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Abstract: In Bayesian hierarchical modeling, it is often appealing to allow the

conditional density of an (observable or unobservable) random variable Y to change

flexibly with categorical and continuous predictors X. A mixture of regression

models is proposed, with the mixture distribution varying with X. Treating the

smoothing parameters and number of mixture components as unknown, the MLE

does not exist, motivating an empirical Bayes approach. The proposed method

shrinks the spatially-adaptive mixture distributions to a common baseline, while

penalizing rapid changes and large numbers of components. The discrete form

of the mixture distribution facilitates flexible classification of subjects. A Gibbs

sampling algorithm is developed, which embeds a Monte Carlo EM-type stage to

estimate smoothing and hyper-parameters. The method is applied to simulated

examples and data from an epidemiologic study.
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1. Introduction

In assessing the relationship between a response variable Y ∈ Y and predic-

tors X = (X1, . . . ,Xp)
′ ∈ X , one typically relies on a mean or quantile-based

regression model with a constant residual density, possibly up to a scale factor

τ(X) allowing heteroscedasticity. In many applications, this structure may be

overly restrictive, because scientific interest focuses on identifying the features of

the response density which vary across X . For example, in epidemiologic applica-

tions, differences in susceptibility due to unmeasured environmental and genetic

factors can lead to changes in the shape of the distribution of a health outcome

with changing dose of a drug or chemical. Such changes can result in increasing

skewness or additional modes at higher exposure levels.

In recent years, there has been an active interest in the development of

methods for conditional density estimation, often motivated by time series appli-

cations. For example, Yu and Jones (1998) applied the double-kernel, local lin-

ear approach of Fan, Yao and Tong (1996) to the problem. Hall, Wolff and Yao

(1999) proposed improvements based on local logistic and adjusted Nadaraya-

Watson estimators. Also using the double-kernel approach, Fan and Yim (2004)
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proposed a cross validation method to address the important problem of band-

width selection. For related articles, refer to Hyndman, Bashtannyk and Grun-

wald (1996), Bashtannyk and Hyndman (2001) and Hyndman and Yao (2002).

The Bayesian literature on the topic of conditional density estimation, re-

ferred to in this article as density regression, is sparse. Müller, Erkanli and West

(1996) proposed an innovative Bayesian approach that relies on specifying a

Dirichlet process mixture of normals for the joint distribution of Y and X, and

then deriving the resulting conditional distribution of Y given X. The method es-

sentially results in a locally weighted mixture of normal regression models, which

Müller, Erkanli and West (1996) used to estimate the mean regression function

but not the conditional density function.

From a Bayesian perspective, one can allow a distribution function to be

unknown by choosing a prior distribution with support on the space of proba-

bility measures (refer to Müller and Quintana (2004) for a recent review). The

most common choice of prior for an unknown distribution is the Ferguson (1973)

Dirichlet process (DP). Letting F denote the random distribution, the typical no-

tation expresses the DP prior as F ∼ DP (αF0), where α is a precision parameter

and F0 is the base measure. In the simple case in which Yi
i.i.d.∼ F , for i = 1, . . . , n,

the posterior is (F |Y1, . . . , Yn) ∼ DP
(
αF0 +nFn

)
, where Fn = (1/n)

∑n
i=1 δYi

is

the empirical probability measure, with δφ the Dirac measure concentrated at φ.

Hence, the DP prior is conjugate, and α controls the degree of shrinkage towards

F0.

Due to the discreteness constraint, the DP tends to be too inflexible as a

prior for F directly, but is a good choice for a mixture distribution. DP mixture

models have been widely studied in the Bayesian literature (Escobar and West

(1995, 1998), MacEachern and Müller (1998), among many others) and have

broad applications. However, as in frequentist density estimation, the results

can be sensitive to the choice of smoothing parameter (α). For this reason,

Escobar and West (1998) recommend choosing a hyperprior distribution for α to

allow the data to inform about its value. As discussed in MacEachern and Müller

(1998), one can also allow uncertainty in F0 by choosing a parametric form

(e.g, Gaussian) with unknown parameters (mean, variance). An alternative is

to use an empirical Bayes approach to estimate α (Liu (1996)) or both α and F0

(McAuliffe, Blei and Jordan (2006)).

To address the density regression problem, it is necessary to consider pri-

ors for a collection of dependent, random distributions (Fx, x ∈ X ). A sim-

ple approach is to use a DP or DP mixture for each Fx, allowing for depen-

dence through a regression in the base measure (Cifarelli and Regazzini (1978),

Mira and Petrone (1996) and Giudici, Mezzetti and Muliere (2003)). Although

this approach is limited by only allowing dependence in features captured by
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the base parametric model, flexibility can be improved somewhat by allowing

the hyperparameters to have an unknown distribution (Tomlinson and Escobar
(1999)). MacEachern (1999) proposed an alternative dependent Dirichlet pro-

cess (DDP) approach based on defining a stochastic process for the atoms in

Sethuraman’s (1994) stick-breaking representation of the DP. The DDP was

recently applied to ANOVA (De Iorio, Müller, Rosner and MacEachern (2004))
and spatial (Gelfand, Kottas and MacEachern (2005)) applications.

The DDP-based approaches are limited somewhat in flexibility by assum-

ing a fixed number of atoms, with constant probability weights on these atoms.

Griffin and Steel (2006) relaxed this assumption through use of an order-based
Dirichlet process, while Duan, Guindani and Gelfand (2005) instead define a spa-

tial stick-breaking process that generalizes the DP. An alternative is to incor-

porate dependency through mixtures of independent DP components. Müller,

Quintana and Rosner (2004) used this approach to define a hierarchical depen-
dency structure and borrow information across studies. Dunson (2006) gen-

eralized the idea to a time series setting, and Dunson, Pillai and Park (2007)

proposed a kernel-weighted mixture of DPs (WMDP) motivated by interest in
conditional density estimation. They used a nonparametric mixture of linear re-

gression models for the conditional density of Y given X, allowing the unknown

collection of mixture distributions to vary with predictors through a WMDP

prior.
Although the Dunson et al. (2007) approach is very flexible, and can be

implemented with a straightforward Markov chain Monte Carlo (MCMC) algo-

rithm, a potential criticism is sensitivity to subjectively-chosen hyperparameters.

In particular, smoothing, borrowing of information across X , and clustering of
subjects is controlled by weight parameters γ = (γ1, . . . , γn)

′ on the different

basis locations, a kernel precision parameter ψ and the DP parameter α. As

a default analysis that avoids sensitivity to subjectively-chosen hyperparame-

ters, it is appealing to consider an empirical Bayes approach for estimating the
hyperparameter values. Generalized maximum likelihood estimation (GMLE)

(Wecker and Ansley (1983), Wahba (1985) and Stein (1990)) derived from an

empirical Bayes framework is a common approach for estimating smoothing pa-

rameters in nonlinear regression.
This article develops an empirical Bayes approach for density regression, re-

lying on a local mixture of parametric regression models. We borrow information

across the predictor space using a kernel-weighted urn scheme, which is motivated

by the WMDP prior of Dunson et al. (2007). This urn scheme incorporates two
smoothing parameters, α and ψ, which control the generation of new clusters

and borrowing of information. Focusing on location-scale mixtures of normal

linear regression models, a Gibbs sampling algorithm is developed for posterior

computation, initially considering hyper-parameters, including α, ψ, as known.



484 DAVID B. DUNSON

Methods are then described for empirical estimation of hyper-parameters using
a Monte Carlo EM-type procedure.

Section 2 describes the mixture model, motivates the empirical Bayes ap-

proach, and considers theoretical properties. Section 3 proposes the estimation
algorithm. Section 4 applies the method to simulated data examples. Section 5

contains an application to epidemiologic data, and Section 6 discusses the results.

2. Mixture Models for Density Regression

2.1. Mixture structure and background

The probability density function of the response Y conditional on predictors

x ∈ X is expressed as a mixture of parametric densities as

f(y |x) =

∫
f(y |x, φ) dGx(φ), (1)

where f(y |x, φ) is a known density on Y that depends on the finite-dimensional

parameter φ = (φ1, . . . , φq)
′ ∈ Φ, and Gx is a random mixing distribution on

Φ indexed by the predictor x ∈ X . Mixtures of Gaussian or exponential fam-

ily densities have been widely used to obtain flexible density estimators. Most
of the theoretical work does not include covariates in the mixture formulation

(i.e., replace (1) with f(y) =
∫
f(y |φ) dG(φ)). A recent focus has been on

Gaussian mixture sieves, which use a location or location-scale mixture of Gaus-

sian densities, with the number of components in G increasing with sample size

(Ghosal, Ghosh and Ramamoorthi (1999), Genovese and Wasserman (2000) and
Ghosal and Van der Vaart (2001)).

In the general setting, f(y |x, φ) could be chosen to correspond to a lin-
ear or generalized linear regression model. The special case in which Gx =∑k

h=1 ph(x)δθh
, with the weights ph(x) modeled using a probabilistic decision

tree, corresponds to the hierarchical mixture of experts (HME) model proposed

in the neural computing literature (Jacobs, Jordan, Nowlan and Hinton (1991)
and Jordan and Jacobs (1994)). Jiang and Tanner (1999) showed that the HME

can be used to approximate exponential family densities with arbitrary smooth
mean regression functions. In addition, Viele and Tong (2000) showed poste-

rior consistency for a narrower class of mixtures of Gaussian linear models with

ph(x) = ph and k fixed.
An alternative to Viele and Tong (2000) would be to assume Gx = G ∼

DP (αG0), with α the DP precision parameter and G0 an initial guess at the
mixture distribution. From Sethuraman’s (1994) stick-breaking representation,

this is equivalent to letting G =
∑∞

h=1 phδθh
, with θh

i.i.d.∼ G0 and ph/
∏h−1
l=1 (1 −

pl)
i.i.d.∼ beta(1, α). Given data yi

ind∼ f(· |xi) for i = 1, . . . , n, this DP mixture

structure will allocate the n subjects into k groups, each with a common value of
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φ. The clustering of subjects into groups is clear from the Pólya urn scheme of

Blackwell and MacQueen (1973) that prescribes that the conditional distribution

of φi given φ(i) = (φ1, . . . , φi−1, φi+1, . . . , φn)
′ as

(
φi |φ(i), α) ∼

(
α

α+ n− 1

)
G0 +

(
1

α+ n− 1

)∑

j 6=i

δφj
, (2)

so that subject i is either assigned to one of the existing clusters by letting

φi = φj, for some j 6= i, or assigned to a new cluster with φi ∼ G0. Because the

number of clusters (k) increases with n, the resulting model is a type of Gaussian

mixture sieve, generalizing the location and location-scale mixtures to a mixture

of regression models.

Unfortunately, this specification is not sufficiently flexible due to the assump-

tion of a constant mixture distribution. For example, consider the simple case in

which the true conditional densities of Y follow finite normal mixture models:

f(y |x) =

k(x)∑

h=1

ph(x)N
(
y;µh(x), σ2

h

)
, for all y ∈ Y and x ∈ X ,

with ph(·) and µh(·) smooth functions of x. In general, it is not possible to

accurately approximate f(y |x) over Y ≡ ℜ and X using a mixture of Gaussian

linear models without allowing the mixture distribution to vary with x.

2.2. Generalized maximum likelihood

Before placing structure on the collection of unknown mixture distributions,

it is informative to consider a maximum likelihood approach. Under mixture

model (1), the conditional likelihood of y = (y1, . . . , yn)
′ given X = (x1, . . . ,xn)

′

is

L
(
GX;y,X

)
=

{ n∏

i=1

∫
f(yi |xi, φi) dGxi

(φi)

}
, (3)

where GX = {Gxi
, i = 1, . . . , n} denotes the collection of unknown mixing distri-

butions at the observed predictor values.

Lemma 1. If one allows a distinct Gxi
for each xi ∈ X , with X a continuous

sample space, then the nonparametric MLE of GX under L(GX;y,X) does not

exist for q > 1.

Noting the inequality Eφ{f(y |x, φ)}≤f(y |x, φ̂), for φ̂=arg supφ f(y |x, φ),

the MLE is

ĜX =
{
Ĝx1 , . . . , Ĝxn

}
=

{
δbφ1

, . . . , δbφn

}
,
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where φ̂i = arg supφi
f(yi |xi, φi). Lemma 1 follows directly, because the solu-

tion for φ̂i involves maximizing a multi-parameter likelihood based on a single

data point. This result shows that nonparametric maximization of the mixture

likelihood (3) results in over-fitting.

To obtain reasonable estimates, it is necessary to place restrictions on GX,

say by penalizing the rate of change in Gx as x moves across X . Dunson et al.

(2007) proposed a WMDP prior for the uncountable collection of mixture distri-

butions, GX = {Gx : x ∈ X}, having the form

Gx =

n∑

j=1

πj(x)G∗
xj
, G∗

xj
∼ DP (αG0), (4)

where π(x) = [π1(x), . . . , πn(x)]′ is a vector of probability weights, with
∑

j πj(x)

= 1, for all x ∈ X . This formulation introduces independent DP random basis

distributions at each of the predictor values in the sample, and then mixes across

these basis distributions to obtain a prior for the unknown mixture distribution,

Gx, at each possible predictor value, x ∈ X .

Suppose that (φi |xi) ind∼ Gxi
, for i = 1, . . . , n, with GX given a WMDP prior.

Then, relying on Theorem 4 in Dunson et al. (2007), we obtain the following

generalization of the DP Pólya urn scheme upon marginalizing out the infinite-

dimensional WMDP prior:

(φi |φ(i),X, α) =

(
α

α+ wi

)
G0 +

∑

j 6=i

(
wij

α+ wi

)
δφj

, (5)

where {wij} is a set of weights between 0 and 1 that depend on the function, π,

the DP parameter, α, and the predictors, X, and wi =
∑

j 6=iwij ≤ n. Hence,

instead of considering the different subjects as exchangeable, as in (2), weights

are incorporated characterizing the distance between subjects.

In order to simplify modeling and obtain a more parsimonious and inter-

pretable form, we propose to avoid an explicit specification of π, instead relying

on the generalization of the Pólya urn scheme in (5), with wij = wψ(xi,xj).

Here, wψ : X × X → [0, 1] is a bounded kernel measuring how close two pre-

dictors are in terms of a distance measure d, with ψ a smoothing parameter

controlling how rapidly wψ(x1,x2) → 0 as d(x1,x2) increases. In the limit as

ψ → 0, wψ(x,x′) = 0 for any x,x′ ∈ X having d(x,x′) > 0. In addition, for all

ψ > 0, limx→x′ wψ(x,x′) = 1.

Note that the prior at (5) automatically allocates the n subjects into k ≤ n

clusters (or mixture components) according to their φi values. Because subjects

located close together are more likely to be clustered together, the prior tends to

penalize changes across X in the parameter values. In addition, the prior tends to



EMPIRICAL BAYES DENSITY REGRESSION 487

favor introducing new clusters slowly with increasing n in a manner controlled by

parameters, α and ψ, with new clusters added more rapidly as α and ψ increase.

As noted by Genovese and Wasserman (2000), inconsistency can result when the

number of components increases too rapidly. The prior for k in terms of α, ψ

and n is not available in closed form.

Letting θ = (θ1, . . . , θk)
′ denote the unique φ values, (3) is replaced by

L
(
θ, k, α, ψ;y,X

)
=

{ n∏

i=1

k∑

h=1

ph(xi;α,ψ) f(yi |xi, φi = θh)

}
, (6)

where ph(xi;α,ψ), the probability that a subject with predictors xi is allocated

to cluster h, is a function of the predictor values and the smoothing parameters

α and ψ, with
∑k

h=1 ph(xi;α,ψ) = 1. There is no closed form expression for

ph(xi;α,ψ) and the unknown number of clusters k and the cluster allocation

probabilities depend in a complex manner on smoothing parameters and the

relative values of the predictors.

Note that (5) can be written as

(
φi |φ(i),X, α, ψ

)
∼

(
α

α+ wi(ψ)

)
G0 +

(
1

α+ wi(ψ)

) k(i)∑

h=1

w∗
ih(ψ)δ

θ
(i)
h

, (7)

where θ(i) = (θ
(i)
1 , . . . , θ

(i)

k(i)) denotes unique values of φ(i), w∗
ih(ψ) =

∑
j 6=i 1(φj =

θ
(i)
h )wψ(xi,xj) and wi(ψ) =

∑
j 6=iwψ(xi,xj). Potentially, one can maximize (6)

using (7) to define the relationship between the cluster allocation probabilities

{ph(xi;α,ψ)} and the unknown parameters α and ψ, incorporating the iden-

tifiability constraint θ1 < · · · < θk. However, Theorem 1 notes that similar

overfitting problems result as with (3). This is due to the fact that, although

additional structure has been placed on the unknown mixture distributions to

reduce dimensionality, there is still no penalty to limit growth in the number of

clusters.

Theorem 1. For q > 1 (sometimes for q = 1) and continuous X , the MLE at

(6), with the cluster allocation probabilities defined by (7), does not exist.

To prove this result, first recall that the smoothing parameter ψ controls the

rate at which wψ(xi,xj) → 0 with increasing distance d(xi,xj). In the limit as

ψ → 0, wψ(xi,xj) = 0 for all i, j. Hence, in this case, (7) prescribes that all

subjects are assigned to their own cluster, so that k = n and θ = (φ[1], . . . , φ[n])
′,

letting φ[1], . . . , φ[n] denote the order statistics of φ to preserve the identifiability

constraint on θ. In addition, in the limit as ψ → 0, the conditional MLE of α
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does not exist, as α has no impact on the likelihood, and the conditional MLEs

of k and θ are

k̂[ψ=0] = n and θ̂[ψ=0] =
(
φ̂[1], . . . , φ̂[n]

)′
, (8)

where φ̂i = arg supφi
f(yi |xi, φi), for i = 1, . . . , n, and φ̂[1], . . . , φ̂[n] are the order

statistics. For positive ψ and k < n, the likelihood can only decrease, so from a

similar argument to that used in Lemma 1, Theorem 1 follows directly.
From Theorem 1, it is clearly necessary to incorporate a penalty to limit the

number of clusters. A natural approach is to utilize additional structure from

the conditional prior at (7). In particular, as in the DP Pólya urn scheme in (2),

new cluster-specific parameters are generated by independently sampling from

the base measure G0. Hence, a natural penalty arises by multiplying (6) by

P (θ,γ) =

{ k∏

h=1

g0(θh;γ)

}
, (9)

with g0(θ;γ) denoting the probability density function corresponding to G0. Ad-

ditional flexibility is accommodated by parameterizing g0 in terms of parameters

γ.
To demonstrate how the penalty works, again consider the limiting case as

ψ → 0. The conditional generalized MLE (GMLE) obtained by maximizing

L(θ, k, α, ψ;y,X)P (θ,γ) (initially for fixed γ) has the same form as in (8), but

with

φ̂i = arg sup
φi

{
f(yi |xi, φi) g0(φi;γ)

}
, (10)

resulting in a shrinkage estimator for φi. For example, for f(yi |xi, φi) = N (yi;
x′
iβi, τ

−1
i ) with g0(βi, τi)=Nq−1(βi;β0, τ

−1
i V)G(τi; aτ , bτ ) and G(z; a, b)=C(a, b)

za−1 exp(−zb) denoting the gamma density with mode (a− 1)/b, the conditional

GMLE is

β̂i =
(
V−1 + xix

′
i

)−1(
V−1β0 + xiyi

)
,

τ̂i =
2a+ q − 2

2b+ y2
i + β′

0V
−1β0 − β̂

′

i(V
−1 + xix

′
i)β̂i

,

which shrinks (βi, τi) towards the mode of the normal-gamma density, g0.

Although shrinkage allows estimation of cluster-specific parameters even

when there is a single subject per cluster (k = n), there is strong reliance for

k = n on the choice of G0. In particular, unless the variance of G0 is high, the

resulting procedure behaves similarly to the model assuming Gxi
≡ G0. Some

degree of robustness can be gained by estimating parameters γ characterizing G0,
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but the structure is still highly restrictive. However, as k decreases and the num-
ber of subjects per cluster grows, the degree of shrinkage of the cluster-specific
parameters towards G0 decreases, allowing lack of fit of the base parametric
model f(y |x) =

∫
f(y |x, φ) dG0(φ;γ). Because allowing lack of fit will tend to

result in a higher likelihood, the global maximum is typically not achieved at the
conditional MLE given k = n and ψ → 0, but instead at k << n.

Some comments are in order. First, when the base parametric model pro-
vides an excellent approximation, the global maximum may be achieved for k
approaching n. However, in this case there is no problem with overfitting due to
the high degree of shrinkage toward G0, which is parameterized in terms of the
relatively low-dimensional γ. Even in the more typical case in which k << n,
there is still some degree of shrinkage toward G0. This provides a mechanism of
stabilizing estimation through global smoothing. The structure of (7) also allows
local smoothing, because subjects having similar predictor values are much more
likely to be assigned to the same cluster than subjects with widely different pre-
dictor values. The degree of borrowing of information in local neighborhoods of

X and the size of these neighborhoods is controlled by the smoothing parameter
ψ. It is appealing to allow ψ to vary with sample size, so that neighborhoods are
relatively small in large samples. By decreasing α and ψ as n increases, one can
limit the increase in k with n, while reducing neighborhood sizes. Because it is
difficult to choose an optimal sequence {αn, ψn} in advance, the recommendation
is to estimate α,ψ based on the data.

2.3. Choice of kernel

In applying the approach, it is necessary to choose an explicit form for the
bounded kernel function, wψ(x,x′). For continuous x, a natural choice is the
Gaussian kernel wψ(x,x′) = exp(−ψ−1||x − x′||2), where ||x − x′||2 denotes the
L2 distance between x and x′. A criticism of this choice for p > 1 is the use of a
single smoothing parameter, ψ, for each of the predictors. To avoid sensitivity to
differences in scale for the different elements of x, one can normalize the predictors
and then transform back to the original scale in performing inferences.

After normalization, it is possible to choose plausible values of ψ without
prior knowledge of the variability in the predictors. As a default choice in fully
Bayes analyses, one can take ψ = 25/n, with 25 changed to 10 or 50 in sensi-
tivity analyses. In smaller sample sizes, this approach borrows information more
broadly across the predictor space, focusing on increasingly narrow regions as
the sample size grows. The empirical Bayes approach avoids possible sensitivity
to this choice by estimating ψ.

Although other choices are possible, we focus on general use of the Gaussian
kernel even in cases involving categorical or mixed predictors, motivated by par-

simony and simplicity. For binary predictors and ψ = 25/n, such an approach
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assigns low prior probability to subjects in different categories being grouped

together for moderate to large samples. This effectively results in a DP mixture

of normals being fitted separately to the two groups for a single binary predictor,

which is a reasonable default.

The issue of what sample size is required for good performance of our ap-

proach is worth commenting on. Examining (7) carefully, it is clear that the

approach tends to introduce clusters with higher probability in data-sparse re-

gions of the predictor space, while relying on neighboring values more heavily

in data-rich regions. Because new clusters are drawn from the base parametric

mixture model, this structure effectively relies on global smoothing under the

normal linear model to extrapolate across regions with limited data. Hence for

small sample sizes, there is a greater reliance on the parametric model, but as

more data become available suggesting local lack of fit of the model, deviations

are automatically accommodated. Therefore, the method can be recommended

for any sample size. Of course, as a practical matter, there will be limited ability

to detect interesting deviations from the base model, such as evolving secondary

modes, in small samples.

3. Posterior Computation

In this section, a fully Bayes algorithm is developed for posterior computation

assuming known smoothing parameters α,ψ and hyperparameters γ. Using the

Gibbs sampler to integrate out the latent cluster allocation indicators, a Monte

Carlo EM algorithm is then developed to estimate α,ψ,γ via an Empirical Bayes

approach.

3.1. Gibbs sampling for fully Bayes inferences

Let S = (S1, . . . ,Sn)′ be a vector of indicators denoting the global configura-

tion of subjects to unique values θ, with Si = h if φi = θh indexing the location

of the ith subject within the θ vector. Excluding the ith subject, θ(i) = θ \ φi
denotes the k(i) unique values of φ(i) and S(i) denotes the configuration of sub-

jects {1, . . . , n} \ i to these values. The full conditional posterior distribution of

φi is

(
φi |φ(i),y,X, α, ψ,γ) ∝ qi,0Gi,0 +

k(i)∑

h=1

qi,hδθ(i)
h

, (11)

where the posterior obtained by updating prior G0(φ;γ) with likelihood f(yi |xi,
φ) is

Gi,0(φ) =
G0(φ;γ) f(yi |xi, φ)∫
f(yi |xi, φ) dG0(φ;γ)

=
G0(φ;γ) f(yi |xi, φ)

hi(yi |xi,γ)
,
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qi,0 = c α hi(yi |xi,γ), qi,h = cw∗
ih(ψ)f(yi |xi, θh), and c is a normalizing con-

stant. Note that α and ψ only appear in the expressions for the configuration

probabilities {qi,h, h = 0, 1, . . . , k(i)}.
Conditional on α and ψ, posterior computation can proceed via a Gibbs

sampling algorithm, which alternates between (1) updating S, k by sampling from

the full conditional posterior distribution of each Si; (2) updating the cluster-

specific parameters θ by sampling from the full conditional posterior given the

configuration; and (3) updating γ by sampling from its full conditional.

Consider the case in which f(yi, |xi, φi) = N (yi;x
′
iβi, τ

−1
i ), with φi =

(β′
i, τi)

′ and βi = (βi1, . . . , βip)
′, so that both the regression coefficients and

variance can vary across clusters. A natural choice for g0 is the multivariate

normal-gamma density

g0(βi, τi)= |2πτ−1
i V|− p

2 exp
{
− τi

2
(βi−β)′V−1(βi−β)

}
C(aτ , bτ )τ

aτ−1
i exp(−τibτ ),

with V = κ−1n(X′X)−1 to correspond to a g-type prior. To allow uncertainty

in γ = {β, κ}, one can choose the hyperprior density π(γ) = Np(β;β0, κ
−1V0)

G(κ; aκ, bκ).

After standard algebra, the marginal likelihood hi(yi |xi,γ) =
∫
f(yi |xi, φi)

dG0(φi;γ) is

hi(yi |xi,β,V, aτ , bτ ) =
C(aτ , bτ )|V|− p

2

√
2πC(ãi, b̃i)|Ṽi|−

p

2

,

where Ṽi = (V−1 + xix
′
i)
−1, ãi = aτ + 0.5(p + 1), b̃i = bτ + 0.5(y2

i + β′V−1β −
β̂
′

iṼ
−1
i β̂i), and β̂i = Ṽi(V

−1β + xiyi). Hence, calculation of conditional config-

uration probabilities

Pr(Si = h |S(i), k(i), α, ψ,γ,y,X) = qih, for h = 0, . . . , k(i) (12)

in implementing Step 1 of the Gibbs sampler is straightforward.

In addition, letting θh = (β′
h, τh) denote the value of φi for subjects in the

hth cluster, the full conditional posterior distribution of θh is, after some algebra,

(
βh, τh |θ(h),S, k,γ,y,X

)
∼ Np(βh; β̂h, τ

−1
h Ṽh)G(τh; ãh, b̃h), (13)

where Ṽh =
(
V−1 +

∑
i:Si=h

xix
′
i)
−1, β̂h = Ṽh

(
V−1β +

∑
i:Si=h

xiyi
)
, ãh =

aτ + nh/2,

b̃h = bτ +
1

2

( ∑

i:Si=h

y2
i + β′V−1β − β̂

′

hṼ
−1
h β̂h

)
,
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and nh =
∑n

i=1 1(Si = h). The conditional posterior distribution of hyperparam-

eters (β, κ) is

(
β, κ |S, k,θ,y,X

)
∼ Np(β; β̂, κ−1Ṽ)G(κ; ã, b̃), (14)

where Ṽ = (V−1
0 +

∑k
h=1 τhX

′X/n)−1, β̂ = Ṽ(V−1
0 β0 +

∑k
h=1 τhX

′Xβh/n),

ãh = aκ + kp/2,

b̃h = bκ +
1

2

[
β′

0V
−1
0 β0 +

{ k∑

h=1

τhβ
′
hX

′Xβh/n

}
− β̂

′
Ṽ−1β̂

]
.

Gibbs sampling proceeds by sequentially sampling from (12), which follows a

multinomial closed form in this case, and (13)−(14).

3.2. Estimating smoothing parameters and hyperparameters

Note that the Gibbs sampling algorithm above requires specification of hy-

perparameters β0, V0, aτ , bτ , aκ, bκ in addition to the smoothing parameters

α,ψ. Following an empirical Bayes approach, one can instead estimate (1) β, (2)

aτ , bτ , (3) κ, and (4) α,ψ, eliminating possible sensitivity to subjectively-chosen

hyperparameters. Even when prior information is available and the fully Bayes

approach is preferred, the empirical Bayes approach provides a useful reference

analysis. Here, a hybrid Gibbs/EM-type algorithm is proposed to implement the

empirical Bayes approach.

Initially consider Steps (1)−(3), with α,ψ treated as known. Given S, k,

{θh}, the generalized likelihood is proportional to

( k∏

h=1

[ ∏

i:Si=h

τ
1
2
h exp

{
− τh

2
(yi − x′

iβh)
2
}]

|τ−1
h V|− p

2

× exp
{
− τh

2
(βh − β)′V−1(βh − β)

}
τaτ−1
h exp(−τhbτ )

)
,

where V = κ−1n(X′X)−1. A standard EM algorithm would iterate between

(i) calculate the expected log generalized likelihood (ELGL) with respect to the

posterior for S, k, {θh} given current estimates for the parameters; and (ii) up-

date the parameter estimates by maximizing the ELGL. Because the E-step (i)

cannot be implemented analytically, one can use the Gibbs sampler described in

Subsection 3.1. In addition, because a global maximum cannot be calculated in

closed form, a series of conditional maximization steps is used in place of (ii).

This combines the Monte Carlo EM (MCEM) algorithm (Wei and Tanner, 1990)

with the ECM algorithm (Meng and Rubin (1993)).
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Letting t = 1, . . . , T index iterations of the Gibbs sampler following con-

vergence, the conditional maximization steps are implemented by first taking

expectations of sufficient statistics with respect to the posterior distribution of

the model unknowns to be integrated out, including S, k, {θh}. The resulting

estimators of β and κ at a given iteration of the algorithm have the form

β̂ =

∑T
t=1

∑k(t)

h=1 τ
(t)
h β

(t)
h∑T

t=1

∑k(t)

h=1 τ
(t)
h

,

(15)

κ̂ =

{
T−1

∑T
t=1 0.5k(t)p

}
− 1

T−1
∑T

t=1

∑k(t)

h=1 τ
(t)
h (β

(t)
h − β̂)′(X′X)(β

(t)
h − β̂)n−1

.

Maximization of the ELGL with respect to aτ , bτ proceeds by calculating

(âτ , b̂τ ) = sup
aτ ,bτ

{ T∑

t=1

k(t)∑

h=1

G
(
τ

(t)
h ; aτ , bτ

)}
,

which can be implemented in standard software for maximizing gamma likeli-

hoods.

This formulation has conditioned on α,ψ. Estimation of α and ψ is more

challenging, because it is not possible to maximize the ELGL with respect to α

and ψ directly. Potentially, one could pre-specify a finite set of candidate values

for α and ψ, run the algorithm separately for each candidate value, and then se-

lect the value with the maximum ELGL after convergence. Unfortunately, such a

procedure is sensitive to the set of candidate values chosen, and as the dimension

increases, the extreme computation involved presents a barrier to implementa-

tion. Instead, one can use a procedure based on a Stochastic EM (SEM)-type

step. The SEM algorithm was introduced by Celeux and Diebolt (1985) as an

approach for computing the MLE for finite mixture models, speeding up con-

vergence and avoiding the problem of staying near an unstable stationary point

of the likelihood function. The SEM draws a single value from the posterior

distribution of the latent data in place of the E-step, and is a special case of the

Monte Carlo EM (MCEM) algorithm (refer to McLachlan and Krishnan (1997),

for an overview of EM-type algorithms).

Our proposed procedure adds the following step to the Gibbs/Monte Carlo

ECM algorithm: (4a) at each iteration, sample a candidate value (α∗, ψ∗) for

(α,ψ) (e.g., by sampling from a distribution centered on the current values);

(4b) given this candidate value, generate new values for S, k, {θh} by alternately

sampling from the full conditional posterior distributions; (4c) also sample new

values for S, k, {θh} given the current (α,ψ); and (4d) set the new value of (α,ψ)

equal to the choice that maximizes the LGL. As the algorithm progresses, the
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iterates will tend to move stochastically towards values corresponding to a high
LGL, converging to a stationary distribution. Simulations and data examples
have exhibited show rapid convergence.

3.3. Density estimation

Our interest focuses on estimating the response density for new subjects
having a range of different values of x ∈ X . In particular, letting i = n+1 denote
a new subject with predictor value xn+1, the goal is estimation of f(yn+1 |xn+1).
Consider two strategies: (1) calculate the posterior mean and credible intervals
for f(yn+1 |xn+1), marginalizing across the posterior distribution of S, k, {θh}
with estimates of the hyperparameters plugged in (model-averaged estimator);
(2) plug-in the values of S, k, {θh} that maximize the LGL to obtain a MAP
estimator for f(yn+1 |xn+1) (preferred model estimator).

The first approach can be implemented utilizing the simple form for the
conditional predictive density:

f(yn+1 |xn+1,y,X,S, k,θ,γ, α, ψ) =

(
α

α+wn+1(ψ)

)
hn+1(yn+1 |xn+1,γ)

+

(
1

α+ wn+1(ψ)

) k∑

h=1

w∗
n+1,h(ψ)N (yn+1;x

′
n+1βh, τ

−1
h ), (16)

where wn+1(ψ) =
∑n

i=1wn+1,i(ψ) and w∗
n+1,h(ψ) =

∑n
i=1 1(Si = h)wn+1,i(ψ).

One can simply calculate and store (16) for a range of yn+1 and xn+1 values of
interest at each Gibbs iteration after convergence, basing posterior summaries on
a large number of iterations.

Instead of integrating out the number of clusters k, the configuration of
subjects to clusters S, and the cluster-specific parameters θ, the second approach
plugs in estimates. These estimates are obtained by monitoring the LGL at
each iteration of the algorithm after convergence, and selecting the values at
the iteration corresponding to the maximum of the LGLs. Less computationally
intensive mode finding procedures were also considered. These did not require
the Gibbs sampling step. Unfortunately such procedures converge to a local
mode, which is typically far from the global mode, given the high degree of
multimodality in the generalized likelihood surface. The proposed Monte Carlo
approach had much better performance in the cases considered.

Under approach 2, the plug-in density estimator

f̂(yn+1 |xn+1) =

(
α̂

α̂+ ŵn+1

)
ĥ(yn+1 |xn+1)

+

(
1

α̂+ ŵn+1

) bk∑

h=1

ŵ∗
n+1,hN (yn+1;x

′
n+1β̂h, τ̂

−1
h )
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was used, with estimates of the weight functions obtained by plugging in the

estimated ψ and S values. Note that this expression can be applied very quickly

for a wide range of y and x values of interest without requiring monitoring of the

predictive density for each y and x during the MCMC implementation. Hence

for purposes of interpretation, rapid exploration of changes in the density across

X , and calculation of summaries such as quantile regression curves, this plug-in

estimator is very useful.

4. Simulation Examples

To assess the performance of the fully Bayes and empirical Bayes approaches,

a variety of simulation examples were considered. For the fully Bayes analyses,

we let ψ = 25/n as recommended above, α = 0.1 to favor the introduction of few

clusters within a local region, β0 = 0, V0 = n(X′X)−1, aτ = 1, bτ = 0.5, aκ = 1

and bκ = 0.5. These priors were held fixed across the simulation cases. Results

are presented here for n = 1, 000, though very similar performance was obtained

for n = 500. The focus here is on the case with a single continuous predictor,

xi
i.i.d.∼ U [0, 1], though similar results were obtained in runs with an additional

binary predictor.

To characterize increasing complexity in the model for f(yi |xi), consider

(1) a normal linear regression model with heteroscedastic errors, f(yi |xi) =

N
(
−2+5xi, (1+xi)

2
)
; (2) the same as (1), but with a non-linear mean function

E(yi |xi) = xi − 2x3
i ; and (3), where the density is a finite mixture of normals,

f(yi |xi) =
k∑

h=1

ph(xi)N (yi; θh1 + θh2xi, θ
−1
h3 ),

with ph(x) = xρh/
∑k

l=1 x
ρl , ρh

i.i.d.∼ U(−1, 1), (θh1, θh2)
i.i.d.∼ N

(
[−2, 5], 0.2n

(X′X)−1
)
, and θh3 ∼ G(10, 1), for h = 1, . . . , k, with k = 5.

For each simulated data set, the algorithms proposed in Section 3 were ap-

plied to obtain density estimators under the fully Bayes approach, and two em-

pirical Bayes approaches, using a grid of 100 y values spanning the range of the

observed data. The conditional densities were estimated for the set of x val-

ues corresponding to the [5, 10, 17.5, 25, 37.5, 50, 62.5, 75, 82.5, 90, 95] percentiles

of the empirical distribution. The Gibbs sampler was run for 10,000 iterations

in each case, updating the hyperparameters every 100 iterations for the empiri-

cal Bayes procedure, and discarding the first 5,000 iterations as a burn-in. The

hyperparameters and smoothing parameters converged steadily to a stationary

distribution in each case, and the burn-in interval was more than sufficient.

For Case 1, the fully Bayes density estimates were very close to the truth

across the range of x, with only slight deviations for x near the edge of the range.



496 DAVID B. DUNSON

In particular, the peak of the density was slightly underestimated for x at the

5th percentile, while the mean was slightly underestimated for x at the 95th

percentile. However, the true density was enclosed in 99% pointwise credible

intervals in each case. Similar performance was observed for the empirical Bayes

estimates, as shown in Figure 1. Performance for each of the approaches was

even better in Case 2, with only very slight under-estimation of the peak for x

in the 5th percentile, but excellent performance at all other values.

Figure 1. Results for the first simulation example. True (dotted lines),

preferred model (dashed lines), and model-averaged (solid lines) density es-

timators for predictor values at the 5, 10, 17.5, 25, 37.5, 50, 62.5, 75, 82.5,

90, and 95th percentiles of the empirical distribution.

For Case 3, Figure 2 shows the density estimates under the fully Bayes

procedure. Clearly, the estimates were close to the truth across the range of

x values. The empirical Bayes procedure had similar performance, though it

slightly under-estimated the secondary mode appearing at the higher values of
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x. The estimated values of the hyper- and smoothing parameters were β̂ =
(−2.12, 4.48)′ , κ̂ = 0.25, µ̂τ = 9.34, σ̂2

τ = 0.001, α̂ = 0.08, ψ̂ = 0.12, with
µτ = aτ/bτ and σ2

τ = aτ/b
2
τ . In addition, the preferred number of mixture

components was k̂ = 8, with a 95% credible interval [4,12].

Figure 2. Results for the third simulation example (n = 1, 000). True (dotted
lines), fully Bayes estimate (solid line), and pointwise 99% credible intervals
(dashed lines). Conditional density estimates are shown for predictor values
at the 5, 10, 17.5, 25, 37.5, 50, 62.5, 75, 82.5, 90, and 95th percentiles of the
empirical distribution.

In small samples, the expectation is that there is not enough information
in the data to detect subtle local deviations from the base normal linear model.
To assess this, simulation Case 3 was repeated for a sample size of n = 100.
The empirical Bayes estimates are shown in Figure 3. For small values of x,
the bi-modal shape was detected, with some underestimation of the peak height.
Estimates were accurate across most of the range of x, and at higher values the
small secondary mode was detected but flattened out. The credible intervals
provided a good measure of uncertainty. The performance of the fully Bayes
estimator was not as good: there was more underestimation of the peaks at low
values of x, and the secondary mode at high values was missed.



498 DAVID B. DUNSON

Figure 3. Results for the third simulation example (n = 100). True (dotted

lines), model-averaged empirical Bayes estimate (solid line), and pointwise

99% credible intervals (dashed lines).

5. Abstinence and Sperm Concentration Application

To illustrate the methods, consider data from a reproductive epidemiology

study. The focus is on assessing the relationship between abstinence time (x) and

sperm concentration (y) using semen analysis results for n = 220 men. Although

it is generally believed that sperm concentration increases with abstinence time,

at least initially, the relationship is thought to be non-linear. In addition, hetero-

geneity among men in rates of sperm production may lead to a changing shape

of the sperm concentration distribution as abstinence time changes. Assessing

this relationship is important in deciding how to control for abstinence time in

an epidemiologic study, and in making recommendations to couples attempting

pregnancy.

One possibility would be to use the quantile smoothing splines of Koenker, Ng

and Portnoy (1994). However, this would involve specifying particular quantiles

of interest in advance, or fitting models separately to a sequence of quantiles.

By applying our density regression approach, we instead allow smooth, nonlinear

effects on all quantiles simultaneously.
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Repeating the analyses implemented for the simulated data examples, but for

20,000 iterations, iteration plots for the smoothing parameters α and ψ are shown

in Figure 4. The values converge rapidly to a stationary distribution. Figure 5

plots empirical Bayes density estimates and 99% pointwise credible intervals for

a range of abstinence times chosen in advance to span the range of values in the

sample. We focus on a finite set of values for ease in visualization. The fully

Bayes estimates were very similar for an abstinence interval of less than five days,

but as abstinence time increases and the data become sparser, the fully Bayes

estimates have a lower peak and wider credible intervals.

The sperm concentration distribution is clearly non-normal, and has a shape

that is not well-characterized by a log normal distribution. As abstinence times

increase, there appears to be a subtle shift in the distribution, though it is dif-

ficult to judge based on the density plots. Therefore, empirical Bayes quantile

regression curves were estimated for the 5, 10, 25, 50, 75, 90 and 95th percentiles

of the sperm concentration distribution as a function of abstinence time. The

results are plotted, along with the raw data, in Figure 6. As expected, there is

a large amount of heterogeneity among men in sperm concentration, regardless

of abstinence time. However, sperm concentration does appear to improve with

increasing abstinence time. Interestingly, the effect of abstinence was largest for

typical men at the median of the population distribution, with little effect at the

high and low concentrations.

Figure 4. Trace plots of the sampled values of the smoothing parameters α
and ψ for the abstinence and sperm concentration example.
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Figure 5. Estimated sperm concentration density among men having dif-

ferent abstinence intervals. The solid line is the model-averaged empirical

Bayes estimator and the dashed lines are pointwise 99% credible intervals.

Figure 6. Data values and fitted quantile regression curves for sperm con-

centration versus abstinence time. Curves for the 5, 10, 25, 50, 75, 90, and

95th percentiles are shown.
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It was particularly interesting that the abstinence effect on sperm concentra-

tion did not go away after the first two days, as is commonly believed. However,

it is important to note that the magnitude of the abstinence effect on sperm con-

centration is not enough to have a large impact on the probability of pregnancy,

as Slama, Kold-Jensen, Scheike, Ducot, Spira and Keiding (2004) estimate only

a 15% decrease in fecundability attributable to a 47% decline in sperm concen-

tration. Hence, there appears to be no need for couples attempting pregnancy to

reduce intercourse frequency in an attempt to reduce the abstinence effect; the

additional sperm introduced with each intercourse act should more than make

up for the modest decline in concentration attributable to a higher frequency.

6. Discussion

This article has proposed fully Bayes and empirical Bayes approaches for

estimating the density of a response variable in relation to one or more predictors.

Based on simulation examples, both approaches appear to have good performance

in a variety of cases, with the empirical Bayes approach doing better in small

to moderate samples. This reflects the difficulty of choosing good values for the

hyperparameters a priori. The empirical Bayes approach may also have efficiency

advantages, as one can adaptively borrow information over wider regions in cases

in which the data do not support a changing mixture distribution.

One advantage over frequentist methods is flexibility, in that it is straight-

forward to apply this same approach when Y and X are components of a hierar-

chical model. For example, Y could be a latent variable in a structural equation

or factor analytic model. In addition, the formulation allows discrete predictors,

which are not naturally accommodated by previous specifications that model the

distribution of {Y,X} using a mixture of normals.

Although the focus here has been on density estimation, the proposed method-

ology can also be used for classification. For example, there is considerable in-

terest in clustering genes based on differential expression between groups. One

could potentially cluster the genes by assigning a Dirichlet process prior to the

unknown distribution of the differences in gene expression levels. However this

would ignore other information, such as gene function annotations, or covariates

such as time or dose of a treatment. The proposed approach can be used to

flexibly incorporate such predictors to inform about the classification.

Another interesting area for future research is the development of methods

for comparing models with and without a predictor to assess whether that pre-

dictor is associated with the response. In the nonparametric case, this problem is

one of comparing competing infinite-dimensional models, which results in unique

challenges. A simple model comparison criteria would be the maximized gener-

alized log-likelihood, obtained by fitting each of the models using the approach
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proposed in this article. Such an approach incorporates an automatic penalty

for the difference in model complexity between the competing models.
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