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Abstract: An algorithm for fitting the entire regularization path of the support

vector machine (SVM) was recently proposed by Hastie et al. (2004). It allows

effective computation of solutions and greatly facilitates the choice of the regular-

ization parameter that balances a trade-off between complexity of a solution and
its fit to data. Extending the idea to more general setting of the multiclass case,

we characterize the coefficient path of the multicategory SVM via the complemen-

tarity conditions for optimality. The extended algorithm provides a computational

shortcut to attain the entire spectrum of solutions from the most regularized to the

completely overfitted ones.

Key words and phrases: Classification, coefficient paths, Karush-Kuhn-Tucker con-

dition, multicategory support vector machine.

1. Introduction

Regularization methods are widely used in statistics and machine learning for

data analysis. A few examples include smoothing splines (Wahba (1990)), penal-

ized logistic regression, and support vector machines (Vapnik (1998)). The effec-

tiveness of a regularization method often largely depends on the choice of a regu-

larization parameter (or tuning parameter) which controls model elaboration in a

continuous fashion. The LAR (least angle regression) of Efron, Hastie, Johnstone

and Tibshirani (2004) and the SVM path of Hastie, Rosset, Tibshirani and Zhu

(2004) showcase recent developments of computational algorithms to characterize

the entire regularization path in place of a user-dependent grid search for a good

solution. These constructive algorithms not only enable efficient computation of

solutions along the path, but also provide a bird’s-eye view of the spectrum of

solutions from the least to the most complex fit to given data.

This paper focuses on construction of the support vector machine (SVM)

solution path for classification. As illustrated in Hastie et al. (2004), capability

of solving a system of linear equations is sufficient to find the complete solution

path of the binary SVM as a function of its tuning parameter. In other words,

the whole range of SVM solutions can be obtained without resorting to an ex-

ternal quadratic programming solver, except for one-time initialization if the
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two classes are unbalanced. Different from this approach, there are quite a few

widely used algorithms for the SVM such as SMO (Sequential Minimal Optimiza-

tion) (Platt (1999)), SVM light (Joachims (1999)), and LIBSVM (Hsu and Lin

(2002)). However, these are only tailored for scalable computation of the SVM

solution at a single value of the tuning parameter, proper specification of which

would require a non-trivial inspection. Moreover, Hastie et al. (2004) empirically

demonstrated that the computational cost of obtaining the entire regularization

path could be almost the same as getting a single solution by other methods,

while misspecification of the tuning parameter can be readily avoided through

the SVM path.

Motivated by the idea of sequentially finding the SVM path for the bi-

nary case, we extend the algorithm to the multiclass case for general treat-

ment of classification. This extension is for the Multicategory SVM (MSVM)

in Lee, Lin and Wahba (2004) that subsumes the binary SVM as a special case

and retains the same problem structure. The Karush-Kuhn-Tucker optimality

conditions (Mangasarian (1994)) for the corresponding optimization problems

play an important role in fully determining solution paths as a function of the

regularization parameter λ. Hastie et al. (2004) cleverly utilized the conditions to

show that the SVM coefficient path is piecewise linear in 1/λ. In this paper, we

draw a parallel to this idea and necessary derivations for the multiclass case. It

is established that the MSVM coefficient path is also piecewise linear in 1/λ with

an additional number of joints roughly proportional to the number of classes.

The joints of the piecewise linear solution path are identified as the values of λ

at which any of data points on the margin of MSVM coordinates changes. The

entire coefficient path is then constructed sequentially, and it provides a compu-

tational shortcut to simultaneous fitting and tuning. The extended algorithm of

finding the MSVM coefficient path seamlessly encompasses that for the binary

SVM, contributing further to our general understanding of the structure of the

SVM formulation. When developing the analogous algorithm for the multiclass

case, we closely follow the notation and terminology used in Hastie et al. (2004)

for the binary case, in order to illuminate the connection between them.

This paper is organized as follows. Section 2 briefly reviews the optimization

problem of the MSVM and states the optimality conditions for the solution.

Section 3 characterizes each coefficient path as a piecewise linear function via the

optimality conditions. Section 4 discusses how to find the joints that determine

the solution path and other computational issues. Section 5 presents a numerical

example that illustrates the constructive algorithm when applied to simulated

data. Concluding remarks and future directions are given at the end.
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2. Multicategory SVM and Optimality Conditions

In the classification problem, we are given a training data set of n pairs of

covariates and a known class label (xi, yi) for i = 1, . . . , n. xi ∈ Rp represents

the covariates of the ith observation and the response yi ∈ {1, . . . , k} denotes the

class that it falls into. In general, a classification rule φ(x) : R
p → {1, . . . , k} is

constructed, based on the training data, that generalizes the relationship between

xi and the class label yi.

The Multicategory SVM proposed by Lee, Lin and Wahba (2004) is a gen-

eral classification method that extends good theoretical properties of the bi-

nary SVM to the multiclass case. It follows the general scheme of finding

a k-tuple of functions f(x) = (f 1(x), . . . , fk(x)), which induces a classifier

φ(x) = argmax j=1,...,k f j(x) via the maximum component. (Superscripts are

used to indicate coordinates in this paper.) We consider each component f j(x)

as an element of a reproducing kernel Hilbert space (RKHS), H = {1}⊕H̄. Then,

each coordinate f j(x) can be expressed as bj + hj(x) with hj ∈ H̄. A vector-

valued class code yi is to be used in place of the nominal class label yi. If yi = j,

yi = (y1
i , . . . , y

k
i ) has yj

i = 1 and −1/(k−1) elsewhere. Generally, a regularization

method in an RKHS can be cast as a problem of finding f(x) = b + h(x) ∈ H in

the RKHS that minimizes

1

n

n
∑

i=1

L(yi, f(xi)) + λ‖h‖2.

Here L(yi, f(xi)) is a loss function measuring goodness of fit, ‖ · ‖ is the norm

defined on the RKHS H̄, and λ is a tunable regularization parameter which bal-

ances the empirical risk and the penalty associated with f . In this regularization

framework, the MSVM solution f̂λ(x) = (f̂1
λ(x), . . . , f̂k

λ (x)) given λ is defined as

the minimizer of

1

n

n
∑

i=1

L(yi)
t(f (xi) − yi)+ +

λ

2

k
∑

j=1

‖hj‖2, (2.1)

with the sum-to-zero constraint
∑k

j=1 f j(x) = 0 for any x ∈ R
p. To explain the

loss function, let cat(i) be the category of yi and Lj′

j be the cost of misclassifying

j as j′, and define the misclassification cost vector L(yi) = (L1
cat(i), . . . , L

k
cat(i))

t.

Then, the so-called hinge loss function is L(yi,f (xi)) = L(yi)
t(f(xi) − yi)+. It

can be written explicitly as
∑k

j=1 Lj
cat(i)(f

j(xi) − yj
i )+, where (x)+ = max(x, 0).

For equal misclassification costs, Lj′

j = I(j 6= j′), it is simplified as L(yi,f(xi)) =
∑

j 6=cat(i)(f
j(xi)+ 1/(k − 1))+. By the representer theorem, f̂λ = (f̂1

λ , . . . , f̂k
λ ) is
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of the form

f̂ j
λ(x) = bj +

n
∑

i=1

cj
iK(xi,x) for j = 1, . . . , k, (2.2)

where K(s, t) is the reproducing kernel of H̄.
The main focus of this paper is how to explicitly characterize the coefficient

paths of bj and cj
i of the solution as a function of λ. For expositions to follow, we

briefly discuss the optimization problems associated with (2.1). Let the coefficient
vector cj = (cj

1, . . . , c
j
n)t for j = 1, . . . , k, b = (b1, . . . , bk)t, and C = (c1, . . . , ck).

With some abuse of notation, let bold-faced K stand for an n by n matrix with
the lmth entry K(xl,xm). Also, let Lj denote the jth coordinates of the n
misclassification cost vectors, (Lj

cat(1), . . . , L
j
cat(n))

t and yj = (yj
1, . . . , y

j
n)t. Then

the MSVM in (2.1) can be rewritten as the problem of finding (b,C) to minimize

LP (b,C) =
1

n

k
∑

j=1

(Lj)t
(

bje + Kcj − yj
)

+
+

λ

2

k
∑

j=1

(cj)tKcj (2.3)

subject to
∑k

j=1

(

bje + Kcj
)

= 0, (2.4)

where e is the vector of n ones. To handle the truncate function (x)+ in (2.3),
we introduce nonnegative slack variables denoted by ξj = (ξj

1, . . . , ξ
j
n)t for j =

1, . . . , k. Let ξ = (ξ1, . . . , ξk). By using the slack variables, (2.3) and (2.4) can
be reformulated as finding b, C, and ξ that minimize

LP (b,C, ξ) =
1

n

k
∑

j=1

(Lj)tξj +
λ

2

k
∑

j=1

(cj)tKcj (2.5)

subject to bje + Kcj − yj ≤ ξj , for j = 1, . . . , k, (2.6)

ξj ≥ 0, for j = 1, . . . , k, and (2.7)
k
∑

j=1

(

bje + Kcj
)

= 0. (2.8)

For the Lagrangian dual formulation of the problem, we introduce nonnegative
Lagrange multipliers αj = (αj

1, . . . , α
j
n)t ∈ Rn for (2.6), γj ∈ Rn for (2.7), and

unconstrained multipliers δf ∈ Rn for (2.8). Then the dual problem becomes

maxLD =

k
∑

j=1

(Lj)tξj +
nλ

2

k
∑

j=1

(cj)tKcj +

k
∑

j=1

(αj)t(bje + Kcj − yj − ξj)

−

k
∑

j=1

(γj)tξj + δt
f

k
∑

j=1

(

bje + Kcj
)
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subject to, for j = 1, . . . , k,
∂LD

∂ξj = Lj − αj − γj = 0, (2.9)

∂LD

∂cj
= nλKcj + Kαj + Kδf = 0, (2.10)

∂LD

∂bj
= (αj + δf )te = 0, (2.11)

αj ≥ 0 and γj ≥ 0.

Letting ᾱ = (
∑k

j=1 αj)/k, we have (αj − ᾱ)te = 0 by taking the unconstrained

δf = −ᾱ in (2.11) and cj = −(αj − ᾱ)/(nλ) from (2.10). Using these relations

and (2.9), and denoting (α1, . . . ,αk) by α, we have the dual problem of

minLD(α) =
1

2

k
∑

j=1

(αj − ᾱ)tK(αj − ᾱ) + nλ
k
∑

j=1

(αj)tyj (2.12)

subject to 0 ≤ αj ≤ Lj for j = 1, . . . , k, (2.13)

(αj − ᾱ)te = 0 for j = 1, . . . , k. (2.14)

Note that the αj
i ’s corresponding to zero Lj

cat(i)
’s are trivially zero, so the above

dual problem involves only n(k−1) Lagrange multipliers. Throughout this paper,

we consider only the n(k−1) non-trivial αj
i . By the Karush-Kuhn-Tucker (KKT)

complementarity conditions, the solution satisfies

αj ⊥ (bje + Kcj − yj − ξj) for j = 1, . . . , k, (2.15)

γj = (Lj − αj) ⊥ ξj for j = 1, . . . , k, (2.16)

where ⊥ indicates that componentwise product of two vectors is zero. For in-

stance, if 0 < αj
i < Lj

i for some i, then ξj
i should be zero from (2.16), and

this implies bj +
∑n

l=1 cj
l K(xl,xi) − yj

i = 0 from (2.15). The KKT conditions

categorize each component of f̂λ(xi) as one of three types, defining three dif-

ferent sets. To refer to the three sets of indices, we borrow the names from

Hastie et al. (2004) but slightly modify them as follows. Abbreviating f̂ j
λ(xi)

as f j
i , E = {(i, j)| f j

i − yj
i = 0, ξj

i = 0, 0 ≤ αj
i ≤ Lj

cat(i)}, an elbow set,

U = {(i, j)| f j
i − yj

i > 0, ξj
i > 0, αj

i = Lj
cat(i)}, an upper set of the elbow, and

L = {(i, j)| f j
i − yj

i < 0, ξj
i = 0, αj

i = 0}, a lower set of the elbow. Figure 2.1

depicts the jth component of the MSVM hinge loss (f j −yj)+ as a function of f j

with yj = −1/(k − 1). The elbow set E consists of indices of data points falling

on the soft margin of the MSVM solution, while the lower set L is associated

with non-support vectors.
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PSfrag replacements

fj−1/(k − 1)

Figure 2.1. MSVM component loss (f j − yj)+ where yj = −1/(k − 1).

3. Solution Paths

To describe how MSVM solutions in (2.2) change as a function of the reg-

ularization parameter λ, we begin with a very large value of the parameter at

which the initial set of dual variables αj is easily determined. Then a con-

structive algorithm is laid out for successive update of the dual minimizers as

λ decreases. From the relation between the coefficients and the dual variables,

cj = −(αj − ᾱ)/(nλ), cj = 0 as λ goes to ∞. So, only bj and αj need to be

initialized for a sufficiently large λ. For brevity, equal misclassification costs are

considered, where Lj′

j = I(j 6= j′). Generalization of the following to unequal

misclassification costs is straightforward.

3.1 Initialization

Let Ij be the index set of observations in class j and nj = |Ij|, the number

of instances in class j. Since initialization of bj and αj depends on which class is

the largest in terms of sample size, we define M = argmax nj and nM = max nj

first. Lemma 1 below is concerned with initialization when |M| = 1, that is,

there is a unique class with the maximum sample size, while Lemma 2 is for

|M| > 1. The results presented here subsume Lemma 1 and Lemma 2 in Hastie

et al. (2004) for the binary case.

Lemma 1. Suppose there is only one class j∗ with maximum sample size. For

a sufficiently large λ, bj = 1 if j = j∗, and −1/(k − 1) otherwise. α minimizes
k
∑

j=1

(αj − ᾱ)tK(αj − ᾱ) subject to

0 ≤ αj
i ≤ 1 for j 6= j∗and i /∈ Ij, (3.1)

αj∗

i = 1 for i /∈ Ij∗, (3.2)
∑

i α
j
i = n − nj∗ for j 6= j∗. (3.3)
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Proof. For a sufficiently large λ, the minimizer of (2.3) is a constant vector

(b1, . . . , bk), for which (2.3) is reduced to
∑k

j=1(n − nj)(b
j + 1/(k − 1))+ up

to a multiplicative constant. To minimize the objective function, note that all

the bj ’s need to be at least −1/(k − 1). Else the objective function can be

made smaller. Thus, it amounts to finding (b1, . . . , bk) minimizing
∑k

j=1(n −

nj)(b
j + 1/(k − 1)) =

∑

j 6=j∗(nj∗ − nj)b
j + n. Since this is a non-negatively

weighted sum of bj’s for j 6= j∗, the sum becomes smallest when bj = −1/(k − 1)

for j 6= j∗, and consequently bj∗ = 1 by the sum-to-zero constraint. The rest

follows from (2.12), (2.13) and (2.14) by observing the following three facts.

First, ξj∗

i = (bj∗ − yj∗

i )+ = k/(k − 1) for i /∈ Ij∗, thus αj∗

i = 1 satisfies the KKT

conditions of (2.15) and (2.16). Second, (2.14) is then restated as
∑

i α
j
i = n−nj∗

for all j. Third, as a result,
∑k

j=1(α
j)tyj = −1/(k − 1)

∑k
j=1

∑

i α
j
i is fixed at

−k/(k − 1)(n − nj∗).

Remark 1. The value of the primal objective function (2.5) for the initial b

is (n − nj∗)k/(k − 1) except for the multiplicative constant 1/n. Lemma 1 is

a generalized version of Lemma 2 for the unbalanced binary case in Hastie et

al. (2004).

Lemma 2. Suppose that there is more than one class in M = argmax nj. For a

sufficiently large λ, bj = −1/(k − 1) for j /∈ M, and bj ≥ −1/(k − 1) for j ∈ M

with
∑

j∈M bj = (k−|M|)/(k−1). α minimizes

k
∑

j=1

(αj − ᾱ)tK(αj − ᾱ) subject

to

0 ≤ αj
i ≤ 1 for j /∈ M and i /∈ Ij,

αj
i = 1 for j ∈ M and i /∈ Ij, (3.4)

∑

i α
j
i = n − nM for j /∈ M. (3.5)

Proof. By the same arguments used in the proof of Lemma 1, finding the mini-

mizer (b1, . . . , bk) of the primal objective function leads to searching (b1, . . . , bk)

that minimizes
∑

j /∈M(nM − nj)b
j + n with bj ≥ −1/(k − 1). Hence, bj =

−1/(k − 1) for j /∈ M and the remaining bj ’s are arbitrary except that they

satisfy
∑

j∈M bj = (k − |M|)/(k − 1) by the sum-to-zero constraint. From the

equality constraint on bj’s with j ∈ M, we infer that there is at least one j∗ ∈ M

such that bj∗ > −1/(k−1). Then the KKT conditions of (2.15) and (2.16) imply

that αj∗

i = 1 for i /∈ Ij∗ since ξj∗

i = (bj∗ − yj∗

i )+ > 0. However, by (2.14),
∑

i αj
i

should be the same for all j, which implies that αj
i = 1 for other j ∈ M and

i /∈ Ij to have the same sum of n−nM. This proves (3.4) and (3.5) in particular,

and the rest follows immediately.
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Remark 2. The value of (2.5) for the initial b in Lemma 2 is (n−nM)k/(k−1)
except for the multiplicative constant 1/n. In fact, Lemma 1 is a special case
of Lemma 2. Each bj with j ∈ M can be chosen to be (k/|M| − 1)/(k − 1) for
computational ease. If k classes are completely balanced, that is M = {1, . . . , k},
then αj

i = 1 for each j and i /∈ Ij. Again, Lemma 2 is a generalized version of
Lemma 1 for the balanced binary case in Hastie et al. (2004).

We start from λ sufficiently large but indefinite, which determines the limit
MSVM solution in the foregoing two lemmas, and decrease λ until non-trivial
solutions emerge. To find such a genuine starting value of λ and the corresponding
b, we consider two possible cases of the limit solution. First, αj

i ∈ {0, 1} for all j
and i /∈ Ij. For the completely balanced situation, that is the case. Unbalanced
class proportions may also lead to the first case. As λ decreases, α changes, but
with the restriction that the equality constraint (2.14) is satisfied. (2.14) states
that the sum of the Lagrange multipliers αj

i is the same across all j = 1, . . . , k.

Any change in α is bound to reduce αj
i with j ∈ M from 1 because the values

of such αj
i ’s in the limit solution are at their maxima. Consequently, this change

would reduce some αj
i with j /∈ M from 1 as well, by (2.14). Hence, some k

indices of αj
i , one from each j, should enter the elbow set E simultaneously. Note

that the lower set of the limit solution is empty. Letting Bj = {i| αj
i = 1} for

each j, we choose the data index ij∗ = argmini∈Bj Hj
i , where Hj

i = −
∑n

r=1(α
j
r −

ᾱr)K(xr,xi). These k indices are chosen to satisfy f j(x
ij∗

) = −1/(k−1), yielding
k equations that determine the initial λ and b.

Second, there could be two or more 0 < αj
i < 1 for some j /∈ M, by (3.3) and

(3.5). By the same logic as in the first case, any change in α would reduce αj
i

from 1 for other component(s) j with αj
i = 0 or 1 only. By Lemmas 1 and 2, there

is at least one component j ∈ M for which no data index falls into the elbow
set of the limit solution. In this case, αj

i for (i, j) ∈ E stays the same until other

components j without such index i have a point reaching the margin f j
i = yj

i .

A formal proof of this fact is given in the next section. As a result, αj
i strictly

between 0 and 1 will remain on the elbow set until each of the other component(s)
j has a data index in the elbow set. So if there is l such that 0 < αj

l < 1 for

j, we define ij∗ = l, otherwise ij∗ = argmini∈Bj Hj
i . Again, f j(x

ij∗
) = −1/(k − 1)

gives a set of k equations as follows. For j = 1, . . . , k,

bj −
1

nλ

n
∑

r=1

(αj
r − ᾱr)K(xr,xij∗

) = −
1

k − 1
and

k
∑

j=1

bj = 0.

Solving the equations, we have the initial λ and b in both scenarios:

λ =
k − 1

kn

k
∑

j=1

n
∑

r=1

(αj
r − ᾱr)K(xr,xij∗

) and (3.6)
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bj = −
1

k − 1
+

1

nλ

n
∑

r=1

(αj
r − ᾱr)K(xr,xij∗

). (3.7)

Since the above initial λ and b depend on ij∗ only through the value of H j
i , they

are uniquely determined regardless of the choice of ij∗ with the minimum Hj
i .

3.2. Characterizing Coefficient Paths

As seen in the previous initialization step, the elbow set permits explicit

equations of f j
i = yj

i for (i, j) ∈ E . Accordingly, this allows us to find some of the

Lagrange multipliers fully and determine the coefficients in (2.2). As a result,

our strategy for constructing the coefficient paths is to keep track of changes in

the elbow set. There are three types of events that can change the elbow set.

1. An index (i, j) leaves from E to join either L or U .

2. An index (i, j) from L enters E .

3. An index (i, j) from U enters E .

Continuity of the objective function (2.12) in λ implies that the minimizer α, as

a function of λ, changes continuously between consecutive values of λ at which

one of the above three events occurs, and so does the MSVM solution. Consider

{λ`, ` = 0, 1, . . . }, a decreasing sequence of λ starting from the initial value

in (3.6) and indicating the values at which some change occurs in E . In fact,

the sequence determines the break points of λ at which α can be completely

characterized. For λ`, denote the corresponding elbow, upper and lower sets by

E`, U`, and L` respectively. Letting αj
0 = nλbj, we write

f̂ j
λ(x) =

1

nλ

(

−

n
∑

i=1

(αj
i − ᾱi)K(xi,x) + αj

0

)

.

For λ`+1 < λ < λ`, we can express f̂ j
λ(x) in terms of an incremental change from

f̂ j
λ`

(x). Denoting αj
i at λ` by αj

i(`),

f̂ j
λ(x) =

[

f̂ j
λ(x) −

λ`

λ
f̂ j

λ`
(x)
]

+
λ`

λ
f̂ j

λ`
(x)

=
1

nλ

[

−

n
∑

i=1

(

(αj
i − αj

i(`))−(ᾱi−ᾱi(`))
)

K(xi,x)+(αj
0−αj

0(`))+nλ`f̂
j
λ`

(x)
]

=
1

nλ

[

−
∑

i∈∪jE
j

`

(

(αj
i −αj

i(`))−(ᾱi−ᾱi(`))
)

K(xi,x)+(αj
0−αj

0(`))+nλ`f̂
j
λ`

(x)
]

,

where Ej
` = {i| (i, j) ∈ E`} for each j. The last equality holds because αj

i = 0 or 1

for all j without any change from αj
i(`) if i /∈ ∪jE

j
` . For all (i, j) ∈ E`, f̂ j

λ(xi) = yj
i .
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Letting δj
0 = αj

0 − αj
0(`), δj

i = −(αj
i − αj

i(`)), δ̄i = −(ᾱi − ᾱi(`)) for i ≥ 1, and

EI
` = ∪jE

j
` , we have

f̂ j
λ(xi) =

1

nλ

[

∑

r∈EI

`

(

δj
r − δ̄r

)

K(xr,xi) + δj
0 −

nλ`

k − 1

]

= −
1

k − 1
,

which gives
∑

r∈EI

`

(

δj
r − δ̄r

)

K(xr,xi) + δj
0 =

n(λ` − λ)

k − 1
. (3.8)

Given any λ,
∑n

i=1 αj
i should be the same for all j and

∑k
j=1 bj = 0 by the sum-

to-zero constraint. This yields
∑

i∈E1

`
δ1
i = · · · =

∑

i∈Ek
`

δk
i and

∑k
j=1 δj

0 = 0. As

a result, these k constraints and (3.8) provide a set of |E`|+ k equations to solve
for |E`| + k unknowns if all the k elbow sets E j

` are non-empty. To re-express

(3.8) conveniently in a vector notation, let mj = |Ej
` | and ij1, . . . , i

j
mj denote the

mj data indices in E j
` . Now we define δ0 = (δ1

0 , . . . , δk
0 )t and δ = (δ1, . . . , δk)t

with δj = (δ
ij
1

, . . . , δ
ijmj

). Note that (3.8) depends only on δ0 and δ since δj
i = 0

for all (i, j) /∈ E`. K∗
` = [K∗

lj] is the square block matrix of |E`| = m1 + · · · + mk

rows and columns, whose ljth block (l, j = 1, . . . , k) is given by

K∗
lj =

(

I(l = j) −
1

k

)









K(x
ij
1

,xil
1

) . . . K(x
ijmj

,xil
1

)

...
. . .

...

K(x
ij
1

,xilml
) . . . K(x

ijmj

,xilml
)









.

Also, define

1δ =











et
m1

−et
m2

0 . . . 0

0 et
m2

−et
m3

0
...

. . .
. . .

...

0 . . . 0 et
mk−1

−et
mk











and 10 =











em1
0 . . . 0

0 em2
0

...
. . .

...

0 . . . 0 emk











,

where em is the vector of m ones and 0 indicates a vector of zeros of appropriate
length. Then, (3.8) and the constraints are succinctly expressed as





0 et
k

K∗
` 10

1δ 0





(

δ

δ0

)

=







0
n(λ`−λ)

k−1 e|E`|

0






. (3.9)

Letting A` be the square matrix on the left-hand side of (3.9), and vt
` = (0, et

|E`|
,

0), we solve for δ0 and δ. If A` is invertible,
(

δ

δ0

)

=
n(λ` − λ)

k − 1
A−1

` v`.



CHARACTERIZING THE MSVM SOLUTION PATH 401

Abbreviating A−1
` v` by w`, we have

α0 − α0(`) = n(λ` − λ)/(k − 1)w0 and

αj
i − αj

i(`) = n(λ − λ`)/(k − 1)wj
i for (i, j) ∈ E`, (3.10)

where w0 is the last k elements of w` and wj
i is the element of w` corresponding

to δj
i . This shows that the scaled intercepts and the Lagrange multipliers in the

elbow set change linearly in λ on the interval (λ`+1, λ`). Rescaling them properly

by nλ to obtain equations for the coefficients, we have

b =
λ`

λ

(

b` +
1

k − 1
w0

)

−
1

k − 1
w0 and (3.11)

cj
i =

λ`

λ

(

cj
i(`) +

wj
i − w̄i

k − 1

)

−
wj

i − w̄i

k − 1
. (3.12)

Here w̄i = (1/k)
∑

j wj
i and the summation is only over j’s with (i, j) ∈ E`. This

proves the following theorem concerning piecewise linearity of the paths of the

coefficients b and C.

Theorem 1. If there is at least one data index in the elbow set E` at λ` for

each j, then the coefficient path of the MSVM is linear in 1/λ on the interval

(λ`+1, λ`).

Likewise, the jth coordinate of the MSVM output has a path linear in 1/λ:

f̂ j
λ(x) =

λ`

λ

(

f̂ j
λ`

(x) − ĝj
λ`

(x)
)

+ ĝj
λ`

(x), (3.13)

where ĝj
λ`

(x) = −
(

∑

i∈EI

`
(wj

i − w̄i)K(x,xi) + wj
0

)

/(k − 1). ĝj
λ`

(x) is pivotal to

f̂ j
λ(x) in the sense that f̂ j

λ(x) can be expressed as a scaled f̂ j
λ`

(x), once both are

pivoted on ĝj
λ`

(x).

So far, we have discussed how the MSVM solution path is explicitly char-

acterized as a function of λ when the elbow set E j
` for each j is not empty. If

there is at least one empty elbow set E j
` at λ = λ`, then the constraints used in

the previous characterization need to be modified. The constraint that the sum

of αj
i should stay the same for all j now becomes

∑

i∈Ej

`

δj
i = 0 for each non-

empty elbow set E j
` . We eliminate the component(s) corresponding to the empty

Ej
` from δ0 and the corresponding column(s) from 10, and denote the resulting

vector and matrix by δ∗
0 and 1∗

0, respectively. Then (3.9) is adjusted by taking

into account the presence of some empty elbow set(s):

(

K∗
` 1∗

0

1∗
0
t 0

)(

δ

δ∗
0

)

=

(

n(λ`−λ)
k−1 e|E`|

0

)

. (3.14)
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Assuming that K∗
` is of full rank, we solve for δ and δ∗

0. Due to the simple

structure of the block matrix on the left-hand side, its inverse can be easily

written out to give the explicit solution of δ = 0 and δ∗
0 = n(λ` − λ)/(k − 1)ek∗,

where k∗ is the number of non-empty elbow sets E j
` . This yields

cj
i =

λ`

λ
cj
i(`) for (i, j) ∈ E` and

bj =
λ`

λ

(

bj
` +

1

k − 1

)

−
1

k − 1
for non-empty E j

` .

When there is more than one empty E j
` , δj

0’s for the empty sets are not uniquely

determined other than that they are constrained to satisfy
∑

j δj
0 = 0. In practice,

a linear path can be chosen for such bj corresponding to the empty elbow sets,

for convenience. Theorem 1 and the following result give the desired conclusion:

the solution path of the MSVM is piecewise linear.

Theorem 2. If there is only one empty elbow set E j
` at λ`, then the coefficient

path of the MSVM is linear in 1/λ on the interval (λ`+1, λ`). If there is more

than one empty elbow set, then the coefficient path is still linear in 1/λ except

that the path of bj for the empty E j
` can be arbitrary.

4. Computation

We show here how to generate the decreasing sequence of {λ`, ` = 0, 1, . . . }

that determines the joints of the piecewise linear MSVM solution path. Given

λ`, we find λ`+1 by considering the following possible events.

1. An index (i, j) in E` leaves the elbow set, and αj
i (0 ≤ αj

i ≤ 1) becomes either

0 or 1.

2. An index (i, j) in L` or U` joins the elbow set, and f̂ j(xi) is then yj
i .

When the first type of event happens, a candidate λ`+1 is obtained by setting αj
i

at (3.10) to 0 or 1. For the second type of event, set the left-hand side of (3.13)

to yj
i and consider

λ`+1 =
λ`(f̂

j
λ`

(xi) − ĝj
λ`

(xi))

yj
i − ĝj

λ`
(xi)

.

The next break point λ`+1 is determined by the largest λ < λ` among the po-

tential candidate values.

If there is at least one empty elbow set E j
` at λ`, then the αj

i in non-empty sets

stay the same until the next event occurs, as discussed in Section 3. The ensuing

event that changes the elbow set is of the second type in this case, and specifically

it is the event that a point for each j with empty E j
` hits the margin f̂ j(xi) = yj

i
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simultaneously. Such a point for each empty elbow set E j
` is determined via the

same argument as in the initialization process. Thus, the corresponding λ`+1 is

identified by (3.6).

We stop the process and trace out the solution path if the upper set U` is

empty, since the empirical risk functional at λ` is zero in this case, completely

overfitting the data. As λ gets smaller, the upper sets are bound to become

empty in separable problems. For non-separable problems, monitoring change in

the solutions at consecutive break points can shorten the procedure. Inspection

of (3.13) provides a rule that stops at λ` if maxj(1/n)
∑n

i=1 |f̂
j
λ`

(xi)−ĝj
λ`

(xi)| < ε,

where ε denotes a prespecified tolerance for declaring no change between succes-

sive solutions.

From a practical point of view, early stopping may be desired if one does not

attempt to find the entire solution path, but wishes to keep track of solutions

only until λ gets small enough to be in the vicinity of theoretically optimal

values of the least error rate. As a related issue, it is worth noting that the

computational cost of characterizing the MSVM solution path essentially lies in

solving a system of equations with at most |E`| + k unknowns at each λ`. As λ

decreases, the cardinality of the elbow set E` tends to increase, an example of

which is to be shown shortly. This is another motivation for devising an early

stopping rule. The idea of early stopping presupposes a reasonable data-driven

measure of predictive accuracy of the solution at λ`. Such a measure helps

us judge whether the optimal value of the regularization parameter has been

attained or not. If attained, then we stop without completing the entire path.

The computational complexity of the path finding algorithm is proportional

to the number of break points λ`. At each break point, a system of linear equa-

tions needs to be solved. In general, solving a system of linear equations with m

unknowns takes O(m3) operations, but it can be reduced to O(m2) in this case

due to an incremental change in the successive linear equations. For determining

the next break point, evaluation of f̂ j
λ`

and ĝj
λ`

at n data points needs to be

done, which takes O((k−1)n|EI
` |) operations. The effect of the class size k is felt

throughout the computation in that |E`|, the intermediate function evaluations,

and the number of break points tend to increase in proportion to (k − 1) when

compared to the binary case.

5. A Numerical Example

To illustrate the algorithm characterizing the MSVM solution path, we con-

sider a simulated three-class example. The simulation setting is as follows. For

Class 1, two covariates X = (X1, X2) are generated from a normal distribution

with mean (3, 0). For Class 2, X comes from a mixture of two normal distribu-

tions with mean (0, 3) and (1, 1), respectively. The mixing proportion is 0.5. For



404 YOONKYUNG LEE AND ZHENHUAN CUI

Class 3, X has a normal distribution with mean (−1, 1). For all three classes, X1

and X2 are independent and have variance 1. A training data set of size n = 300

was generated from the specified distributions with nj = 100 for each class. The

left panel of Figure 5.2 depicts the training data denoted by circles (Class 1 in

green, 2 in magenta, and 3 in blue) in a scatter plot, as well as the theoretically

optimal classification boundaries. A Monte Carlo estimate of the Bayes error

rate of this example was approximately 0.1773 with standard error 0.007 based

on a test data set of size 3,000 with 1,000 cases from each class. The MSVM

with the Gaussian kernel K(s, t) = exp(−γ‖s−t‖2) was applied to the simulated

data, and the entire solution path was traced. Here the additional parameter γ

was fixed at 1.
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Figure 5.2. Left: the boundaries of the Bayes classification rule in a scatter

plot of the training data. Right: the classification boundaries determined by

the MSVM at an appropriately chosen λ; Class 1: green, Class 2: magenta,

and Class 3: blue.

Figure 5.3 shows how the test error rates, when evaluated over the test

set, change as the regularization parameter λ varies. Notice that the x-axis is

log(1/λ), so λ decreases in the positive direction of x. As λ decreases from

the initial value, the test error rates get smaller, reach the minimum around

log(λ) = −6, and begin to increase soon after that, clearly demonstrating that

the choice of λ is critical to the performance of the solution. Note that the test

error rate curve in the figure was cropped to show a portion of the full range

of λ, since the test error rates rise up sharply as λ approaches the smaller end.

The minimum error rate achieved by the MSVM classifier was about 0.1743 at
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log(λ) ≈ −5.886. This illustrates that the MSVM equipped with a flexible kernel

can achieve theoretically optimal accuracy if λ is chosen appropriately. The right

panel of Figure 5.2 shows the classification boundaries induced by the MSVM

solution at this optimal λ.
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Figure 5.3. Test error rate as a function of λ.

In practice, we have to face the problem of choosing the regularization pa-

rameter in the absence of test cases. Data-driven tuning is in itself a long standing

research topic, and we will not delve into the issue here. General approaches to

tuning, equivalently model selection, can be found in, for example, Efron (1986)

and Wahba (1990). Just for illustration of the feasibility of tuning, 100 new data

sets of size 300 were generated as random replicates of a tuning set, and λ was

chosen to minimize the error rate over each tuning set. Figure 5.4 shows an

estimated density curve of such λ̂’s. Bimodality of the distribution is discernible,

perhaps due to the presence of multiple dips in the test error rate plot of Figure

5.3. The mean of the test error rates at tuned λ̂’s values was 0.1815 with stan-

dard deviation of 0.00525. The mean is slightly larger than the Bayes error rate

of about 0.1773, but reasonably close to it.

The length of the solution path we monitor, or simply the number of break

points of λ, depends on the stopping criterion used. The rule adopted in this

implementation of the algorithm does not consider the two stopping criteria dis-

cussed in Section 4 only, but also employs a preset lower bound of λ and a max-

imum number of break points, which could be rather arbitrary but nonetheless

useful in practice. Whichever criterion is met first, the algorithm stops. Based

on the current working rule, the preset lower bound of λ was reached first before

any other criteria for this example, and there were 3014 breaking points of λ.
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Figure 5.4. An estimated density function of the optimal parameters λ̂

chosen by 100 tuning sets of sample size 300.

Availability of the entire solution path allows us to visualize the effect of the

regularization parameter on the MSVM solution from various angles. For ex-

ample, Figure 5.5 depicts the complete paths of f̂1
λ(xi), f̂2

λ(xi), and f̂3
λ(xi) for

the isolated instance from Class 3 (blue) in the top left region. The paths start

off at the initial solution of (0, 0, 0), begin to diverge for a better fit to the data

as λ decreases, returning Class 2 as the predicted class for moderate values of

λ. As λ further decreases, the solution paths tend to follow the data too closely

and f̂3
λ(xi) emerges as the maximum component. This is a snapshot of the spec-

trum of solutions ranging from the least to the most complete fit to the data as

controlled by λ.
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Figure 5.5. The entire paths of f̂1
λ(xi), f̂2

λ(xi), and f̂3
λ(xi) for an outlying

instance xi from Class 3. The circles correspond to λ with the minimum

test error rate.
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As mentioned before, the computational complexity of the proposed algo-

rithm depends on the size of elbow set at each λ`, and the elbow size is bound to

increase as λ gets smaller. Figure 5.6 shows how the size of elbow set changes as

a function λ for each class. The median sizes of elbow sets were 39, 30 and 30 for

Classes 1, 2 and 3, respectively, while the maximum elbow sizes were 68, 51 and

61. Around the optimal value of λ, roughly 40 to 50% of data points were in the

elbow set for this example. It is interesting to observe that the rate of increase in

the size of each elbow set E j
` is almost constant until λ reaches the optimal value

around exp(−6), and it becomes smaller soon after that, then remains almost

constant. It would be desirable to have a theoretical explanation for this, for this

might help us devise an early stopping rule.
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Figure 5.6. The size of elbow set E j
` for three classes as a function λ.

6. Discussion

It is conceptually attractive to have the whole solution path in perspective,

and it is computationally effective to construct the path sequentially with the

basic operation of solving a system of linear equations. Another type of a reg-

ularization problem, which may well benefit from the idea, is feature selection

via an l1 type penalty imposed on rescaling factors of features, in addition to

the squared norm penalty for the maximal geometric margin. For example, such

a sparse solution approach to feature selection for the MSVM is described in

Lee, Kim, Lee and Koo (2004) by using functional ANOVA decomposition. Be-

sides λ, there is another regularization parameter λθ in the setting that governs

the sum of non-negative weights θν assigned to each feature xν . The sum of θν

is closely tied to the model complexity of the number of features present in each

model. In this case, the entire spectrum of models embraces the simplest model

of a constant function to the least regularized one with all the features regard-

less of their relevance to prediction of y. It is particularly enticing to overlook
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how the features get in and out of the current model along the path, in con-

junction with the prediction accuracy of the the current model. This complete

picture of a model path enables us to understand the data better, and especially

it helps us to find out multiple good descriptions of sparse data. We remark

here that this approach is closely related to the least angle regression proposed

by Efron, Hastie, Johnstone and Tibshirani (2004) for variable selection in mul-

tiple linear regression, despite the notable difference between the two settings.

We also note in passing that for the special case of an l1-norm linear MSVM,

Wang and Shen (2005) recently studied an algorithm to construct the solution

path for simultaneous fitting and feature selection.

Another direction of interest is the investigation of model selection issues that

the generation of the solution path entails. As mentioned before, it would be ideal

to incorporate a reliable estimate of the performance of the current solution over

unseen data with the fitting algorithm, and instantly evaluate the generalization

ability of each solution at hand as the path evolves. Monitoring such a measure

would facilitate early stopping if desired. Given a solution, a model selection

criterion with little added computational cost would be much preferable in this

case. Related directions that we plan to pursue include comparison of a variety of

old and new model selection criteria, the design of working rules for early stopping

without sacrificing the optimal performance, approximation of solutions by basis

thinning, and further streamlining of the fitting process. For careful examination

of these issues, a comprehensive numerical study is to be carried out, completion

of which would result in a useful and effective data analysis tool for practitioners.
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