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Abstract: The Bayes factor is a popular criterion in Bayesian model selection. Due

to the lack of symmetry of the prior predictive distribution of Bayes factor across

models, the scale of evidence in favor of one model against another constructed

based solely on the observed value of the Bayes factor is thus inappropriate. To

overcome this problem, a novel calibrating value of the Bayes factor based on the

prior predictive distributions and the decision rule based on this calibrating value

for selecting the model are proposed. We further show that the proposed decision

rule based on the calibration distribution is equivalent to the surprise-based de-

cision. That is, we choose the model for which the observed Bayes factor is less

surprising. Moreover, we demonstrate that the decision rule based on the calibrat-

ing value is closely related to the classical rejection region for a standard hypothesis

testing problem. An efficient Monte Carlo method is proposed for computing the

calibrating value. In addition, we carefully examine the robustness of the decision

rule based on the calibration distribution to the choice of imprecise priors under

both nested and non-nested models. A data set is used to further illustrate the

proposed methodology and several important extensions are also discussed.
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1. Introduction

Let y denote the data and let M1 and M2 be two competing models. Then

the Bayes factor, B(y), is one of the most popular criteria in selecting which of

models M1 and M2 fit the data better. The Bayes factor can be interpreted as

the strength of the evidence favoring one of the models for the given data. In

fact, the Bayes factor is strongly related to the posterior probabilities of models

M1 and M2, and hence its interpretation is straightforward. Jeffreys (1961) and

Kass and Raftery (1995) have proposed the rules to determine the strength of

evidence which can be associated with the observed value of the Bayes factor.

On the other hand, before the data are taken, the Bayes factor, B(Y ), is

a random variable, and its distribution follows that of Y . Then the sampling

properties of the Bayes factor can be examined under each of the two models
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under consideration. Once the data Y = y are obtained, these properties can

be used to measure the agreement between each of the two models and the data.

According to this measure a decision can be made about the goodness-of-fit of

each of the models. Thus, it is not appropriate to treat the Bayes factor as fixed

once the data is observed due to uncertainty in the random sample. In particular,

when the amount of uncertainty is large, the data, which are observed at the

different time points but from the same distribution model, could lead to very

different observed values of the Bayes factor. In addition, the decision rule that

compares the observed Bayes factor to a predetermined value, called a “critical

value”, independent of the sampling distribution of the Bayes factor, can be

misleading since the sampling distribution depends on the models being compared

and the priors involved in deriving the posterior distributions. Therefore, it is

important to calibrate the Bayes factor to take account of the randomness of

the data. In fact, the idea of calibration is quite natural and appealing, since

it is analogous to the classical testing hypotheses, in which the decision rule

is established based on the sampling distribution of the testing statistic. The

sampling arguments in selecting the model have been extensively used in the

literature, sometimes under the name P-values (Meng (1994) and Bayarri and

Berger (2000)) and on other occasions under the name measures of surprise

(Bayarri and Berger (1999)). Usefulness in many contexts is not suspect. In this

paper, from the calibration point of view, we propose a new decision rule based

on the sampling distribution of the Bayes factor. This rule has some interesting

properties, and hence can be considered a serious alternative to other traditional

default rules which are based purely on the observed Bayes factor. More detailed

discussion regarding this issue is in Section 4.2.

The use of the sampling distribution has been considered in other situations.

Box (1980) considered the prior predictive probability of the observed marginal

likelihood as a measure for “an overall predictive check” under the model being

entertained. Ibrahim, Chen and Sinha (2001) used this approach to calibrate

a Bayesian criterion, called the L measure, for model assessment and model

comparison. There the prior predictive distribution of the L measure statistic

under the true model is defined to be the calibration distribution. We borrow

this term to denote the prior predictive distribution of the Bayes factor under

each of the two competing models.

In this paper, the properties of the calibration distribution of the Bayes

factor under each model are studied in detail. We observe that the calibration

distribution is far from being symmetric across models. Moreover, this asymme-

try depends on the models being compared. As a consequence, a decision rule

for determining the strength of evidence based only on the observed value of

the Bayes factor is problematic. This problem is also mentioned in Vlachos and
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Gelfand (2003). In addition, it is well known that the Bayes factor depends on

the choice of the prior distribution and, in particular, it is extremely sensitive to

imprecise priors.

We propose a novel calibrating value of the Bayes factor based on the prior

predictive distributions and then develop the decision rule, based on this cali-

brating value, for selecting the model. The calibrating value is motivated by the

principle of prior equity and it is computed based on the calibration distributions

of the Bayes factor under both models. As we will show, the calibration distri-

bution of the Bayes factor is biased toward the model under which the Bayes

factor is being calibrated. We also show that the proposed decision rule based on

the calibration distributions is, under mild conditions, equivalent to the surprise-

based decision. That is, we choose the model for which the observed Bayes factor

is less surprising. Moreover we demonstrate that, in certain situations, the deci-

sion rule based on the calibrating value is closely related to the classical rejection

region for a standard hypothesis testing problem, and the equivalent classical

rejection region is quite robust to the choice of imprecise priors.

The rest of the paper is organized as follows. Section 2 deals with motivation

and introduces the notation used throughout. The main results are presented

in Section 3. In the same section, a new calibrating value is proposed, and the

theoretical properties of calibration distributions for the Bayes factor are exam-

ined in detail. Also in Section 3, a new decision rule based on the calibrating

value is proposed. In Section 4, we explore the properties of the proposed cali-

brating value and establish the relationship between the new decision rule and

the classical rejection region. In addition, we discuss the relationship between

the proposed calibration and the prior model probabilities and we develop a

Monte Carlo-based algorithm for computing the calibrating value. In Section 5,

we further examine the robustness of the decision rule based on the calibration

distribution under both nested and non-nested models. An example using the

radiate pine data is given in Section 6 and several related issues and important

extensions of the proposed methodology are discussed in Section 7.

2. Motivation and Notation

Assume we are interested in comparing two models, M1 and M2, say, as con-

venient statistical representation of some data y. Let pi(y | θi) and πi(θi) denote

the probability function and the (proper) prior distribution, respectively, under

model Mi, for i = 1, 2. Also, let mi(y) denote the prior predictive distribution

under model Mi, that is,

mi(y) =

∫

pi(y | θi)πi(θi) dθi, i = 1, 2.
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In the context of hypothesis testing, the selection between these two models

can be expressed as

H1 : M1 is true, vs. H2 : M2 is true. (1)

Given the observed data, y, the Bayes factor for M1 against M2 is B12(y) =

m1(y)/m2(y). It is often not available in closed form. Therefore, numerical

or Monte Carlo approximations are needed. Due to recent computational ad-

vances, sophisticated techniques for computing Bayes factors have been devel-

oped. See, for example, Kass and Vaidyanathan (1992), Chib (1995), Meng and

Wong (1996), Chen and Shao (1997), DiCiccio, Kass, Raftery and Wasserman

(1997), Gelman and Meng (1998) and Chib and Jeliazkov (2001).

Note that, if B12(y) > 1, then y is best predicted by M1 and consequently,

this model is preferred. Of course, using similar arguments, B12(y) < 1 gives

support to model M2. Several different ways have been proposed to interpret

the strength of evidence according to B12(y). Jeffreys (1961) proposed the rule

given in Table 1 and, more recently, Kass and Raftery (1995) proposed a slight

modification of Jeffreys’ proposal as shown in Table 2. Although these rules are

given in terms of evidence against M2, the same rule (at least in principle) can

be used to interpret the evidence against M1 by inverting the value of the Bayes

factor.

Table 1. Jeffreys’ scale of evidence.

B12 ∈ Evidence against M2

(1,3.2) Not worth more than a bare mention

(3.2,10) Substantial

(10,100) Strong
(100,∞) Decisive.

Table 2. Scale of evidence proposed by Kass and Raftery (1995).

B12 ∈ Evidence against M2

(1,3) Not worth more than a bare mention
(3,20) Positive

(20,150) Strong

(150,∞) Very strong.

Prior to the sample, the Bayes factor is a function of the random vector

Y . The sample distribution of B12(Y ) under model Mi is defined by mi(·),
the marginal prior distribution of Y under Mi. To investigate whether the above

mentioned scale of evidence can be interpreted under the calibration distribution,
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we use an elementary example below, also considered by Vlachos and Gelfand

(2003).

Example 1. Suppose y1, . . . , yn is a sample from model Mi (i = 1, 2), where

M1 is N(θ0, σ
2) with θ0 and σ2 known, and M2 is N(θ, σ2) with θ ∼ N(0, τ 2),

and again assume σ2 and τ2 are known. The sampling distribution of the Bayes

factor is related to the chi-square distribution (under both models), and the

characteristics, such as means and tail probabilities, of this distribution can be

easily calculated. As an illustration, let n = 20, θ0 = 0, σ2 = 1 and τ 2 = 5. After

some simple algebra, the Bayes factor can be expressed as

B12 = exp

{

1

2

(

ln (1 + a) − na

σ2(1 + a)
ȳ2
)}

,

where a = nτ 2/σ2. It is easy to observe that the range of B12 is (0, (1 + a)1/2).

Figure 1 shows the density of B12(Y ) under M1 (left) and under M2 (right).

\
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Figure 1. Densities of B12(Y ) under M1 (left) and under M2 (right).

Based on the scale of evidence in Table 1, the probability of (at least) strong

evidence against M2 if M1 is the true model is 0.08. But, the probability of (at

least) strong evidence against M1 if M2 is the true model is 0.76. Thus, if the

sampling distribution of Y is considered, the original B12(y) for fixed data is no

longer proper and calibration is needed.

Next, we discuss what would happen if we want to select only one model.

Suppose that, as usual, we decide to select M1 if B12(y) > 1 and select M2

otherwise. The probability of selecting M2 given that M1 is true is 0.03, and the

probability of selecting M1 given that M2 is true is 0.17. According to this, it

is more likely to make a mistake in selecting M1 than M2. Note that these two

probabilities are closely related to the type II error (or to the power function)

probabilities in a frequentist sense. Nevertheless, in the Bayesian framework it is

possible to evaluate both errors, which is often more difficult from the frequentist

point of view.
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According to the Example 1, and in judicial terms, the Bayes factor is a

judge predisposed in favor one of the models if the scale of evidence given either

in Table 1 or Table 2 is used. Since the calibration distribution of the Bayes

factor is asymmetric, a symmetric scale of evidence should not be used. Here

B12 ≈ 10 (ȳ ≈ 0) would provide evidence supporting M1 comparable to evidence

supporting M2 if B12 ≈ γ where Pr(B12 ≤ γ |M2) = Pr(B12 ≥ 10 |M1) = 0.08.

Note further that the median of the calibration distribution of B12(Y ) under M1

is 8, while the median of B21(Y ) under M2 is e20.44. A 50% credible interval

for B12(Y ) under M1 is (5.22, 9.56), while the same interval for B21(Y ) under

M2 is (15.94, e63.86). Moreover, the 90% credible intervals are (1.50, 10.03) and

(0.12, e189.77), respectively. It is clear that the distribution of B21(Y ) underM2 is

very flat, which implies that almost every value of B12 is equally possible. Thus,

at least for this example, there is severe asymmetry in the strength of evidence

between these two calibration distributions. This asymmetry casts doubt on the

use of a predetermined scale for measuring the strength of evidence solely based

on the value of the Bayes factor. Furthermore the use of a critical value, such as 1,

of the Bayes factor for determining which model is more favorable is particularly

problematic. We propose a new calibrating value of the Bayes factor, as well as

new decision rules which generically combine the calibration distributions and

the observed value of the Bayes factor, in the next section.

3. Main Results

Surprise measures are usually related to the notion of a P-value. To see how

this kind of measure can be related to the Bayes factor, write

pL
i = Pr(B12(Y ) ≤ B12(y) |Mi) and pR

i = Pr(B12(Y ) ≥ B12(y) |Mi),

where Pr(· | Mi) stands for the prior predictive distribution of B12(Y ) under

model Mi for i = 1, 2. Also define p∗i = pL
i if B12(y) ≤ 1 and p∗i = pR

i if

B12(y) > 1. Finally, let pi = min{pL
i , p

R
i }. We note that pi is a two-sided P-

value of the Bayes factor B12 under model Mi. We also note that Vlachos and

Gelfand (2003) considered a one-sided P-value as the surprise measure. In the

context of surprise measures, the values pi are of major interest.

In advance, we assume that the variable B12(Y ) has a continuous distribution

mi(·) for i = 1, 2. Obviously, pL
i = 1 − pR

i .

Lemma 1. B12(y) > 1 if and only if p∗1 > p∗2.

Proof. Assume first that B12(y) > 1. Note that p∗i =
∫

A(B12(y)) mi(t) dt where

A(B12(y)) = {t ∈ Y : B12(t) ≥ B12(y)} and where Y denotes the set of all
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possible values for y. Note that if t ∈ A(B12(y)), then

m1(t)

m2(t)
≥ m1(y)

m2(y)
= B12(y) > 1,

and for all t ∈ A(B12(y)), m1(t) −m2(t) > 0, so p∗1 − p∗2 > 0.

We proceed by contradiction in the other direction. Assume that p∗1 > p∗2, but

B12(y) ≤ 1. Then, p∗1 − p∗2 =
∫

Ā(B12(y)) (m1(t) −m2(t)) dt, where Ā(B12(y)) =

{t ∈ Y : B12(t) ≤ B12(y)}. Note that if t ∈ Ā(B12(y)),

m1(t)

m2(t)
≤ m1(y)

m2(y)
= B12(y) ≤ 1,

and then (similar to above), p∗1 − p∗2 ≤ 0 which contradicts p∗1 > p∗2.

Unfortunately, Lemma 1 cannot ensure that a large value of the Bayes factor

corresponds to a large two-sided P-value pi, since pi may not be equal to p∗i in

general. Moreover, it is straightforward to see that B12(y) > 1 cannot guarantee

p1 > p2. Nevertheless, Lemma 1 is useful since it implies that the calibration

distribution cannot be used to resolve Lindley’s paradox. In short, Lindley’s

paradox says that in Example 1, if we use an imprecise prior for θ under model

M2, the Bayes factor will tend to favor M1 regardless of y. In Example 1,

Lindley’s paradox says limτ2→∞B12(y) = ∞. In this situation, it can be assumed

that B12(y) is large enough to ensure that pi = p∗i and, using Lemma 1, p1 > p2.

Hence M1 is preferred over M2 if an imprecise prior (τ 2 large enough) is used.

Definition 1. If c is nonnegative and Pr(B12(Y ) ≥ c |M2) = Pr(B12(Y ) ≤ c |
M1), it is called the calibrating value.

The following theorem shows the existence and uniqueness of the calibrating

value c.

Theorem 1. Assume that mi(y) > 0 for all y. Then, there exists a unique c so

that

Pr(B12(Y ) ≥ c |M2) = Pr(B12(Y ) ≤ c |M1). (2)

Proof. Let fB|i(b) be the density function of B12(Y ) under model Mi evaluated

at b. Also let FB|i(b) denote the cumulative distribution function of B12(Y )

under model Mi evaluated at b. Now (2) can be expressed as
∫∞
c fB|2(b) db =

1 −
∫∞
c fB|1(b) db or, equivalently, FB|2(c) + FB|1(c) = 1. Since g(·) = FB|2(·) +

FB|1(·) is continuous and strictly increasing in [0,∞) with limb→∞ g(b) = 2 and

limb→0 g(b) = 0, the result follows.
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Figure 2. Densities of B12(Y ) under M1 (dashed line) and under M2 (solid line).

As an illustration, the calibrating value is plotted in Figure 2 for Example 1.

The value c is 3.08, which makes the black (M2) and gray (M1) areas equal. Note

that c can be considered as a balanced value so that the error probabilities under

models M1 and M2 are equal if c is taken to be the critical value: we choose M1

if B12(y) is greater than or equal to this value, and we choose M2 otherwise. As

we will show, this value can be used to develop a new decision rule for model

selection based on the observed value of the Bayes factor.

Suppose we follow the rule that we select M1 if B12(y) > 1. Then if the

c > 1, the rule based on B12(y) > 1 is biased to M1, i.e., the error probability

under M1 is less than that under M2. On the other hand, if c < 1, this rule

is biased to M2. In Example 1, c ≈ 3.08. If we use the c as the critical value,

then both error probabilities are the same, namely 0.12. It is interesting to note

that this tendency of favoring the simpler model increases with the sample size.

If σ = 1, θ0 = 0, τ2 = 5 (as before) but n = 200, then c ≈ 4.60 and the error

probabilities decrease (as expected) to 0.05.

Theorem 2. Let µ1 (assuming it exists) and µ2 be the means of the calibration

distributions of B12(Y ) under model M1 and M2 respectively. Then µ2 = 1 ≤ µ1.

Proof. Note that

µi =E(B12(Y ) |Mi)=E(m1(Y )/m2(Y ) |Mi)=

∫

m1(t)mi(t)/m2(t)dt, i=1, 2.

It is clear that µ2 = 1. To prove the inequality, note that since the function

g(B) = 1/B is convex if B > 0, Jensen’s inequality gives µ1 = E(B12(Y ) |
M1) ≥ [E(1/B12(Y ) |M1)]

−1 = 1.

Thus the calibration distribution of Bayes factor is biased toward the model

under which the Bayes factor is calibrated. The next theorem characterizes the

relationship between the medians of the two calibration distributions.
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Theorem 3. Let ξi be the median of the calibration distribution of B12(Y ) under

model Mi, for i = 1, 2. Then ξ2 ≤ ξ1.

Proof. Assume first that ξ1 ≥ 1, then Pr(B12(Y ) ≥ ξ1 | M1) = 0.5, or equiv-

alently
∫

A(ξ1) m1(t) dt = 0.5, where A(ξ1) = {t ∈ Y : B12(t) ≥ ξ1}. Note

that if t ∈ A(ξ1) then m1(t) ≥ ξ1m2(t) ≥ m2(t), so 0.5 =
∫

A(ξ1) m1(t) dt ≥
∫

A(ξ1) m2(t) dt, and, in consequence, Pr(B12(Y ) ≥ ξ1 | M2) ≤ 0.5 and ξ2 ≤ ξ1.

The proof is similar when ξ1 < 1.

A direct consequence of Theorem 3 and the definition of c is that ξ2 ≤ c ≤ ξ1.

Hence the probabilities in (2) cannot exceed 0.50.

Unlike the means of the calibration distributions, it may not be always true

that ξ2 ≤ 1 ≤ ξ1. However, this condition is crucial in order to establish the

relationship between P-values and the observed value of the Bayes factor.

Definition 2. We say that models M1 and M2 are enough separated a priori, if

ξ2 ≤ 1 ≤ ξ1.

To get an idea about how much the two models can be close to each other

so that the condition given in Definition 2 is not satisfied, we revisit Example 1.

Example 1.(continued) For ease of exposition, we assume that θ0 = 0. Then

for τ2 small M2 approximates M1. How small can τ 2 be so that the condition in

Definition 2 does not hold? It can be shown that τ 2 must be less than 0.15 in

order that the condition of enough separation a priori does not hold.

Theorem 4. For selecting between models M1 and M2, let c denote the calibrat-

ing value and suppose that these two models are enough separated a priori. Then

B12(y) > c if and only if p1 > p2.

Proof. Suppose first that B12(y) > c. Since Theorem 3 holds, there are only

two cases to consider:

Case 1. B12(y) > ξ1. In this case, it is easy to show that pi = p∗i , i = 1, 2.

Moreover, since B12(y) > ξ1 ≥ 1, then following Lemma 1, p∗1 > p∗2,

so p1 > p2.

Case 2. c < B12(y) ≤ ξ1. In this case, it is straightforward to see that p1 = pL
1

and p2 = pR
2 , while pR

2 < Pr(B12(Y ) ≥ c | M2) = Pr(B12(Y ) ≤ c |
M1) < pL

1 , so p1 > p2.

We prove the other direction by contradiction. Suppose that p1 > p2, but

B12(y) ≤ c. Since Theorem 3 holds, there are only two cases to consider.

Case 3. B12(y) ≤ ξ2. In this case pi = p∗i , i = 1, 2. Moreover, since B12(y) ≤ ξ2
≥ 1, then following Lemma 1, p∗1 ≤ p∗2, so p1 ≤ p2, which contradicts

the hypothesis.
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Case 4. ξ2 < B12(y) ≤ c. In this case, it is straightforward to see that p1 = pL
1

and p2 = pR
2 , but pR

2 ≤ Pr(B12(Y ) ≥ c | M2) = Pr(B12(Y ) ≤ c |
M1) ≥ pL

1 , so p1 ≥ p2, which contradicts the assumption.

Suppose that a large value of B12(y) implies that M1 is better in fitting the

data y than M2. We are led to the following decision rule.

Rule 1. Select model M1 as true if B12(y) > c and select model M2 otherwise.

On the other hand, from the surprise measure point of view, the less the

surprise under a model, the more the evidence in favor of the model. This

principle leads to the following decision rule.

Rule 2. Select model M1 if p1 > p2.

According to Theorem 4 and under its conditions, Rule 1 is equivalent to Rule

2. Interestingly, Rule 1 has some other connections with frequentist procedures,

more exactly, with conditional frequentist procedures, see Berger, Brown and

Wolpert (1994) and Berger, Boukai and Wang (1997) for details.

4. Properties and Computation of Calibrating Value

4.1. Calibrating value and rejection region

To decide whether a (null) hypothesis (or a model) should be rejected, in

the frequentist framework, a rejection region (FRR) is defined, so that if y lies

in FRR, the null hypothesis is rejected.

From the calibrating point of view, the rule “select M2 as true if B12(y) < c”,

can be rewritten as “reject H1 if B12(y) < c”. So B12(y) < c can be also viewed

as a Rejection Region, denoted by CRR, but differences remain. First, the CRR

is constructed under both models. Second, to construct FRR, the probability of

type I error is usually prespecified. It is usually felt that it should be a function of

the sample size (see Berger and Sellke (1997) and Bayarri and Berger (1999)). In

any case, its imposition is problematic and certain standard levels of significance

are overused. To construct CRR, none of this is needed since the calibrating

value c is computed from the prior equity of the error probabilities under both

models. Interestingly, the probability of type I error will then depend on the

sample size.

Example 1.(continued) For simplicity we consider the case in which θ0 = 0. In

terms of the statistic ȳ, it is easy to show that, if c = c(σ, τ 2, n) is the calibrating

value, CRR has the following form

CRR =

{

y ∈ Y : |ȳ| > τ

a

√

(1 + a) ln
1 + a

c2

}

,
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where a = nτ 2/σ2. The FRR for testing H1: θ = 0 against H2: θ 6= 0 is

FRR =

{

y ∈ Y : |ȳ| > zα/2
σ√
n

}

,

where 0 < α < 1 is a prespecified level of significance. Figure 3 shows c and

r = (τ/a)
√

(1 + a) ln [(1 + a)/c2] as a function of τ 2 for fixed σ = 1 and n = 20,

for τ2 ∈ (0.15, 10, 000). From Figure 3 (left), we can see that c increases with τ 2.

As discussed earlier, when τ 2 grows, the prior becomes more imprecise and, as a

result, the Bayes factor tends to be biased toward model M1. Also, for a fixed

ȳ, the Bayes factor increases with τ 2. Thus, if we use the scale of evidence listed

either in Table 1 or Table 2, model M1 is highly favored for large τ 2. However,

based on our proposed Rule 1, we choose M1 only if B12(y) > c. For instance,

when τ2 = 1, 000, c ≈ 6. Then we select M1 only if B12(y) > 6. From Figure 3

(right), the r curve is relatively flat. This implies that the CRR is relatively

robust to the choice of τ 2. This result demonstrates that our proposed decision

rule is more robust to the choice of an imprecise prior than those using the scale of

evidence constructed based on the value of the Bayes factor. Finally we mention

that, for a given α, CRR matches FRR for a certain τ 2. This is interesting,

since if we use this equality to construct a prior distribution, then Bayesian and

frequentist answers agree.
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Figure 3. Behavior of c (left) and rc (right) as a function of τ2 for Example

1 (σ = 1, n = 20, θ0 = 0).

4.2. Calibration and prior model probabilities

When two models are compared, the Bayes action corresponding to a 0-li function

loss (see Berger (1985) for proper definitions) is to select M1 if

B12(y) >
ψ2

ψ1

l1
l2
,
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where ψi is the prior probability of Mi being the true model and li is the loss associated
with the wrong decision, i = 1, 2.

It would be very difficult to argue that losses can be determined by intrinsic charac-
teristics of the models under comparison since the losses li depend on the specific nature
of the problem at hand. Hence, we assume that li are known. Without loss of generality,
we take l1 = l2. It is straightforward to see that under this decision rule, we select the
model that has the larger posterior probability. Then, using c as the critical value is

equivalent to assigning c to the quotient ψ2/ψ1, so ψ1 = 1/(1 + c) and ψ2 = c/(1 + c).
We do not think that this assignment should be used to substitute for an actual elici-
tation of the ψi. Instead, we consider this assignment as a default elicitation of prior
model probability when the ψi’s are unknown.

Little attention has been paid to default assignments of prior model probabilities
compared to the considerable effort that has been given to assigning default prior dis-
tributions (see Berger and Pericchi (2001) for an excellent overview of default prior
distributions).

Next, we compare the default assignment (ψc
i ) based on the calibrating value with

two default assignments of prior probabilities: equal prior model probability assignment
(ψe

i ) and the assignment (ψs
i ) from Bayesian hypothesis testing. Since we only deal with

two competing models, we have ψe
i = 0.5, i = 1, 2. Given a model p(y | θ), θ ∈ Θ

and a proper prior distribution, π(θ), the two competing models are pi(y | θi) = {p(y |
θi), θi ∈ Θi}, i = 1, 2. Then, ψs

i =
∫

Θi

π(θ)dθ for i = 1, 2. We note that ψe
i and ψc

i

are always well defined while ψs
i is defined only in a few cases. Although the rule based

on ψe
i is attractive, it implies the comparison of Bayes factor with fixed critical values.

Apart from the frequentist consequences as discussed in Section 2, Lavine and Schervish
(1999) showed that fixed critical values can lead to an incoherent procedure.

Example 2. Let p(y | θ) be N(θ, 1), and consider the following models M1: p1(y | θ1) =
{p(y | θ1), θ1 ∈ Θ1} and M2: p2(y | θ2) = {p(y | θ2), θ2 ∈ Θ2}. The prior distributions
are π1(θ1) ∝ N(θ1 | µ, 1)1Θ1

(θ1) and π2(θ2) ∝ N(θ2 | µ, 1)1Θ2
(θ2), which come from the

common prior distribution π(θ | µ) = N(θ | µ, 1).
If Θ1 = [0,∞) and Θ2 = (−∞, 0), it is straightforward to see that Bayes factor

(expressed in terms of µ) is

B12(µ) =







1 − Φ(−y + µ√
2

)

Φ(−y + µ√
2

)







(

1 − Φ(µ)

Φ(µ)

)

,

where Φ(·) denotes the standard normal distribution function.
If µ = 0, the assignment ψe

i seems to be justified, since the models are clearly
balanced. Interestingly, in this case, ψc

i = ψs
i = 0.5, also. If for instance µ = 0.5, then

ψc
1 = 0.48 and ψs

1 = 0.69. If µ = 2, ψc
1 = 0.44 and ψs

1 = 0.98. It seems that assignment
ψc

i is closer to 0.5 than ψs
i , which takes large values quickly. This fact is also shown more

precisely in Figure 4 (left).

Example 3. For the two competing models of Example 2, consider now the subspaces

Θ1 = (−k, k) and Θ2 = (−∞,−k]
⋃

[k,∞) for some k > 0. The Bayes factor (in terms
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of k) is

B12(k) =

(

2 − 2Φ(k)

2Φ(k) − 1

)

(

Φ((k − y

2
)
√

2) − Φ(−(k + y

2
)
√

2)

1 + Φ(−(k + y

2
)
√

2) − Φ((k − y

2
)
√

2)

)

.

If k = 0.6745, then ψs
1 = 0.5 and ψc

1 = 0.559. If k = 1, then ψs
1 = 0.683 and

ψc
1 = 0.547 and if k = 0.1, ψs

1 = 0.080, ψc
1 = 0.550. Figure 4 (right) shows the behavior

of ψi as a function of k ∈ [0.10, 1.25] for the different assignments.

PSfrag replacements

2

4

6

8

10
B12

M1

M2

0.05
0.1

0.15

0.2

0.25

0.3
0.35

0.4
Density

Figure 4. Pr(M1) as a function of µ (left) and k (right). The line with

“o” corresponds to ψc
1; that with “+” corresponds to ψs

1; the line without

symbol corresponds to ψe
1

From Examples 2 and 3, we can see that ψc
i is fairly close to ψe

i , while ψs
i

can easily become very large. Based on our experience with calibrating values,

when the dimensions of the parameters in the two models are similar, 0.50 is a

valid approximation to ψc
i ; when the two dimensions are substantially different,

ψc
i can be very different from 0.50.

4.3. Computation

Let

S(u) =

∫

Ā(u)
(m1(t) +m2(t))dt, (3)

where Ā(u) = {t ∈ Y : B12(t) ≤ u}. Then the calibrating value c is the unique

value such that S(c) = 1. In general, the closed form expression for S(u) is

not available. Thus, we will develop a Monte Carlo (MC) procedure to find the

solution of this integral equation.

Let B
j|i
12 denote independent or ergodic simulated observations of B12(Y ),

with Y having distribution mi(y) for i = 1, 2 and j = 1, . . . , N . Also, let B
(1)
12 ≤
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. . . ≤ B
(2N)
12 denote the ordered values of the B

j|i
12 . Then an MC approximation

to function S(·) is S̃(·), where

S̃(u) =















0 if u < B
(1)
12 ,

r/N if B
(r)
12 ≤ u < B

(r+1)
12 ,

2 if u ≥ B
(2N)
12 .

Thus, S̃(c) = 1 if and only if B
(N)
12 ≤ u < B

(N+1)
12 , so all c values in [B

(N)
12 , B

(N+1)
12 )

are approximate MC solutions to (3). In order to have a unique value, we suggest

taking

c = (B
(N)
12 +B

(N+1)
12 )/2 (4)

as the MC solution. Note that this solution is subject to a maximum error δ =

(B
(N+1)
12 − B

(N)
12 )/2. To reduce computational effort, a bound on the maximum

error may be determined. An initial solution of c from an initial sample of size

N can be computed, N augmented if the desired error bound is not attained.

It will be usually the case that the analytic form of the distribution of B12(Y )

is not available (under one or both models). Thus, sampling B
j|i
12 directly from

the distribution of B12(Y ) under model Mi is an impossible task. However, the

following algorithm can be used.

Step 1. Generate θ
j
i from πi(θi).

Step 2. Given θ
j
i , generate t

j
i from p(· | θ

j
i ,Mi).

Step 3. Compute B
j|i
12 = m1(t

j
i )/m2(t

j
i ).

We repeat the above algorithm for i = 1, 2 and j = 1, . . . , N .

5. Robustifying Bayes Factor Based Decisions

It has been argued that Bayes factor is very sensitive to the prior information,

especially in a context of vague prior information (see for instance O’Hagan (1994,

p.193)). This affirmation is based on the fact that Bayes factors are affected by

even little changes in the prior distribution representing vague information.

Usually, vague prior information is modeled via proper distributions governed

by a parameter, say τ , in which, large values of τ represent vague information.

This parameter is closely related to the prior variance. This may be unwise.

Consider the following three examples.

Example 4. Suppose M1 : Y ∼ Exp(1) and M2 : Y ∼ Exp(θ) (Exp(θ) stands

for exponential distribution with mean θ−1) and suppose that, roughly, θ has

a priori, mean µ. In order to assign a prior distribution (under M2) in such a
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context, we take a Gamma distribution with mean µ and large variance τ , that

is, π2(θ) = Ga(θ | α = µ2/τ , β = µ/τ).

Straightforward algebra shows that the marginal distributions are, m1(y) =

e−y and

m2(y) = µ

(

yτ

µ
+ 1

)−( µ2

τ
+1)

.

The Bayes factor, as a function of τ , is given by

B12(τ) =
e−y

µ

(

yτ

µ
+ 1

)
µ2

τ
+1

.

If another magnitude of vagueness, say τν with ν > 0, is chosen, then

B12(τν) =
e−y

µ

(

yτν

µ
+ 1

)
µ2

τν
+1

.

The quotient between these two quantities is

B12(τν)

B12(τ)
= ν f(τ), f(τ) =

(

yτ
µ + 1

ν

) (

yτν
µ + 1

)
µ2

τν

(

yτ
µ + 1

) (

yτ
µ + 1

)
µ2

τ

.

It is easy to show that f(τ) = 1 + o(1) and hence B12(τν)/B12(τ) = ν(1 + o(1)).

When τ is large, representing vague information, B12(τν) ≈ νB12(τ). Conse-

quently, the Bayes factor is very sensitive to the choice of the value representing

vagueness.

Example 5. Let p(y | β1,βe, σ) = Nn(y | X1β1 +Xeβe, σ
2In), where X1 and

Xe are n × k1 and n × ke matrices, and X2 = [X1 : Xe] is an n × k2 matrix

with k2 = k1 + ke. For simplicity, we assume that X2 is of full rank. β1 and

βe are k1 and ke-dimensional respectively. Take M1: p1(y | φ1, σ) = p(y | β1 =

φ1,βe = 0, σ) and M2: p2(y | β1,βe, σ) = p(y | β1,βe, σ). This is a typical

variable selection problem.

The prior distributions are π1(φ1, σ1) and π2(β1,βe, σ2) = π2.1(β1, σ2)

π2.2(βe), where π1, π2.1 and π2.2 are proper distributions. Let us focus on π2.2

and suppose that vague prior information allows assigning π2.2(βe) = Nke
(βe |

β0
e, τΣ), but with τ large (modeling vagueness). It is straightforward to show

that, as τ becomes large,

π2.2(βe) = (
1

2πτ
)

ke
2 (det(Σ))−1/2 · (1 + o(τ−l)), (5)
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with l < 1.

The marginal distribution under M2 is

m2(y) =

∫ (

1

2σ2
2π

)
n−ke

2

exp{− 1

2σ2
2

(y −X1β1)
′(I − Pe)(y −X1β1)}

×det(X ′
eXe)

1/2
(

1

2σ2
2π

)
ke
2

exp{− 1

2σ2
2

(βe − µ̃)′(X ′
eXe)(βe − µ̃)}

×πD
2.2(βe)det(X ′

eXe)
−1/2π2.1(β1, σ2)dβedβ1dσ2,

with µ̃ = (X ′
eXe)

−1X ′
e(y −Xeβe) and Pe = Xe(X

′
eXe)

−1X ′
e.

Plugging in (5) and integrating out with respect to βe, we obtain

m2(y) =

(

1

2τπ

)ke/2

(det(Σ))−1/2m2.1(y)(1 + o(τ−l)),

with

m2.1(y) =

∫ (

1

2σ2
2π

)
n−ke

2

exp{− 1

2σ2
2

(y −X1β1)
′(I − Pe)(y −X1β1)}

×det(X ′
eXe)

−1/2π2.1(β1, σ2)dβ1dσ2.

After some immediate algebra,

B12(τ) = τke/2(2π)ke/2(det(Σ))1/2 m1(y)

m2.1(y)
(1 + o(τ−l)).

If another magnitude of vagueness, say τν with ν > 0, was chosen then

B12(τν) = (ντ)ke/2(2π)ke/2(det(Σ))1/2(
m1(y)

m2.1(y)
)(1 + o(τ−l)),

and B12(τν)/B12(τ) = νke/2(1+o(τ−l)). When τ is large, we see that B12(τν) ≈
νke/2B12(τ). The high dependence of the Bayes factor on the vagueness is clear.

Example 6. Consider two non-nested models: M1: Y ∼LN(θ1, σ
2) and M2:

Y ∼Exp(θ2), with prior distributions π1(θ1) =N(θ1 | 0, τ2
1 ) and π2(θ2) =Ga(θ2 |

µ2/τ2, µ/τ2). Both, τ1 and τ2 are assumed to be large.

It is straightforward to show that

m1(y) =
1

yτ1
√

2π
exp

{

−(log y)2

2σ2
(
τ2
1

σ2
+ 1)−1

}(

1 +
σ2

τ2
1

)−1/2

,

m2(y) =
µ2

yτ2 + µ

(

yτ2
µ

+ 1

)−(µ2/τ2)

.
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As τ1 becomes large, it can be seen that m1(y) = (1/(yτ1
√

2π))(1 + o(1)). Sim-

ilarly, as τ2 becomes large, m2(y) = (µ2/(yτ2 + µ))(1 + o(1)). In this situation,

the Bayes factor can be approximated by B12(τ1, τ2) ≈ (yτ2 + µ)/(yτ1µ
2
√

2π). If

another scale of imprecise information in π2 is used, say ντ2, then B12(τ1, ντ2) ≈
(yντ2 + µ)/(yτ1µ

2
√

2π), and B12(τ1, ντ2)/B12(τ1, τ2) ≈ (yντ2 + µ)/(yτ2 + µ) ≈
ν since τ2 is assumed to be large. Clearly B12(τ1, ντ2) ≈ νB12(τ1, τ2), and again

the Bayes factor is impacted in the context of vague prior information.

It can be shown that similar conclusions obtain if other changes in the scale

of imprecise information are made, say, changing τ1 by ντ1 in π1 or τ2 by ν2τ2
and τ1 by ν1τ1 in both priors.

Examples 4, 5 and 6 clearly demonstrate that the way in which the Bayes

factor is affected by vagueness is consistent with the way in which the calibrating

value is affected. Hence, the decision based on the calibrating value is unaffected

by the vagueness of imprecise prior specification. This idea is designed to ro-

bustify decisions in a context of little prior information. However, our proposed

rule cannot be used in an extreme case (for example, the limiting improper uni-

form prior for a location parameter) because of the Lindley paradox (although,

as shown in this paper, the calibrating value mitigates the impact of such an

effect).

6. Radiata Pine Data Example

In this example, we use the dataset of Williams (1959), displayed in Table 3,

to further illustrate the proposed methodology. The same dataset is in Carlin

and Louis (2000).

Table 3 represents the maximum compressive strength parallel to the grain

(yi), the specimen’s density (xi) and the density adjusted for resin content (zi)

obtained from n = 42 specimens of radiata pine. It is desired to compare two

models M1 and M2, where

M1 : Yi = α1 + β1(xi − x̄) + ε1i , i = 1, . . . , n,

M2 : Yi = α2 + β2(zi − z̄) + ε2i , i = 1, . . . , n.

The variables εji are i.i.d. from normal distributions with zero mean and vari-

ance σ2
j , respectively. The proposed prior distributions are πi(αi) = N(αi |

3, 000, 106), i = 1, 2, πi(βi) = N(βi | 185, 104), i = 1, 2, and πi(σ
2
j ) = IG(σ2

j |
3, (2·3002)), i = 1, 2, where IG(3, (2·3002)) stands for an inverse gamma distribu-

tion having both mean and standard deviation equal to 3002. Also assume that
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αi, βi and σ2
i are independent a priori, that is, πi(αi, βi, σ

2
i ) = πi(αi)πi(βi)πi(σ

2
i ).

These proposed prior distributions are very vague although still proper.

Table 3. Measures on specimens of radiata pine. yi represents the maximum
compressive strength parallel to the grain; xi is the specimen’s density and
zi the density adjusted for resin content obtained from n = 42 specimens of
radiata pine.

Case (i) yi xi zi

1 3040 29.2 25.4

2 2470 24.7 22.2

3 3610 32.3 32.2
4 3480 31.3 31.0

5 3810 31.5 30.9

6 2330 24.5 23.9

7 1800 19.9 19.2
8 3110 27.3 27.2

9 3160 27.1 26.3

10 2310 24.0 23.9

11 4360 33.8 33.2

12 1880 21.5 21.0
13 3670 32.2 29.0

14 1740 22.5 22.0

15 2250 27.5 23.8

16 2650 25.6 25.3
17 4970 34.5 34.2

18 2620 26.2 25.7

19 2900 26.7 26.4

20 1670 21.1 20.0

21 2540 24.1 23.9

Case (i) yi xi zi

22 3840 30.7 30.7

23 3800 32.7 32.6

24 4600 32.6 32.5
25 1900 22.1 20.8

26 2530 25.3 23.1

27 2920 30.8 29.8

28 4990 38.9 38.1
29 1670 22.1 21.3

30 3310 29.2 28.5

31 3450 30.1 29.2

32 3600 31.4 31.4

33 2850 26.7 25.9
34 1590 22.1 21.4

35 3770 30.3 29.8

36 3850 32.0 30.6

37 2480 23.2 22.6
38 3570 30.3 30.3

39 2620 29.9 23.8

40 1890 20.8 18.4

41 3030 33.2 29.4

42 3030 28.2 28.2

To calculate the calibrating value, c, we use the algorithm given in Sec-
tion 4.3. The Bayes factor is computed using the method of Chib (1995). Let t

be a simulated sample from mi(·), let {α(g)
i , β

(g)
i , (σ2

i )(g)}G
g=1 be the Gibbs output

obtained from the posterior distribution πi(αi, βi, σ
2
i | t) and let p(αi, βi | t, σ2

i )
and p(σ2

i | t, α, β) be the full posterior conditionals of (αi, βi) and σ2
i respectively,

under Mi, for i = 1, 2. Following Chib (1995), the logarithm of the marginal dis-
tribution under Mi is approximated by

log m̂i(t) = log p(t | α̂i, β̂i, σ̂
2
i ,Mi) + log πi(α̂i, β̂i, σ̂

2
i )

− log p(α̂i, β̂i | t, σ̂2
i ) − log π̂(σ̂2

i | t), i = 1, 2, (6)

where π̂(σ̂2
i | t) = G−1∑G

g=1 p(σ̂
2
i | t, α(g), β(g)). Although the approximation in

(6) holds for any (α̂i, β̂i, σ̂
2
i ), the maximum likelihood estimator or the posterior
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mean is recommended. The MC estimate of the Bayes factor B12(t) associated

with t is then B̂12(t) = exp{log m̂1(t) − log m̂2(t)}.
To calculate the calibrating value, the maximum error was fixed at δ = 0.002.

This bound was attained with a simulated sample of the Bayes factor of size 1,110,

(N = 555). The median of B12 under M1 (ξ1) is 124,557.9 while under M2 (ξ2)

it is 9.6 × 10−6. The condition of enough prior separation (see Definition 2) is

clearly attained. The calibrating value c is 1.02 ± 0.002. Since B12(y) = 0.0002

is the observed Bayes factor, model M2 should be selected.

It is also of interest to compute the values of the error probabilities under

both models. For this dataset, we obtain Pr(B12(Y ) ≥ c |M2) = Pr(B12(Y ) ≤
c | M1) ≈ 0.051. We notice that when the above probabilities are large, the

probability of wrong decision increases and, in this case, we should doubt about

the validity of the selection decision.

7. Discussion

Based on the calibration distributions of the Bayes factor, the scale of evi-

dence based on the value of the Bayes factor, such as the one proposed by Jeffreys,

may be inappropriate. Instead, we have proposed a new decision rule based on

intrinsic characteristics of the calibration distributions of the Bayes factor under

both models being compared. This decision rule ensures the same error probabil-

ities a priori under both models. More interestingly, the calibrating value from

which the new decision rule is constructed is determined a priori, i.e., it does not

depend on the data.

In Section 3, we assume that the calibration distribution is continuous. This

assumption can be relaxed. For a discrete distribution, the calibrating value c

can be defined as the solution to infc≥0 |Pr(B12(Y ) ≥ c |M2)−Pr(B12(Y ) ≤ c |
M1)|.

The calibrating value c arises by imposing equal prior error probabilities

under two competing models. However, in some situations the error under one

model could be more important than under the other. If this is the case, the

calibrating value can be modified accordingly. For example, for a continuous

calibration distribution, take Pr(B12(Y ) ≤ c | M1) = k0Pr(B12(Y ) ≥ c | M2),

where 0 < k0 < 1, if the error under M1 is believed to be more serious than

under M2 a priori. In this case, our Rule 1 remains the same, but Rule 2 needs

to be modified.

We have considered for selecting one of the two competing models. However,

calibration distributions can also be used to develop a set of scales for interpreting

the strength of evidence provided by the Bayes factor. One possibility is to use

the surprise ratio r = p1/p2. A large value of r indicates strong evidence in favor

of model M1 and, conversely, a small value of r is an indication of the evidence
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in favor of model M2. Then the scale of evidence in favor of one of the two

competing models can be developed based on the percentiles of the calibration

distributions. Since the calibration distribution is model-dependent, these new

scales are quite different than those given in Table 1 or Table 2.

We have focused only on two models but can generalize to more than two

models. Suppose there are K models being compared simultaneously. As dis-

cussed in Vlachos and Gelfand (2003), obtaining all of pairwise calibration dis-

tributions of the Bayes factors becomes computationally prohibitive and, even if

we did, interpretation becomes very difficult. For the purpose of “screening”, we

may consider the following alternative. Let mk(y) denote the marginal likelihood

for k = 1, . . . ,K. Without loss of generality, we assume m1(y) = max{mk(y)}.
Then, we propose to calibrate only K − 1 Bayes factors B1k = m1(y)/mk(y),

k = 2, . . . ,K. For these K − 1 Bayes factors, we compute K − 1 calibrating

values. Then model M1, along with the models selected based on our proposed

Rule 2, will be retained for further analysis. This strategy is computationally

feasible and it will produce a reasonably good list of candidate models for further

consideration.

Finally, we comment that the methodology developed in this paper can also

be extended to some other Bayesian model assessment criteria such as the pos-

terior Bayes factor (Aitkin (1991)), the pseudo-Bayes factor (Geisser and Eddy

(1979)), and the L measure (Gelfand and Ghosh (1998) and Ibrahim, Chen and

Sinha (2001)). Although the calibration idea can be easily applied to the other

criteria, the Bayes factor may be more attractive, since the properties of the

calibration distributions shown in Theorems 2 to 4 may not be maintained under

the other criteria.
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