

and (3.2) is given by

p2j =

Pn
`=j

`+1�j

`+1
�`Pn

`=j
`+1�j

`+1
�` +

Pn
`=j+1

`�j
`+1

�`

; j = 1; : : : ; n� 1;

which is the result of Dette (1990, p: 1789). A further simpli�cation occurs if

�n�1 = � � � = �k = 0, k � n� 1. In this case the canonical moments of the �p;�-

optimal design have a similar behavior as in the Ds-optimal design problem (see
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Studden (1980)). The proof of the following result is an immediate consequence

of Theorem 3.1 and is therefore omitted.

Theorem 3.3. Let � = (�1; : : : ; �k�1; 0; : : : ; 0; �n), 1 � k � n, and p 2 (�1; 1],

then the �p;�-optimal design is uniquely determined by its canonical moments

p2; : : : ; p2n�2; p2n where p2k; p2k+2; : : : ; p2n are given by

p2j =
n� j + 1

2(n� j) + 1
; j = n; n� 1; : : : ; k; (3:6)

while (p2; : : : ; p2k�2) is the unique solution of the �rst k�1 equations in Theorem

3:1:

4. Optimal Designs Which Maximize the Minimum E�ciency

In this section we consider the criterion

�
�1

(�) =
n

min
j=1

fe�j(�)g (4:1)

for which the solution of the design problem is more transparent than in the

general case. Throughout this section we make frequent use of the quantities

a` =

8><
>:
jM`+1(�

D
`+1)jjM`�1(�

D
`�1)j

jM`(�
D
` )j2

; if ` = 2; 3; : : : ; n� 1,

jM2(�
D
2 )j2; if ` = 1,

(4:2)

which can be rewritten as (using (2.2))

a` =

8>>><
>>>:

(`+ 1)`+1(2`� 1)2`�1

(`� 1)`�1(2`+ 1)2`+1
; if ` = 2; : : : ; n,

24

36
; if ` = 1.

(4:3)

In the following Lemma we collect some of the properties of the sequence (a`)`2IN .

Its proof is straightforward and therefore omitted.

Lemma 4.1. The sequence (a`)`2IN is increasing, bounded, (1=5 < a` < 1=4,

for all ` � 2), and has the limit 1=4.

Theorem 4.2. The �
�1

-optimal design �
�1

is uniquely determined by its

canonical moments (1=2; p2; 1=2; : : : ; 1=2; p2n�2; 1=2; 1), where the canonical mo-

ments (of even order) p2; : : : ; p2n�2 are given by the continued fractions

p2` = 1� a`j
j 1

� a`+1j
j 1

� : : :� an�1j
j 1

; ` = 2; : : : ; n� 1; (4:4)
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and p2 is the largest root in the interval [0; 1] of the equation

p2(1� p2)
2 =

16

729p24
: (4:5)

Proof. The proof consists of three steps. In Step 1 we show that the set N (�
�1

)

de�ned in the second part of Lemma 2.1 is precisely f1; : : : ; ng, in Step 2 we prove
that the quantities in (2.3) are all nonnegative for the design �

�1
and �nally in

Step 3 we apply the results of Section 2 in order to establish the assertion of the

theorem.

Step 1 (N (�
�1

) = f1; : : : ; ng). For ` = 2; : : : ; n� 1 consider the equations

e�`(�) = e�`+1(�); ` = 2; : : : ; n� 1; (4:6)

where � is a symmetric design supported at n + 1 points including �1 and 1

(that is � has canonical moments (1=2; p2; 1=2; : : : ; 1=2; p2n�2; 1=2; 1)). By an

application of (2.1) and straightforward algebra we �nd that (4.6) is equivalent

to

q2`p2`+2 = a`; ` = 2; : : : ; n� 1; (4:7)

(p2n = 1) which can easily be rewritten as (4.4). Similarly, it follows that the

equation e�1(�) = e�2(�) is equivalent to (4.5). This implies that the design �
�1

de�ned in (4.4) and (4.5) has equal e�ciency in all models up to degree n, that

is N (�
�1

) = f1; : : : ; ng.
Step 2 (�

�1
2 �(n)). Obviously �

�1
is symmetric and supported at n+1 points

including �1 and 1. In order to show that �
�1

satis�es (2.3) we consider, �rst,

the case ` = 2; : : : ; n� 1 and rewrite (2.3) as

1� 3q2`p2`+2 � p2`q2`+2 � 0;

where we have used p2` = 1� q2`. Observing (4.7) we obtain

1� 3a` � p2`

�
1� a`

1� p2`

�
� 0;

which is equivalent to the inequality

p
2
2` � 2p2`(1� 2a`) + (1 � 3a`) � 0: (4:8)

The minimum of the left hand side in (4.8) (as a function of p2`) is attained at

p2` = 1 � 2a` and given by a`(1 � 4a`) which is positive because of Lemma 4.1.

This proves that the canonical moments of �
�1

satisfy (2.3) for ` = 2; : : : ; n� 1.
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In order to show the remaining case ` = 1 we remark that it is easy to see that the

canonical moments of �
�1

are all greater than 1=2 (here we use (4.7), Lemma 4.1

and the assumption that p2 is de�ned as the largest root of (4.5) in the interval

[0; 1]). By a procedure similar to the above (using (4.5) instead of (4.7)) we �nd

that (2.3) for ` = 1 is equivalent to the inequality

f(p2) = 27p
5
2

2 � 54p
3
2

2 + 16p2 + 27p
1
2

2 � 12 � 0; p2 >
1

2
:

It is easy to see that f is an increasing function of p2 2 [1=2; 1] and consequently

it follows that f(p2) > f(1=2) > 0, which shows that the canonical moments of

�
�1

satisfy (2.3).

Step 3 (Proof of Theorem 4.2). From Step 2 we have �
�1

2 �(n) and by Theorem

2.2 we �nd that �
�1

is �0;��-optimal, where �� =  
�1(�

�1
) = (��1 ; : : : ; �

�

n) is

de�ned in (2.4). In Step 1 we showed that N (�
�1

) = f1; : : : ; ng and consequently
�
�1

satis�es the condition in the second part of Lemma 2.1 with � = �
�. This

proves the �
�1

-optimality of �
�1

.

In the following sections we see that the �
�1

-optimal design serves as an ap-

propriate approximation for the �p;�-optimal design when p is su�ciently small.

For this reason we state some properties of the canonical moments of the �
�1

-

optimal design in the following Lemma. The proof is omitted for the sake of

brevity.

Lemma 4.3. Let p
(n)
2j denote the canonical moments (of even order) of the �

�1
-

optimal design for polynomial regression models up to degree n. The following

statements hold true

(a) p
(n)
2j � 1=2 for all j = 1; : : : ; n and n 2 IN

(b) p
(n)
2j < p

(n�1)
2j for all n 2 IN

(c) If n > 2, there exists an index j0 such that

1 = p
(n)
2n > p

(n)
2n�2 > � � � > p

(n)
2j0

< p
(n)
2j0+2

< � � � < p
(n)
4 < p

(n)
2 :

The following result gives the limit distribution of the �
�1

-optimal design

as n ! 1. It shows that the limit is NOT the arcsin-distribution in contrast

with the case p = 0 and the uniform prior (see Dette (1990, p: 1797)).

Theorem 4.4. If n ! 1, then the �
�1

-optimal design converges weakly to

a symmetric distribution �
� with canonical moments (of even order) p2; p4; : : :

where for ` � 2, p2` is given by the (in�nite) continued fraction

p2` = 1� a`j
j 1 �

a`+1j
j 1

� � � � ; ` � 2;

and p2 is the largest root in [0; 1] of equation (4:5).
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Proof. For �xed n the canonical moments of the �
�1

-optimal design for poly-

nomials up to degree n are given in (4.4) and (4.5). By Lemma 4.1 the quantities

a` in (4.4) satisfy a` < 1=4; ` � 2, and by Worpitzky's Theorem (see Wall (1948,

p: 42)) the continued fraction in (4.4) converges. This proves the assertion.

Remark 4.5. Numerical calculations yield for the �rst two canonical moments

of the limiting design ��, p2 = 0:68563939, p4 = 0:56914133 while the canonical

moments of higher order can be calculated recursively from p2`+2 = a`=q2`; ` � 2.

For example we obtain p6 = 0:5414; p8 = 0:5296; p10 = 0:5230; : : : (note that

lim`!1 p2` = 1=2). It is also worthwhile to mention that the sequence of the

canonical moments of the limiting design �� is strictly decreasing in contrast to

the sequence of canonical moments of the �
�1

-optimal design for polynomials up

to degree n. Figure 1 shows the density of the limiting distribution �� (solid line)

together with the arc-sin density 1=�
p
1� x2 (dashed line). The arc-sin density

is well known to be the limiting density of similar sequences of designs. For

example if �n denotes the D-optimal design for nth degree polynomial regression

then �n converges weakly to the arc-sin law. Note that the limiting density of ��

has less mass near the center and more near the end points �1 than the arc-sin

law.
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Figure 1. Solid line = density of ��; dashed line = arc-sin density

If the minimum in the optimality criterion (4.1) is not taken over the full

index set f1; : : : ; ng then the solution of the optimal design problem becomes

more complicated. For the sake of brevity we restrict ourselves to the following

two special cases which can be proved by similar arguments as presented in the

proof of Theorem 4.2.
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Theorem 4.6. The design which maximizes

minfe�`(�) j ` = 1; : : : ; k � 1; ng

(2 � k � n � 1) is uniquely determined by its canonical moments p2; : : : ; p2n
where p2k; p2k+2; : : : ; p2n are given by (3:6), p4; : : : ; p2k�2 are given by the contin-

ued fractions

p2` = 1� a`j
j 1

� � � � � ak�2j
j 1

� a
�

k�1j
j 1

; ` = 2; : : : ; k � 1;

with al de�ned in (4:2) (l = 2; : : : ; k � 2),

a
�

k�1 =

2
4k�1Y
j=1

�
n� j

2(n� j) + 1

�n�j �
n� j + 1

2(n� j) + 1

�n�j+1
3
5

1
n+1�k jMk�2(�

D
k�2)j

jMk�1(�
D
k�1)j

n+2�k
n+1�k

and p2 is the largest root in [0; 1] of the equation

p2(1� p2)
2 =

16

729p24

if k � 3, and the largest root of the equation

p2(1� p2)
2 =

�
n

2n� 1

� 2n
n�1

�
2n� 3

2n� 1

�2

if k = 2.

Theorem 4.7. The design which maximizes

minfe�`(�) j ` = k; : : : ; ng

(1 � k � n) is uniquely determined by its canonical moments p2; : : : ; p2n where

p2k+2; : : : ; p2n are given by the continued fractions

p2` = 1� a`j
j 1

� � � � � an�2j
j 1

� an�1j
j 1

; ` = k + 1; : : : ; n;

(with al de�ned in (4:2)) and p2; : : : ; p2k are the unique solution of the system

of equations

p2l =
3p2l+2 � 1

4p2l+2 � 1
; l = k � 1; : : : ; 1;

C
(k+1)(k+2)
k

(p2k+2)(k+1)
=

kY
j=1

(q2j�2p2j)
j(q2k)

k+1
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(with Ck de�ned in (3:2)).

5. Examples

5.1. Optimal designs with respect to various �p;�-criteria

Consider the case n = 2 (linear or quadratic regression) and a uniform prior

�
u
1 = �

u
2 = 1=2. In this case there is one equation for the determination of p2 in

Theorem 3.1, namely

�
1� 2q2

p2

�
(p2q

2
2)

p=6 =
3

2

q2

p2
�
�
16

729

�p=6

(5:1)

and the optimal �p;�-optimal design has canonical moments (1=2; p2; 1=2; 1)where

p2 is the unique root of (5.1) such that (2.3) is satis�ed, i.e. p2 � 2=3. There is

a considerable amount of literature concerning the relationship between the se-

quence of canonical moments and the corresponding design (see e.g. Lau (1983)).

Throughout this chapter we use Lemma 4.4 in Lim and Studden (1988) which is

applicable for polynomial regression up to degree 4. Table 5.1 gives the weights of

the �p;�u-optimal design and the D-e�ciencies in the linear and quadratic model

for di�erent values of p 2 [�1; 1]. The case p = �1 can be directly obtained

from the equation (4.5) in Theorem 4.2 which can be interpreted as the limit of

(5.1) when p! �1. Note that all designs are supported at �1; 0; 1.

Table 5.1. Weights of the �p;�u-optimal design for linear and quadratic

regression using a uniform prior �u

p �p;�u(f�1g) �p;�u(f0g) e�1(�p;�u) e�2(�p;�u)

1 0.38515 0.22970 0.8776 0.9725

0 0.38889 0.22222 0.8819 0.9681

�1 0.39208 0.21584 0.8855 0.9641

�2 0.39478 0.21044 0.8886 0.9603

�3 0.39707 0.20586 0.8911 0.9570

�1 0.41910 0.16180 0.9155 0.9155

The results in Table 5.1 demonstrate that there do not exist essential dif-

ferences between the �p;�u-optimal designs for polynomials up to degree 2, with

respect to di�erent values of p. We observe a similar behavior in the cases n = 3

(linear, quadratic and cubic regression). Here Theorem 3.1 gives two equations

for (p2; p4)
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�
1� 2

q2

p2
+
q2q4

p2p4

�
(p2(q2p4)

2)p=6 =
3

2

q2

p2

�
1� 2

q4

p4

�
C

p
1�

1� 2q4

p4

�
fp2(q2p4)2q34gp=12 =

4

3

q4

p4
C

p
2

(5:2)

and p2; p4 have to satisfy (2.3). The optimal design puts masses �; (1=2) �
�; (1=2)��; � at the points �1;�t; t and 1 where t = p2q4 and � = p2p4=(2(q2+

p2p4)) (see Lim and Studden (1988, p: 1233)). The solution of (5.2) was de-

termined using the Newton Raphson algorithm and the corresponding designs

and e�ciencies are given in Table 5.2. Again we observe some robustness of the

design with respect to di�erent optimality criteria �p;�u.

Table 5.2. �p;�u-optimal designs for polynomials up to degree 3 and a

uniform prior. First two columns: weights, third column: interior positive

support point

p �p;�u(�1) �p;�u(�t) t e�1(�p;�u) e�2(�p;�u) e�3(�p;�u)

1 0.31501 0.18499 0.40193 0.8305 0.9138 0.9594

0 0.31944 0.18056 0.40105 0.8348 0.9143 0.9542

�1 0.32345 0.17655 0.40059 0.8388 0.9134 0.9494

�2 0.32703 0.17297 0.40047 0.8423 0.9141 0.9448

�3 0.33021 0.16979 0.40059 0.8455 0.9137 0.9407

�1 0.36634 0.13366 0.42695 0.8840 0.8840 0.8840

Obviously the robustness of the �p;�-optimal design with respect to di�erent val-

ues of p will also depend on the prior �. As an example for a stronger dependence

of the design �p;� on the parameter p we consider the case n = 3 (linear, quadratic

or cubic regression) and the prior ~�1 = 3=16; ~�2 = 12=16; ~�3 = 1=16 (more weight

on the linear and quadratic model). The results are listed in Table 5.3.

Table 5.3. �p;~�-optimal designs for polynomial regression up to degree 3

and the prior ~� = (3=16; 12=16; 1=16). First two columns: weights, third

column: interior positive support point

p �p;~�(�1) �p;~�(�t) t e�1(�p;~�) e�2(�p;~�) e�3(�p;~�)

1 0.34203 0.15797 0.16290 0.8321 0.9855 0.6828

0 0.34167 0.15833 0.19124 0.8336 0.9833 0.7327

�1 0.34178 0.15822 0.21194 0.8353 0.9758 0.7645

�2 0.34228 0.15772 0.22807 0.8372 0.9719 0.7864

�3 0.34304 0.15696 0.24122 0.8392 0.9684 0.8025

�1 0.36634 0.13366 0.42695 0.8840 0.8840 0.8840
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5.2. Robustness of the �0;�-optimal design

The results of Example 5.1 indicate that a given �p;�u-optimal design for the

uniform prior �u is quite robust with respect to di�erent �p0;�u-criteria. Because

the �0;�u-optimal designs are very easy to calculate (Dette (1990)) it might be

of interest how these designs behave with respect to the other �p;�-criteria. As

a representative example we consider the case n = 4, �u1 = � � � = �
u
4 = 1

4
. It

follows from the results of Dette (1990) that the �0;�u-optimal design puts masses

0.27167, 0.10354, 0.24958, 0.10354, 0.27167 at the points �1;�0:60508; 0; 0:60508
and 1 respectively. The performance of the design �0;�u with respect to the other

�p;�u criteria is evaluated through the �p;�u-e�ciency

Rp(�) =
�p;�u(�)

�p;�u(�p;�u)
; p 2 [�1; 1];

where the design �p;�u is determined by Theorems 3.1 and 4.2.

The results are illustrated in Table 5.4 and show a remarkable robustness

of �0;�u-optimal design with respect to the other �p;�u criteria. For this reason

and because of the easy computation of the �0;�-optimal designs we conclude

with the statement that the design �0;�u might be a good choice in polynomial

regression models when only an upper bound on the degree of the polynomial is

known and a uniform prior is used to re
ect the experimenters belief about the

adequacy of the di�erent models. It should also be mentioned again that this

statement is not necessarily true for arbitrary prior distributions �.

Table 5.4. �p;�u-e�ciencies of the �0;�u-optimal design for di�erent values

of p 2 [�1; 1]

p 1 0.6 �0:6 �1 �2 �3 �1

Rp(�0;�u) 0.99989 0.99995 0.99996 0.99989 0.99957 0.99906 0.93220
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