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Abstract: Gaussian process (GP) models are widely used to approximate time con-

suming deterministic computer codes, which are often models of physical systems

based on partial differential equations (PDEs). Limiting or boundary behavior of

the PDE solutions (e.g., behavior when an input tends to infinity) is often known

based on physical considerations or mathematical analysis. However, widely used

stationary GP priors do not take this information into account. It should be ex-

pected that if the GP prior is forced to reproduce the known limiting behavior,

it will give better prediction accuracy and extrapolation capability. This paper

shows how a GP prior that reproduce known boundary behavior of the computer

model can be constructed. Real examples are given to demonstrate the improved

prediction performance of the proposed approach.

Key words and phrases: Computer experiments, constrained Gaussian process em-

ulator, extrapolation in finite element simulations.

1. Introduction

Due to the increase in computing power, there is widespread development and

use of computer simulation models of physical systems. Many of the computer

models are based on PDEs solved using finite difference or finite element meth-

ods. These deterministic simulators can be time consuming and are often approx-

imated with cheap-to-compute surrogates constructed with data from computer

experiments. GP models are a popular class of surrogates. In GP modeling, a

stationary GP is often employed as a prior for the continuous functional relation-

ship f between the real valued output y ∈ R and inputs x = (x1, . . . , xd) ∈ Rd+,

where R+ = [0,∞). This prior process is updated with experiment data, giving

a posterior process that is used for inference about f . Note that we assume that

the inputs are nonnegative real numbers because most physical quantities are

represented by nonnegative numbers.

In many practical problems, there is additional information about the simu-

lator. One such type of information concerns the output value as a set of inputs
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approaches a boundary of the region on which they are defined. Such information

can be obtained from an asymptotic analysis or simple physical considerations.

For example, a parabolic PDE models the temperature of a solid body immersed

in a fluid held at a fixed temperature as a function of space and time (Cengel and

Ghajar (2011)). Clearly, as the time goes to infinity, the temperature at every

point of the solid body converges to the temperature of the fluid. As another

example, in the bending of a plate (Wang, Reddy and Lee (2000)), the maximum

displacement approaches zero as the thickness of the plate approaches infinity.

Consider modeling the temperature y at the midplane of a 1mm thick platinum

plate with large length and width that is immersed in a fluid as a function of

time x. The function is plotted in Figure 1 with crosses. We see that y quickly

converge to the steady state asymptote of 1,200. The posterior mean and 98%

prediction intervals of the stationary GP model constructed with the data marked

as circles are plotted as dotted lines. It can be seen that the prediction intervals

for x > 300 are too wide and they are widest when x > 1,600. Moreover, the

posterior mean decreases and converge to the estimated prior mean, which is less

than 1,200, when x > 1,200. These behaviors contradict the known fact that y

is close to 1,200 for large x. The posterior mean and 98% prediction intervals

for the proposed GP model, which we call the Boundary Modified Gaussian Pro-

cess (BMGP) model, are plotted as solid lines. We see that the posterior mean

and prediction intervals for the BMGP converge to 1,200 for x > 300, which is

behavior expected of a valid model for this problem.

In the above examples, the available information can be written as

lim
xs→cs

[f(x)− a(x)] = 0, (1.1)

where xs = (xs1 , . . . , xsl), {s1, . . . , sl} ⊂ {1, . . . , d}, cs = (cs1, . . . , c
s
l ) ∈ (R+ ∪

{∞})l, and a : Rd+ → R is continuous. Note that xs → cs refers to a sequence

{x(g) ∈ Rd+ : g = 1, 2, . . . } of x values such that xsi(g)→ csi and each xj(g), j /∈
{s1, . . . , sl} is a fixed positive value. An example of (1.1) is limx1→∞[f(x1, x2)−
a] = 0. Cases where limxs→cs f(x) = ∞ can be handled within the framework

given by (1.1) by transforming y so that the limit is finite (e.g., 1 − exp(−ey),

where e is a constant). When d = 1, asymptotes of f (in the sense of Definition

2.4 in Giblin (1972)) are special cases of (1.1). If cs =∞ and a(x) = a ∈ R, the

line y = a is called a horizontal asymptote. If cs =∞ and a(x) is the equation of

a line, the line represented by a(x) is called an asymptote. Because cs often lies

at the boundary of the region in which xs is defined (e.g., each csi is either 0 or∞
when each xsi can take on any nonnegative value), we shall use the term boundary



GAUSSIAN PROCESS MODELING WITH BOUNDARY INFORMATION 623

Figure 1. Point (posterior mean) and interval predictions [LCL, UCL] of BMGP and GP
models constructed with a seven-point design for the platinum plate temperature model.

information to refer to the information given by (1.1). In a small number of

cases, the output value as a set of inputs approaches a point in the interior of

the region on which they are defined is known. For instance, the amplitude

of vibration approaches infinity as the frequency of vibration approaches the

resonant frequency. Problems such as this can also be handled by (1.1).

Aside from physical considerations, sources of information of the form (1.1)

can be found from various simplifications commonly made to physical models.

A physical quantity P is a function of three dimensional space and time, and is

modeled as the solution of a PDE (Farlow (1982)). The solution of the equation

is often simplified by certain assumptions. For instance, the behavior at time

infinity of P, called the steady state behavior, can be simpler to study math-

ematically because the time dimension is eliminated. For instance, both heat

and wave equations reduce to the Poisson equation (Gockenbach (2011, p. 444)),

which reduces to an ordinary differential equation if P depends only on one spa-

tial dimension. The PDE can also be simplified when one assumes that physical

properties that appear in the equation are spatially uniform, or certain terms

in the equation are negligible. For example, the thermal conductivity in the

parabolic heat equation can be assumed to be constant to simplify the equa-

tion so that explicit solution is possible (Cengel and Ghajar (2011, Chap. 4)).

However, in a realistic uncertainty quantification setting, the spatial variation
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of the thermal conductivity is approximated by a polynomial function (Xiu and

Karniadakis (2003)). Clearly, a constant thermal conductivity is a limiting case

of a polynomial function. As a second example, the telephone equation models

the vibration of a string subject to friction (Coleman (2013, p. 59)). Neglecting

the friction term reduces the telephone equation to the wave equation, which has

a well-known explicit solution. As a third example, the complex Navier-Stokes

equation can be simplified to the simple Bernoulli equation using assumptions

such as zero viscosity (Humphrey and DeLange (2013, Chap. 8)). Finally, the

solution of a PDE is also simplified by assuming that the size of the system is

large or small in one or two spatial dimensions so that P is only a function of the

remaining spatial dimensions. In structural mechanics, the governing equations

for three-dimensional elasticity are simplified in this manner (plane stress and

plane strain assumptions) (Johnson (2000)).

When {s1, . . . , sl} is a proper subset of {1, . . . , d}, i.e., xs does not include all

components of x, and cs ∈ Rl+, the information given by (1.1) is infinitely more

than the values of the output at one or a finite number of points in the input

space, which is the form of information obtained in a computer experiment. This

is because (1.1) gives the value of f on a subset of a line, plane, hyperplane, or

other linear manifolds (linear manifolds are sets of points that can be translated

into a subspace of dimension < d). When some components of cs equal ∞, (1.1)

clearly provides an approximation to the value of f on infinitely many points.

Thus, it is clear that the information given by (1.1) can be very valuable to incor-

porate in constructing a surrogate for the computer model and for extrapolation

beyond the experiment region. This paper proposes a modified GP model to

take into account the boundary information contained in (1.1). To the best of

our knowledge, this problem has not been formulated in the computer experi-

ments literature. Only the case where xs = x and cs ∈ Rd+ is trivial. For such

a case, (1.1) gives the value of f at a point (since f is assumed continuous) and

the information is easily incorporated as an additional point in the computer ex-

periment data. Existing works on constrained models for computer experiments

focus on monotonicity constraints. Some methods for this purpose are proposed

in Golchi et al. (2015), Tan (2015) and Wang (2012). The BMGP model also

appears to be a novel statistical approach to improve extrapolation accuracy.

However, it is not a panacea to the extrapolation problem as it is possible to

have correct boundary information but poor extrapolation performance.

The remainder of the paper is organized as follows: Section 2 reviews the

stationary GP model. Section 3 gives the proposed BMGP model. Three real
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examples are given in Section 4 to illustrate the improved performance achieved

with the proposed model. Concluding remarks are given in Section 5.

2. Review of Gaussian Process Modeling

In the widely employed GP modeling approach, the prior for the functional

relationship f : Rd+ → R between output and inputs is a stationary GP. The GP

prior is

Y (x) = β0 + G(x), (2.1)

where G(x) is a zero mean stationary GP. Given points x and x′, the covariance

of Y (x) and Y (x′) is cov[Y (x), Y (x′)] = σ20R(x,x′|Θ0), where σ20 is the variance

and R is the correlation function with parameter Θ0 = (θ01, . . . , θ
0
d). It is common

and sensible to choose R so that R(x,x′|Θ0) → 0 as ‖x − x′‖2 → ∞ (Santner,

Williams and Notz (2003)). This assumption implies that the output deviation

from the mean β0 at a point in the input region carries little information about

the deviation at points far away. We shall adopt this assumption throughout the

paper.

In a computer experiment, the output is evaluated at n values of inputs in

the design D = {x1, . . . ,xn}, which yields a vector Y = (Y1, . . . , Yn)T of observed

outputs. The prior process is updated with the data, giving a posterior GP (Sacks

et al. (1989); Currin et al. (1991))

Y (·)|(Y, β0, σ
2
0,Θ

0) ∼ GP(M(·|β0,Θ0), C(·, ·|σ20,Θ0)), (2.2)

with mean functionM(·|β0,Θ0) and covariance function C(·, ·|σ20,Θ0). The mean

function is

M(x|β0,Θ0) = β0 + r(x)TR−1(Y − β01), (2.3)

where r(x) = (R(x,x1|Θ0), . . . , R(x,xn|Θ0))T , R = (R(xi,xj |Θ0))1≤i,j≤n (a

matrix with element R(xi,xj |Θ0) in the ith row and jth column), and 1 is an

n× 1 vector of 1’s. The covariance function is

C(x,x′|σ20,Θ0) = σ20[R(x,x′|Θ0)− r(x)TR−1r(x′)]. (2.4)

In a computer experiment, it is only possible to obtain a finite set of data,

which should be concentrated within the region of interest X . This is because

M(x|β0,Θ0)→ β0 and C(x,x|σ20,Θ0)→ σ20 as min{‖x−x1‖2, . . . , ‖x−xn‖2} →
∞, i.e., the posterior mean and variance of the GP converges to the prior mean

and variance respectively as x gets further away from the design points. Thus,

we shall assume that D ⊂ X .
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The mean and covariance functions (2.3)-(2.4) depend on the parameters β0,

σ20, and Θ0, which can be estimated with the maximum likelihood method. Given

Θ0, β0 = β̂0 = (1TR−11)−11TR−1Y, and σ20 = σ̂20 = (Y−β̂01)TR−1(Y−β̂01)/n

maximize the likelihood. The maximum likelihood estimate Θ̂0 of Θ0 is obtained

by minimizing

n log(σ20) + log(|R|). (2.5)

It is common to perform statistical inference on f using Θ̂0 in place of Θ0, β̂0 in

place of β0, and σ̂20 in place of σ20, i.e., using the GP

Y (·)|(Y, β̂0, σ̂
2
0, Θ̂

0) ∼ GP(M(·|β̂0, Θ̂0), C(·, ·|σ̂20, Θ̂0)). (2.6)

This is an empirical Bayes approach. In GP modeling of computer experiments,

the product Gaussian and product Matern correlation functions are often em-

ployed. In this paper, we employ the product Matern correlation function with

smoothness parameter 1.5:

R(x,x′|Θ0) =

d∏
i=1

exp(−ρi)(ρi + 1), ρi =

√
6|xi − x′i|
θ0i

. (2.7)

It is useful to standardize x1, . . . , xd in numerical optimization of (2.5) be-

cause it makes changes of the same magnitude in each component of Θ0 to be of

comparable importance.

3. GP Modeling with Boundary Information

This section describes our proposed modification of the GP model to incor-

porate boundary information given by

lim
xi→ci

[f(x)− ai(x)] = 0, i = 1, . . . , k, (3.1)

where xi = (xi1 , . . . , xil(i)), {i1, . . . , il(i)} ⊂ {1, . . . , d}, ci = (ci1, . . . , c
i
l(i)) ∈ (R+ ∪

{∞})l(i), and ai is continuous. We assume all ci, i = 1, . . . , k are distinct, i.e.,

if xih = xjm for i 6= j (xi and xj in the ith and jth equations in (3.1) include

a common input), then cih 6= cjm. The point ci is typically on a boundary of

the region Rl(i)+ in which xi is defined, i.e., it includes components that equal 0

and ∞. Thus, {x ∈ (R+ ∪ {∞})d : xi = ci} is often an edge of the boundary

of Rd+. In some engineering problems, an input may be defined over a region

other than [0,∞) (e..g, the percentage of a substance in a mixture). In those

cases, ci is also often on the boundary of the region in which xi is defined.

The case limxi→ci f(x) = ∞ can be transformed into a special case of (3.1) by

using the transformation 1 − exp(−ey) for some e that may be estimated with
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data. Unlike 1/y, this transformation allows us to handle cases where there

exists a vertical asymptote limxi→ci f(x) = ∞ and a zero horizontal asymptote

limxj→cj f(x) = 0. Although a ci with a component that equals ∞ can seem

far from the region of interest X , it is often the case that f converges quickly

enough so that the information in (3.1) is useful for improving prediction within

X . Moreover, the information is useful for improving extrapolation accuracy.

As reviewed in Section 2, stationary GP models can incorporate informa-

tion about known function values at a finite set of points (which is the kind of

information obtained in a computer experiment). Thus, when each xi = x and

ci ∈ Rd+ (does not have ∞ as a component), we can incorporate the information

in (3.1) by including (ci, ai(ci)), i = 1, . . ., k as data points. However, the infor-

mation in (3.1) cannot be easily incorporated in the stationary GP model when

xi is a proper subset of x or when some components of ci is ∞. For example,

when d = 2 and limx1→0 f(x1, x2) = a, the value of y on an entire ray is known.

Even if we update the GP model with several data points (x, y) of the form

((0, x2), a), the GP model can still fail to predict accurately on the edge x1 = 0.

Moreover, since we know y converges to a constant as x1 → 0, we should have

decreasing uncertainty about the function f as x1 → 0. This fact is not taken

into account in a stationary GP model because the prior variance is constant. As

another example, suppose x1 represents time, and limx1→∞ f(x1, x2) = a, i.e.,

the steady state value of y is known. There is no existing method for exploiting

this information. If a stationary GP model is used, the posterior mean when

x1 →∞ is the prior mean and the posterior variance when x1 →∞ is the prior

variance. This gives poor extrapolation behavior.

We propose to incorporate the information given by (3.1) into the BMGP

model by choosing its prior mean function µ(x) so that

lim
xi→ci

[µ(x)− ai(x)] = 0, i = 1, . . . , k, (3.2)

and its prior variance function σ2(x) so that

lim
xi→ci

σ2(x) = γi, i = 1, . . . , k. (3.3)

In this case, the GP prior that we use has nonstationary mean and variance. If

γi = 0, this ensures that the prior process Y for the BMGP model converges

in mean square to ai(x) as xi → ci, i.e., limxi→ci E{[Y (x) − ai(x)]2} = 0, i =

1, . . . , k. However, to make the BMGP model robust to misspecifications in (3.1),

we shall allow γi to be a small positive number.

We do not know a way to incorporate the boundary information through the
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covariance function alone (as suggested by a referee). Let M and C denote the

posterior mean and covariance functions of the GP, and let µ and Σ denote the

prior mean and covariance functions. Note that it is common and sensible to

choose the prior correlation function R so that R(x,x′) → 0 as ‖x − x′‖2 → ∞
(see first paragraph of Section 2) and to choose a bounded prior variance function

Σ(x,x) (i.e., we are not completely ignorant about the values that the output can

take at any x). If such a choice is made, M(x)→ µ(x) and C(x,x′)→ Σ(x,x′)

as min{‖x − x1‖2, . . . , ‖x − xn‖2, ‖x′ − x1‖2, . . . , ‖x′ − xn‖2} → ∞, i.e., the

posterior mean and covariance functions of the GP converge to the prior mean

and covariance functions respectively as x and x′ get further away from the design

points. Thus, if we choose µ = β0 as in standard GP modeling, the GP prediction

will not converge to the known boundary values and the posterior variance at

the boundary will not be small or zero.

Assuming that the computer model is known to have continuous partial

derivatives (differentiable) within a region, we should specify µ(x) and σ2(x) so

that the GP prior has mean square partial derivatives that are mean square con-

tinuous (mean square differentiable) within the region. This would give a GP

prior that is consistent with the prior knowledge that the true function is differ-

entiable. The GP prior is mean square differentiable if the following conditions

hold:

1. The mean function µ(x) has continuous partial derivatives.

2. The covariance function C(x,x′) = σ(x)σ(x′)R(x,x′), where R is the corre-

lation function, has continuous mixed partial derivatives ∂2C(x,x′)/∂xi∂x
′
i

at all points (x,x′) = (x,x) (Adler (2010, p. 27)).

Similar conditions can be stated to guarantee that the BMGP model has mean

square partial derivatives of higher order that are mean square continuous. Clearly,

if information about the rate of convergence in (3.1) is available, that information

should be used to specify µ(x) and σ2(x) for the BMGP model. Nevertheless,

such information is difficult to obtain.

It is our opinion that a mean square differentiable GP is a good choice for

a differentiable computer code due to two reasons. First, mean square differen-

tiability is mathematically simple to verify. Second, it implies differentiability in

probability, which means that a finite difference approximation of the derivative

is close to the mean square derivative with high probability. Nevertheless, the

BMGP model proposed in Section 3.1 yields differentiable sample paths with

probability one because the mean is differentiable, and the centered BMGP is

a differentiable scale multiple of a stationary GP with Matern correlation func-
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tion (2.7).

3.1. Choice of prior mean and variance functions

We propose the following method to specify µ(x) and σ2(x). Let pi(x) = xi

and di(p
i(x), ci) = di(x

i, ci) be a measure of distance between xi and ci (e.g.,

distance metric on R+ ∪ {∞}) that is bounded above by 1. Then, define

λ0(x) =

∑k
j=1 d

2
j (p

j(x), cj)∑k
j=1 d

2
j (p

j(x), cj) +
∑k

j=1 αj/d
2
j (p

j(x), cj)
,

λi(x) =
αi/d

2
i (p

i(x), ci)∑k
j=1 d

2
j (p

j(x), cj) +
∑k

j=1 αj/d
2
j (p

j(x), cj)
,

i = 1, . . . , k, (3.4)

where αj , j = 1, . . . , k are positive constants to be estimated. We set

µ(x) =

k∑
i=0

ai(x)λi(x), (3.5)

where a0 is a constant. Thus, the mean is a convex combination of a0, a1(x), . . . ,

ak(x). The weight function λi(x) given to the ith piece of boundary information

increases when αi increases or when the distance to ci decreases. If some or all

αi’s get smaller, then the weight given to a0 gets larger. This choice of weight

function is motivated by the inverse distance interpolator (Gordon and Wixom

(1978)). Note that if x is changed in such a way that pi(x) gets further from

ci for all i = 1, . . . , k, then µ(x) will be closer to a0. Thus, if x is far from

the boundaries in (3.1) and the αi’s are small enough, the prior mean is nearly

constant, which is a choice motivated by the stationary GP model. Moreover, the

following results imply that the prior mean (3.5) reproduces the known boundary

behavior (3.1).

Theorem 1. Assume for all j = 1, . . . , k that d2j (p
j(x), cj) is a continuous func-

tion (with respect to the sequence definition of continuity) of x with the extended

real hyperplane as domain and range in [0, 1], d2j (p
j(x), cj) = 0 if and only if

pj(x) = cj, and d2j (p
j(x), cj) is a strictly increasing function of the absolute

value of each component of pj(x) − cj (for cjm = ∞, we assume d2j is strictly

decreasing in xjm). Consider a sequence {x(g) ∈ Rd+ : g = 1, 2, . . . } such

that xi(g) → ci (where xi(g) → ci refers to component-wise convergence), all

xm(g),m ∈ {1, . . . , d}\{i1, . . . , il(i)} are fixed, and xj(g) 6= cj for all j 6= i and g.

Then, λi(x(g))→ 1 and for all j 6= i, λj(x(g))→ 0.
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Corollary 1. Consider a sequence {x(g) ∈ Rd+ : g = 1, 2, . . . } of x values such

that xi(g)→ ci, all xm(g),m ∈ {1, . . . , d}\{i1, . . . , il(i)} are fixed, and xj(g) 6= cj

for all j 6= i and g. Assume limsupg→∞|aj(x(g))| < ∞, j = 1, . . . , k and the

conditions on d2j (p
j(x), cj) in Theorem 1 hold. Then, µ(x(g))− ai(x(g))→ 0.

Our choice of the prior variance function is

σ2(x) = s2
k∏
i=1

{[d2i (pi(x), ci)]ηi + δ}2, (3.6)

where s2 and ηj , j = 1, . . . , k are positive constants to be estimated. We see that

s2δ2k is a lower bound for σ2(x). Moreover, if {x(g) : g = 1, 2, . . . } is a sequence

such that x(g)→ x∗ and xj → cj , then σ2(x)→ s2δ2
∏k
i=1,i 6=j{[d2i (pi(x∗), ci)]ηi +

δ}2. Note that ηi affects the rate of decrease of σ2(x) as x approaches the ith

boundary. The larger the ηi, the faster the rate of decrease. Setting δ = 0 gives

limxi→ci σ2(x) = 0, i = 1, . . . , k, which implies that we are certain a priori that

f(x) − ai(x) → 0 as xi → ci. However, we do not set δ = 0 due to a few

reasons. If δ = 0, the covariance matrix of the response at the design points

can be degenerate if d2i (p
i(xj), c

i) = 0 for some design point xj . Moreover, not

setting δ = 0 provides the model some robustness to misspecifications of some of

the limits in (3.1).

The assumption that d2i (p
i(x), ci) is a continuous measure of distance be-

tween xi and ci with range in [0, 1] as stated in Theorem 1 is important for three

reasons. First, Theorem 1 and Corollary 1 hold under the assumptions, which

guarantee that the prior mean reproduces known boundary behavior. Second,

as we need the prior variance to converge to a small value when x approaches a

boundary in (3.1), the prior variance should be a function of a distance measure

that satisfies the conditions in Theorem 1. Third, because we use (3.6), it is sen-

sible to restrict d2i (p
i(x), ci) ∈ [0, 1]. Otherwise, the effect of ηi on σ2(x) will be

different depending on whether d2i (p
i(x), ci) > 1 or d2i (p

i(x), ci) < 1. Moreover,

it seems more reasonable to have bounded prior variance, as with a stationary

GP prior.

Note that (3.5) and (3.6) contain a total of 2k + 3 parameters that need

to be estimated. To reduce computational burden, we set α1 = · · · = αk = α

and η1 = · · · = ηk = η. When the parameters are estimated with the maximum

likelihood method (Section 3.2), this makes the performance of the BMGP model

more reliable than the case where the αi’s and ηj ’s are allowed to be different.

It seems that when the αi’s or ηj ’s are allowed to be different, there can be

many local optimizers in the likelihood function, which makes discovery of the
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global maximum difficult. Moreover, different local optimizers can give quite

different results. Intuitively, the BMGP model should be more sensitive to the

choice of parameters η1, . . . , ηk than to the choice of α1, . . . , αk. A change in the

αi’s will change the prior mean function. However, the posterior mean function

will interpolate the data and satisfy (3.2) whatever positive values of αi’s are

employed. In contrast, a change in ηi changes the value of the prior variance,

which is approximately the posterior variance at points sufficiently far away from

the data points. Thus, coverage far from the design region will be affected by the

choice of ηi. When the correlations are weak, coverage within the design region

will be affected as well.

We use the following distance measure (which satisfies the conditions in

Theorem 1)

d2i (x
i, ci) =

ϕ(xi1 , c
i
1)

2 + · · ·+ ϕ(xil(i) , c
i
l(i))

2

l(i)
, (3.7)

where l(i) is the number of components of xi as in (3.1),

ϕ(xim , c
i
m) =

∣∣∣∣ Uim
Uim + xim

− Uim
Uim + cim

∣∣∣∣ (3.8)

and Uim = mean of xim values in the design, which is strictly positive. The ra-

tionale for choosing (3.7) and (3.8) is as follows. First, they satisfy all conditions

stated in Theorem 1. Note that ϕ(xim , c
i
m) has range [0, 1] and because we di-

vide the sum in (3.7) by l(i), we have 0 ≤ d2i (x
i, ci) ≤ 1. Second, ϕ(xim , c

i
m)

in (3.8) is a valid metric on R+ ∪ {∞} (in particular, the triangle inequality is

satisfied), and di(x
i, ci) in (3.7) is a metric on (R+ ∪ {∞})l(i). We set Uim equal

to the mean of the xim values in the design because in this case, ϕ(Uim , 0) = 1/2,

ϕ(Uim ,∞) = 1/2, and ϕ(0,∞) = 1, i.e., the distance between Uim and 0 is half of

the distance between ∞ and 0 (which equals the maximum of 1). Based on the

above discussion, we see that (3.7) and (3.8) provide a sensible measure of dis-

tance between xi and ci. For the case where xim is defined on a bounded interval,

we can simply use a standardized Euclidean metric instead of (3.8). Finally, when

xim is defined on R, we can use the metric |xim/(Uim + |xim |)− cim/(Uim + |cim|)|,
which is given in Haaser and Sullivan (1991, p. 59).

Because ϕ(xim , c
i
m)2 in (3.8) is continuously differentiable with respect to

each xim at all xim ∈ R+, each λi(x) given by (3.4) is continuously differentiable

with respect to xl at all points x in Rd+ such that pj(x) = cj for at most one j. To

prove this, we simply need to multiply the numerator and denominator of (3.4)

by
∏k
j=1 d

2
j (p

j(x), cj). Thus, µ(x) given by (3.5) is continuously differentiable
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with respect to xl at all such points if each ai(x) also has the same property. It

is also easy to see that
√
σ2(x) given by (3.6) has continuous partial derivatives

at all x in Rd+ such that d2i (p
i(x), ci) 6= 0 for all i = 1, . . . , k. Thus, the BMGP

model with the mean and variance functions given by (3.4)-(3.8), and correlation

function R in (2.7) is mean square differentiable at all x ∈ Rd+ such that pi(x) 6= ci

for all i = 1, . . . , k.

An example of an alternative choice to (3.4) and (3.5) is µ(x) =
∑k

i=1 a
i(x)

λi(x), where λi(x) = d−αi

i (pi(x), ci)/[
∑k

j=1 1/d
αj

j (pj(x), cj)], and α1, . . . , αk are

positive numbers. An alternative choice to (3.6) is

σ2(x) = s2
k∏
i=1

{G[d2i (p
i(x), ci); ηi] + δ}2, (3.9)

where G(z; ηi) is a strictly increasing CDF with parameter ηi and G(0; ηi) =

0. For example, we can take G to be the CDF of a Beta distribution with

density proportional to zηi−1(1 − z)ηi−1. We recommend the prior mean and

variance functions given by (3.4)-(3.8) as we have found that they give reliable

and excellent performance in general.

3.2. Parameter estimation

This section discusses estimation of the parameters a0, α, s2, δ, η in the mean

and variance functions, and the vector of parameters Θ in the correlation func-

tion using the method of maximum likelihood. Cases with αi’s or ηj ’s that are

not constrained to be the same are similarly handled. Clearly, a fully Bayesian

approach can also be implemented with the use of Markov Chain Monte Carlo

methods.

The design is D = {x1, . . . ,xn} and the output is Y = (Y1, . . . , Yn)T . Define

Λ = (λ0(x1), . . . , λ0(xn))T , Φ = (
∑k

j=1 a
j(x1)λj(x1), . . . ,

∑k
j=1 a

j(xn)λj(xn))T ,

and

Q =

(
k∏
l=1

{[d2l (pl(xi), cl)]η + δ}
k∏
l=1

{[d2l (pl(xj), cl)]η + δ}R(xi,xj |Θ)

)
1≤i,j≤n

.

We shall use the product Matern correlation function given in (2.7). The posterior

process, which we use to construct point and interval predictions, is

Y (·)|(Y, a0, α, s2, δ, η,Θ) ∼ GP(M(·|a0, α, δ, η,Θ), C(·, ·|s2, δ, η,Θ)), (3.10)

with mean function M(·|a0, α, δ, η,Θ) and covariance function C(·, ·|s2, δ, η,Θ).

The mean function is

M(x|a0, α, δ, η,Θ) = µ(x) + q(x)TQ−1(Y −Φ− a0Λ), (3.11)
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where q(x) = (
∏k
i=1{[d2i (pi(x), ci)]η + δ}

∏k
i=1{[d2i (pi(xj), ci)]η + δ}R(x,xj |

Θ))j=1,...,n. The covariance function is given by

C(x,x′|s2, δ, η,Θ) = σ(x)σ(x′)R(x,x′|Θ)− s2q(x)TQ−1q(x′). (3.12)

Given α, δ, η, and Θ, it can be shown that a0 = â0 = (ΛTQ−1Λ)−1ΛTQ−1

(Y − Φ) and s2 = ŝ2 = (Y − Φ − â0Λ)TQ−1(Y − Φ − â0Λ)/n maximize the

likelihood. Thus, the maximum likelihood estimates α̂, δ̂, η̂, and Θ̂ of α, δ, η,

and Θ are obtained by minimizing

n log(ŝ2) + log (|Q|). (3.13)

We perform statistical inference on f using Θ̂, η̂, δ̂, α̂, ŝ2, â0 in place of Θ, η, δ,

α, s2, a0. In optimizing (3.13), we use the BFGS algorithm (Nocedal and Wright

(2006)) implemented in the Matlab fminunc function. We actually optimize the

logarithm of the positive quantities α, δ, η, and Θ because fminunc is for uncon-

strained optimization. We use the starting values of 0.5,1,2,3 for η, a single start-

ing value of e−2 for δ, and two starting values of (0.91)1 and (2.55)1 for Θ. The

starting value for α is min{
∑k

j=1 d
2
j (p

j(xi), c
j) : i = 1, . . . , n}/min{

∑k
j=1 1/d2j

(pj(xi), c
j) : i = 1, . . . , n}, which yields rather balanced weights to a0 and each

ai in (3.5) at the design points. We should check that δ̂ is small. Otherwise,

the accuracy of the information (3.1) is suspect. In all examples in Section 4, we

obtain δ̂ < 0.1.

Finally, we shall provide some guidelines for specifying the starting values of

α and η. The starting value of α should be less than 100 as a value of 100 means

that even at a point x with the maximum distance of 1 from c1, . . . , ck, the weight

given to each piece of boundary information in (3.5) is 100/k times the weight

given to a0 and the total weight given to all k pieces of boundary information is

100 times the weight given to a0. As the variance is approximately proportional

to the distance to a boundary raised to the power of η when δ is very small, the

starting value for η should be between 1/7 and 7 so that the increase in variance

is not too fast when the distance to the boundary is near zero or near one. Note

that ranges above can also be used as bounds in the optimization to exclude

nonsensical estimates.

3.3. Model checking and validation

The BMGP model proposed in Sections 3.1-3.2 can yield significant improve-

ments in interpolation and extrapolation accuracy over the stationary GP model.

However, it may not always work well. Thus, the model should be validated if

possible. In model validation, prediction performance within the experiment re-
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gion and extrapolation performance are quite different issues. While the former

can be checked via crossed validation (which is discussed in this section), the

latter can only be checked by comparing the model’s prediction against the true

output in a test set contained in the region of extrapolation.

Bastos and O’Hagan (2009) provide a few diagnostic statistics for checking

the adequacy of the GP model. Those statistics can be applied in a straight-

forward manner to the BMGP model. However, a test set not used to build

the model is needed to check for model adequacy with the diagnostic statistics

proposed by Bastos and O’Hagan (2009). We check the adequacy of the BMGP

model for predicting within the experiment region using leave-one-out cross vali-

dation (Mitchell and Morris (1992)). Assuming that none of the model parame-

ters are re-estimated after leaving each data point out, the vector of leave-one-out

cross validation errors is given by the short-cut formula

E = diag{Q−1}−1Q−1(Y −Φ− a0Λ), (3.14)

where diag{Q−1} is a diagonal matrix with the same diagonal as Q−1. The

leave-one-out error cannot be used to determine whether the proposed model

gives sufficiently accurate extrapolation prediction. It is also important to check

whether the prediction interval constructed without a data point contains the

data point. Let us partition

Q =

(
Q11 Q12

Q21 Q22

)
, (3.15)

where Q22s
2 is the prior variance of the data point that is left out. Partition

Q−1 =

(
S11 S12

S21 S22

)
(3.16)

correspondingly. Then, given Q−1, a short cut formula for computing the inverse

of Q11, which is the prior covariance matrix (discounting the factor s2) of the

data without the point that is left out, is

Q−111 = S11 −
S12S21

S22
. (3.17)

This formula, together with (3.12), allows quick computation of the prediction

interval for a data point given that the point is left out from the data used to fit

the BMGP model.

Note that while the BMGP model may produce inaccurate predictions within

the experiment region X in the finite sample case, it should not fail for large

sample sizes. It should be true that the posterior mean of the BMGP model
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converges to the true function and the posterior variance converges to zero at

all points within X when the data get dense in X . This is because the BMGP

model interpolates the data and has continuous posterior mean and variance

functions. Thus, if the BMGP model is not sufficiently accurate, one can improve

its predictions within X by adding more design points instead of by changing its

mean or variance function. Moreover, because the stationary GP model is a

special case of the BMGP model (α = η = 0, δ = 1), the BMGP model can only

perform poorer than the stationary GP model if the estimates of the BMGP

model parameters obtained by numerically maximizing the likelihood function

are poor choices for the parameters. Fortunately, this problem often manifests

itself in a huge estimate for s2 (see the last paragraph of Section 4.3), which

will not go without notice. In some cases, due to insufficient starting points

for optimization, an innocent-looking local optimizer of the likelihood function

that gives poorer performance than the global optimizer is found. This problem

can only be avoided with the use of many starting points. Lastly, because the

stationary GP model is a special case of the BMGP model and the former model

often has excellent prediction performance within X , the choices (3.4)-(3.8) of the

mean and variance functions only need careful scrutiny and modification when

we are interested to achieve better extrapolation performance with the BMGP

model.

4. Examples

This section presents three realistic examples to compare the performance of

the BMGP model (Section 3) and the stationary GP model (Section 2).

4.1. Example 1: Platinum plate temperature

We revisit the platinum plate temperature example described in the intro-

duction. The initial temperature of the plate is 270K, the fluid temperature is

1,200K, and the heat transfer mechanism is convection and conduction. The ther-

mal diffusivity and thermal conductivity of platinum are obtained from tabulated

values in Cengel and Ghajar (2011). The convective heat transfer coefficient is

taken to be 20W/(m2K). The temperature at the midplane of the plate y = f(x)

as a function of time x is obtained from the solution of a parabolic PDE, which

is given explicitly as an infinite series in Cengel and Ghajar (2011). We know

that

lim
x→∞

[f(x)− 1200] = 0. (4.1)
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Figure 2. Point (posterior mean) and interval predictions [LCL, UCL] of BMGP model
constructed with sequential design, platinum plate temperature example.

Figure 3. Point (posterior mean) and interval predictions [LCL, UCL] of GP model
constructed with sequential design, platinum plate temperature example.

Figure 1 illustrates the vastly superior performance of the BMGP model

over the stationary GP model when the design is given by D = {0, 200, 300,

500, 800, 1,000, 1,200}. Note that we shall call the stationary GP model, the GP

model for simplicity. We also consider a sequential design approach in which the
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point with maximum prediction variance within the interval [0, 1200] is added

into the design at each iteration. The addition of points is stopped when the

width of the 98% prediction interval for the new added point is less than or equal

to 200 (prior to updating the model) and the interval contains the observed

response. We use the initial design D0 = {100, 700}. Figure 2 plots the design

points (circle), posterior mean, and 98% prediction intervals [LCL,UCL] for the

BMGP model. The two initial design points are labelled with 0, the first added

design point is labelled with 1, and similarly for the other design points. We see

that the sequential design procedure is terminated after five points are added,

and the BMGP point and prediction interval limits are nearly identical to the

true function. In contrast, the GP model terminates only after adding 13 points

(Figure 3), and many of the points are in the interval [300, 1,200], which is

wasteful because if we have observed that the response is approximately 1,200

at x = 300, we would know that it is close to 1,200 for all x > 300. Moreover,

unlike the BMGP model, the point and interval predictions of the GP model

deteriorate outside the experiment region [0, 1200].

4.2. Example 2: Kirchhoff plate bending problem

The bending of a square Kirchhoff plate of length L subject to a distributed

load is described by a pair of Poisson equations (Wang, Reddy and Lee (2000,

Chap. 7)):

4M(τ1, τ2) = −Q[τ1(L − τ1) + τ2(L − τ2)], (τ1, τ2) ∈ [0,L]2,

M(τ1, τ2) = 0 ∀(τ1, τ2) ∈ ∂[0,L]2 = {(u, v) : u = 0} ∪ {(u, v) : u = L},
∪{(u, v) : v = 0} ∪ {(u, v) : v = L},

4W(τ1, τ2) = −M(τ1, τ2)

F
, (τ1, τ2) ∈ [0,L]2,W(τ1, τ2) = 0 ∀(τ1, τ2) ∈ ∂[0,L]2.

(4.2)

The solution of the first equation is the Marcus moment M while the solution

of the second equation is the vertical displacement of the plate W. Both are

functions of the plane coordinates (τ1, τ2). In the above equations, 4 is the

Laplace operator, Q[τ1(L− τ1) + τ2(L− τ2)] is the magnitude of the distributed

load, and F is the flexural rigidity of the plate. The equations in (4.2) are

solved with the finite difference scheme given in Li and Chen (2009, pp. 57-

59). The vector of inputs is (x1, x2, x3) = (F , Q,L), the experiment region is

X = [1 × 106, 1.4 × 106] × [3 × 105, 7 × 105] × [0.7, 2], and the response is y =

max{|W(τ1, τ2)| : (τ1, τ2) ∈ [0,L]2}. The ranges of inputs are chosen realistically.
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Figure 4. Plot of prediction versus true value in the within-experiment-region grid test
set for BMGP (a) and GP (b) models obtained with a 32-point Sobol sequence design,
Example 2.

We know that y is small for all x in the experiment region because the minimum

flexural rigidity of 1 × 106 is approximately the flexural rigidity of a titanium

plate 4.63 centimeters thick (Young’s modulus = 110GPa, Poisson ratio = 0.3).

Based on physical considerations, we know that y approaches zero as the flexural

rigidity gets larger, or the load gets smaller, or the plate length goes to zero:

lim
x1→∞

[f(x)] = 0, lim
x2→0

[f(x)] = 0, lim
x3→0

[f(x)] = 0. (4.3)

We use the first 32 points of the Sobol sequence as the design, and fit the

BMGP and GP models. We evaluate the performance of the models using a

regular 93 grid in the experiment region. The grid is constructed by taking

Cartesian product of equally spaced levels in each input, where the levels include

the minimum and maximum levels. In Figure 4a, we plot the 0.99 quantile (UCL),

0.01 quantile (LCL), and the posterior mean versus the true response values in

the grid test set for the BMGP model. Figure 4b is a similar plot for the GP

model. We see that the BMGP model gives very accurate predictions and narrow

prediction intervals. In contrast, the GP model appears to suffer from bias in

the prediction of large response values. The mean absolute error (MAE), average

length of 98% prediction intervals, and coverage of the prediction intervals for the

BMGP and GP models are given in the first row below the header row in Table

1. We see that the BMGP model gives more accurate predictions, far shorter
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Table 1. MAE, average prediction interval length, and coverage for BMGP and GP
models constructed with Sobol sequence and sequential design for four test sets, Kirchhoff
plate example.

Test Set Design
BMGP GP

Mean
Absolute

Error
(MAE)
×105

Average
Prediction

Interval
Length
×105

Coverage

Mean
Absolute

Error
(MAE)
×105

Average
Prediction

Interval
Length
×105

Coverage

93 regular
grid on X

32 Sobol points 1.45 6.36 0.949 16.82 72.77 0.911
Sequential 0.73 4.08 0.957 7.56 77.58 0.992

93 regular
grid on X1

32 Sobol points 1.50 12.11 0.966 25.93 300.42 0.995
Sequential 1.05 13.48 0.985 12.56 396.92 1.000

93 regular
grid on X2

32 Sobol points 17.37 7.69 0.379 29.86 353.68 0.999
Sequential 20.39 9.74 0.429 26.36 432.32 0.999

93 regular
grid on X3

32 Sobol points 3.98 53.61 1.000 33.54 616.75 0.999
Sequential 5.31 56.00 0.999 31.38 811.91 0.999

prediction intervals, and better coverage than the GP model.

We evaluate a sequential design approach that chooses the point within the

experiment region with largest prediction variance as the next design point in

each iteration. The initial design is the first eight points of the Sobol sequence

whereas the final design is of size 32. The performance of the BMGP and GP

models obtained with the sequential design approach is presented in the second

row of Table 1. We see that the BMGP model gives better accuracy and shorter

interval length but poorer coverage than the GP model. Moreover, it can be seen

that the sequential design is an improvement over the Sobol sequence. Figure

5 plots the projections of the sequential design for the BMGP model onto the

(x1, x2) plane (a) and the (x1, x3) plane (c). The eight initial design points

are plotted with the symbol 0, the first added point is plotted with the symbol

1 and so on. If we divide the bounded square design region for (x1, x2) into

four quadrants, many of the added design points concentrate in the upper left

quadrant. Similarly, we see that many of the added design points fall in the upper

left quadrant of the design region for (x1, x3). This phenomenon is due to the fact

that (4.3) provides prior information about the behavior of the response y when

x1 gets large, and when x2 or x3 gets small. Since there is prior information that

y is small when x1 is large, many added design points should have a value of x1
closer to the minimum level. In contrast, the sequential design for the GP model

(Figure 5b and 5d) distributes points quite uniformly in the four quadrants and

the points tend to be near the boundary of the experiment region.
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We also investigate the extrapolation performance of the BMGP and GP

models. We are interested in the performance of the BMGP model for values

of x1 larger than its maximum in the experiment region and values of x2 and

x3 smaller than their minimums in the experiment region because (4.3) contains

information that helps extrapolation in these cases. To investigate extrapolation

performance for large values of x1, we use a 93 regular grid on X1 = [1.4 ×
106, 1.8 × 106] × [3 × 105, 7 × 105] × [0.7, 2] as test set. Thus, the range of x1
is changed from [1 × 106, 1.4 × 106] to [1.4 × 106, 1.8 × 106]. To investigate

extrapolation performance for small values of x2, we use a 93 regular grid on

X2 = [1 × 106, 1.4 × 106] × [1 × 105, 3 × 105] × [0.7, 2]. Finally, to investigate

extrapolation performance for small values of x3, we use a 93 regular grid on X3 =

[1×106, 1.4×106]×[3×105, 7×105]×[0.1, 0.7]. The MAE, average 98% prediction

interval length, and coverage of the BMGP and GP models constructed with the

first 32 points of the Sobol sequence, and the sequential design described above

are given in Table 1. The GP model gives intervals that are very wide, which

implies that it is rather noninformative about y, and poor prediction accuracy for

the third test set X3 (the ranges of y in the test sets are 1325× 10−5, 796× 10−5,

and 28× 10−5 respectively). The BMGP model gives good prediction accuracy,

narrow intervals, and good coverage for large x1. For the small x3 test set, the

accuracy and coverage are good but the average interval width is larger than the

range of the response. The prediction accuracy for the small x2 test set is good

but the coverage of the prediction intervals is poor.

For the BMGP model constructed with the Sobol sequence and sequential

design, the leave-one-out crossed validated MAE (0.5 × 10−5 and 1.1 × 10−5

respectively) and coverage (1 for both designs) are excellent. This indicates,

without the need for an independent test set, good prediction performance in

the experiment region. As shown in Table 1, extrapolation performance may not

be as good. It seems that the only way to validate the model’s extrapolation

capability is to use a test set in the extrapolation region.

In Table 2, we give results for three alternatives to the proposed BMGP

model. First, we allow the αi’s in (3.4) to be different. Second, we allow the ηi’s

in (3.6) to be different. Third, we use the alternative variance function in (3.9)

with η1 = · · · = ηk = η and G(z; η) = [1 − (1 − z)η]η. Performance of the three

models evaluated on the regular 93 grid in the experiment region X is given in

Table 2. We see that it is advantageous to allow the ηi’s in (3.6) to be different.

The third model (which has a different variance function) performs worst. The

first model and the original BMGP model perform similarly.
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Figure 5. Two dimensional projections of sequential design for the BMGP model (a)
and (c), and the GP model (b) and (d), Example 2. The initial design points are marked
with 0, and the design point added at the ith iteration is marked with i.

4.3. Example 3: Two-dimensional heat transfer

In this example, we consider a two-dimensional heat transfer model of a solid

object with cross section Ω shown in Figure 6 (Alberty, Carstensen and Funken

(1999)). The boundary of the object consists of five smooth edges. Three of

the edges are labelled Dirichlet edge (∂Ω1), and two are labelled Neuman edge

(∂Ω2). The temperature T (τ0, τ1, τ2) at coordinates (τ1, τ2) of the cross section

at time τ0 is the solution of a parabolic PDE given by
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Table 2. MAE, average prediction interval length, and coverage for within-experiment-
region test set for alternative BMGP models constructed with the first 32 Sobol points,
Example 2.

BMGP
Mean Absolute
Error (MAE)
×105

Average Prediction
Interval Length

×105
Coverage

Different αi’s 1.46 6.24 0.959
Different ηi’s 1.33 5.76 0.975

Different variance function 2.04 6.50 0.888

∂

∂τ0
T (τ0, τ1, τ2) =

∂2

∂τ21
T (τ0, τ1, τ2) +

∂2

∂τ22
T (τ0, τ1, τ2) + F, (τ1, τ2) ∈ Ω,

T (0, τ1, τ2) = T0 ∀(τ1, τ2) ∈ Ω, T (τ0, τ1, τ2) = Tb∀(τ1, τ2) ∈ ∂Ω1, τ0 > 0,

∂

∂N
T (τ0, τ1, τ2) = 0 ∀(τ1, τ2) ∈ ∂Ω2, τ0 > 0. (4.4)

In the above equation, T0 is the initial temperature; Tb is the fixed temperature

at the Dirichlet edges; ∂/(∂N)T (τ0, τ1, τ2) denotes the derivative of T (τ0, τ1, τ2)

in the direction normal to the boundary and pointing away from Ω; and F is

the internal heat generated per unit volume per unit time. To solve (4.4), we

use the finite element Matlab code described in Alberty, Carstensen and Funken

(1999). The triangular mesh used is plotted in Figure 6. Note that the code

returns T (τ0, τ1, τ2) for all (τ1, τ2) ∈ Ω given fixed τ0. The computation involves

a finite difference discretization with respect to time.

The variable inputs to the computer model are (x1, x2, x3, x4) = (τ0, T0, F, Tb)

and the output of interest is y = max{T (τ0, τ1, τ2) : (τ1, τ2) ∈ Ω}, which can be

obtained by simply taking the maximum of the temperature values at the ver-

tices of the triangulation. The experiment region is X = [0.1, 2.1]× [650, 1,050]

×[0, 200]× [250, 450]. Based on physical considerations, we know that when in-

ternal heat generation x3 = F = 0, the temperature converges to the boundary

temperature x4 = Tb, which is the steady state temperature, when x1 = τ0 gets

large. Although the temperature profile T (τ0, τ1, τ2) at time x1 = 0 is x2 = T0 for

all (τ1, τ2) ∈ Ω, it will immediately change so that it is continuous as a function

of (τ1, τ2) with value x4 at the Dirichlet boundary for any time x1 > 0 (Mattheij,

Rienstra and ten Thije Boonkkamp (2005, p. 244)). For x1 infinitesimally close

to zero, there must be values T (τ0, τ1, τ2) for (τ1, τ2) ∈ Ω that is infinitesimally

close to x2. Because heat generated over infinitesimal time cannot raise the tem-

perature of the object, it follows that T (τ0, τ1, τ2) ≤ max{x2, x4} as x1 → 0.
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Figure 6. Triangular mesh of cross section geometry, Example 3.

Thus, we have

lim
(x1,x3)→(∞,0)

[f(x)− x4] = 0, lim
x1→0

[f(x)−max{x2, x4}] = 0. (4.5)

We consider using two designs to construct the BMGP and GP models. The

first design consists of the first 40 points of the Sobol sequence. The second design

is constructed by using the first 8 points of the Sobol sequence as initial design,

and adding one point at a time, where the added point has maximum prediction

variance. The sequential addition of points is terminated when the design size is

40. Two test sets are used, a 64 regular grid in the experiment region X , and a 64

regular grid on X1 = [2.1, 3.1]× [650, 1,050] ×[0, 200]×[250, 450]. The second test

set is used to test the extrapolation performance of the BMGP and GP models

near steady state (large x1). For the BMGP model constructed with the Sobol

sequence and sequential design, the leave-one-out crossed validated MAE (3.59

and 5.96 respectively) and coverage (0.975 for both designs) are excellent. This

indicates good prediction performance within the experiment region (similarly

for the GP model).

Table 3 gives the MAE, average 98% prediction interval length, and coverage

evaluated with the two test sets for the BMGP model and GP model constructed

using the two designs described above. We see that the BMGP model provides

better prediction accuracy and shorter prediction intervals than the GP model

within the experiment region. However, it gives slightly poorer coverage than the
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Table 3. MAE, average prediction interval length, and coverage of BMGP and GP models
constructed with Sobol sequence and sequential design for two test sets, two-dimensional
heat transfer example.

Test Set Design
BMGP GP

Mean
Absolute

Error
(MAE)

Average
Prediction

Interval
Length

Coverage

Mean
Absolute

Error
(MAE)

Average
Prediction

Interval
Length

Coverage

64 regular
grid on X

40 Sobol points 4.65 24.62 0.864 7.95 46.94 0.919
Sequential 2.75 26.52 0.995 3.40 42.43 0.996

64 regular
grid on X1

40 Sobol points 16.35 211.50 1.000 28.95 561.76 1.000
Sequential 19.13 318.32 0.996 28.10 601.00 0.998

Table 4. MAE, average prediction interval length, and coverage for within-experiment-
region test set for alternative BMGP models constructed with the first 40 Sobol points,
Example 3.

BMGP
Mean Absolute
Error (MAE)

Average Prediction
Interval Length

Coverage

Different αi’s 3.80 20.66 0.937
Different ηi’s 4.32 22.65 0.868

Different variance function 4.67 24.98 0.863

GP model when the design used is the first 40 points of the Sobol sequence. The

BMGP model has better extrapolation capability for large x1 than the GP model

because it gives more accurate predictions and shorter prediction intervals. The

GP model gives noninformative extrapolation because the range of the response

in the extrapolation test set is only 310, which is smaller than the average length

of the prediction intervals given by the GP model. The BMGP model constructed

with the sequential design gives somewhat noninformative extrapolations also.

In Table 4, we give results for three alternatives to the proposed BMGP

model. First, we allow the αi’s in (3.4) to be different. Second, we allow the

ηi’s in (3.6) to be different. Third, we use the alternative variance function in

(3.9) with η1 = · · · = ηk = η and G(z; η) = [1 − (1 − z)η]η. Performance of the

three models evaluated on the regular 64 grid in the experiment region is given in

Table 4. We see that it is advantageous to allow the αi’s in (3.4) to be different.

The third model (which has a different variance function) performs worst but it

has performance similar to the original BMGP model.

A referee raised the question of the performance of the BMGP and GP

models when Latin hypercube designs are used. We randomly simulate 100
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maximin Latin hypercube designs, where each design is the best out of 5,000

Latin hypercube designs with respect to the maximin criterion. The BMGP and

GP models are fitted with each of the 100 designs. We find that the mean and

standard deviation of the MAE are 5.85 and 2.22 for the BMGP model, and 8.73

and 2.00 for the GP model. The mean and standard deviation of the average

prediction interval length are 24.12 and 5.40 for the BMGP model, and 48.06 and

5.35 for the GP model. Finally, the mean and standard deviation of the coverage

are 0.86 and 0.06 for the BMGP model, and 0.93 and 0.04 for the GP model.

Results for the model with different αi’s in this example are obtained with

the restriction that α1 + α2 ≤ 200 in optimization of the likelihood function,

which restricts the weight given to the constant a0 to be not too small. Without

the restriction, the estimates for α1 and α2 would be very large (> 109), which

would give very small weight to a0 in (3.5), and the estimates for a0 and s2 would

be of the order of 1011 and 1048 respectively. This clearly does not make sense. It

is due to a flat likelihood and numerical errors. The MAE within the experiment

region for this model is 9.63, which is somewhat larger than the MAE for the

GP model. Finally, when using randomly generated maximin Latin hypercube

designs to fit the BMGP model, we have found instances in which the MAE and

average prediction interval length are very large (> 109) but these instances are

all associated with extremely large estimates of s2 (> 10100) and η (> 100), and

extremely small estimates of δ (< 10−34). Again, these estimates do not make

sense and is due to a flat likelihood and numerical errors. Thus, we rectified the

problem by restricting η to be no greater than seven, which does not allow a

steep increase in variance in (3.6) when the distance to a boundary is near one.

5. Conclusions

In this paper, we propose a modification of the stationary GP model, called

BMGP, to take into account knowledge about the response of the form given

in (1.1), which in practice is often information about the response behavior on

an edge of the boundary of the input space. We propose a flexible prior mean

that satisfies (1.1) based on the inverse distance interpolator. A prior variance

function that converges to a small value as the input values get closer to the edge

given in (1.1) is employed. Three real examples are given to illustrate that the

BMGP model improves prediction accuracy and gives shorter prediction inter-

vals for predicting within the experiment region. As we pointed out, the BMGP

model includes the stationary GP model as a special case. Thus, it is expected
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to perform better than the GP model unless its parameters are estimated poorly.

In addition, the examples also show that the BMGP model has improved ex-

trapolation performance if the extrapolation is performed in a region closer than

the experiment region to the edge given in (1.1). However, extrapolation perfor-

mance of the BMGP model is not always superior to the GP model although the

BMGP model will produce accurate predictions at locations sufficiently close to

the boundary in (1.1). This is to be expected since there is no available infor-

mation about the behavior of the function “between” the experiment region and

the boundary in (1.1).

Several problems need further research. First, alternative choices of mean

and variance functions should be studied. Second, in the examples, the BMGP

model is used to model responses that are scalar summaries of the solution of

PDEs. However, it may also be used to model the entire solution, which is a

function of space and time that satisfies some boundary conditions. The so called

Dirichlet boundary conditions are precisely information of the form (1.1). In this

case, the problem is to predict entire functions given data that are functions, as

in Hung, Joseph and Melkote (2013). The author is currently working on this

problem.
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Appendix

Proof of Theorem 1: Since d2j (p
j(x), cj) is bounded and αj , j = 1, . . . , k are

positive constants, λ0(x)→ 0 for any sequence of {x(g) : g = 1, 2, . . . } such that

xi(g)→ ci. Moreover, due to the assumptions on d2j (p
j(x), cj) and the fact that

the cj ’s are distinct, there exists g large enough so that d2j (x
j(g), cj) > ε, j 6= i

for any fixed ε small enough. Because d2i (p
i(x), ci) is a continuous function of x,

we have d2i (x
i(g), ci)→ 0. Thus, λi(x(g))→ 1 and for all j 6= i, λj(x(g))→ 0.

Proof of Corollary 1: We have µ(x) − ai(x) = [λi(x) − 1]ai(x)+∑k
m=0,m 6=i a

m(x)λm(x). Because limsupg→∞|aj(x(g))| < ∞, j = 1, . . . , k, there

exists B > 0 and a g1 such that |aj(x(g))| < B, j = 0, . . . , k for all g ≥ g1. By

Theorem 1, we have λi(x(g))− 1→ 0 and for all j 6= i, λj(x(g))→ 0. Thus, we
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can find a g2 such that for all g ≥ g2, we have |λi(x(g))− 1| < ε/[(k + 1)B] and

|λj(x(g))| < ε/[(k+ 1)B] for all j 6= i. This implies that |µ(x(g))− ai(x(g))| < ε

for all g ≥ max{g1, g2}.
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