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Abstract: Newly available wavelet bases on multi-resolution analysis have exciting

implications for detection of change-points. By checking the absolute value of

wavelet coefficients one can detect discontinuities in an otherwise smooth curve even

in the presence of additive noise. In this paper, we combine wavelet methods and

extreme value theory to test the presence of an arbitrary number of discontinuities

in an unknown function observed with noise. Our approach is based on a Peaks

Over Threshold modelling of noisy wavelet transforms. Particular features of our

method include the estimation of the extreme value index in the tail of the noise

distribution. The critical region of our test is derived using a Generalised Pareto

Distribution approximation to normalised sums. Asymptotic results show that

our method is powerful in a wide range of medium size wavelet frequencies. We

compare our test with competing approaches on simulated examples and illustrate

the method on Dow-Jones data.

Key words and phrases: Change point, general Pareto distribution, nonparametric

regression, peaks over threshold, tail exponent wavelets.

1. Introduction

The emergence of explicit orthonormal bases on multi-resolution analyses,
Daubechies (1992), provides an inspiring tool for applied and theoretic statistical
problems, see e.g., Härdle, Kerkyacharian, Picard and Tsybakov (1998). Wavelet
bases offer a degree of localisation in space as well as in frequency that enables
decomposition of a signal into compactly supported oscillating components. The
coefficients associated with each of those components are called wavelet coeffi-
cients or wavelet transform. A remarkable property of wavelet coefficients is to
reflect the local regularity of the original function, being large where the function
is irregular and small where the function is smooth. This property is very useful
to detect discontinuities or sharp changes in a noisy signal. Wang (1995) has
proposed a test statistic based on the optimisation of the absolute value of the
wavelet coefficients, Odgen and Parzen (1996) have presented a method based
on the cumulative sum of squared wavelet coefficients. These procedures detect
“jump” or “cusp” in a differentiable function observed with noise. A key distri-
bution in these procedures is that of the maximum of noisy wavelet transforms.
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Generally, critical regions for existing wavelet-based tests are obtained by using
asymptotic theory for the maxima of Gaussian processes. In this paper we pro-
pose an alternative method to model extreme values of noisy wavelet transforms.
Our approach is based on the recent Peaks Over Threshold models, Davison and
Smith (1990). The idea, which goes back to Pickands (1975), is that excesses
over a high threshold, asymptotically, follow a Generalised Pareto Distribution
(GPD). At the finest wavelet frequency we use a GPD-approximation to noisy
wavelet transforms to estimate the extreme value index in the tail of the noise
distribution, and we present an asymptotic critical region for wavelet change-
point detection taking into account such information. Our wavelet change-point
detection method can be applied to any resolution level (or wavelet frequency) al-
though asymptotic theory shows that for optimal results one should use medium
size frequencies. Our results also suggest that lower frequencies should be used
to detect change-points in case of heavy-tailed perturbations. We compare our
test with existing methods on simulated examples and illustrate the practical
interest of our procedure using the daily closing Dow-Jones index in the period
1967-2000. Alternative approaches, related works and additional references may
be found in Müller (1999), Lio and Vannucci (2000), Huh and Carriere (2002)
and Raimondo (2002).

The paper is organised as follows: Section 2 presents our model and assump-
tions, as well as a review on wavelets. Section 3 details the GPD-approximation
to noisy wavelet transforms. In Section 4, we derive a peaks over threshold
model for wavelet change-point detection. Numerical properties and finite sam-
ple behaviour of our method are studied in Section 5. Proofs are summarised in
Section 6.

2. Preliminaries

2.1. Model and assumptions

Suppose we observe

Yi = f(i/n) + Ei, i = 1, . . . , n, (1)

where (Ei)i=1,...,n are centred i.i.d. random variables and f is an unknown mean
contribution.

Hypotheses:

• H0: f is smooth (at least continuously differentiable on [0, 1]).

• H1(m): f has “at-least 1 and at-most m” jump points and is otherwise
smooth.
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From observations (1) we wish to test H0 against H1(m). We assume that the
number, the locations, and the sizes of jump points in the function f are unknown.
However, we suppose that a realistic upper bound to the number of change-points
to be tested is known. In our assumption H1(m), m denotes such an upper bound,
it is supposed to be known. A typical example of H0, respectively H1, is given
on the left, respectively right, panels of Figure 1.
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Figure 1. Illustrations of the model (1) and assumption (Cγ) with n = 1, 024.
Top plots: noise-free functions under H0: f(x) = 4x(1− x) (left) and under
H1 : g(x) = f(x) + l1(x > 0.25) − l1(x > 0.5) (right). Middle plots: f and g
observed with Gaussian noise N (0, 0.752), here γ = 0 (light-tail). Bottom
plots: f and g observed with Student-t3 noise (standard deviation = 0.75),
here γ = −1/3 (heavy-tail).

Assumption (Cγ). We assume that the tail of the noise depends on γ as follows:

for γ > 0, |Ei| ≤ B and P (|Ei| > B−x−1) ∼ x− 1
γ L(x); for γ ≤ 0, we assume that

P (|Ei| > x) ∼



b exp(−cx), if γ = 0,

x1/γL(x), if −1
2 < γ < 0,

where b, c and B are positive constants and L(x) is a slowly varying function.
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Remarks. The assumption (Cγ) gives a typical description of distributions
which belong to the domain of attraction of an extreme value law. The three
cases γ > 0, γ = 0 and γ < 0 corresponding, respectively to the Weibull, Gümbel
and Fréchet extreme value distributions, see e.g., Embrechts, Klüppelberg and
Mikosch (1997). A distribution with γ < 0 (respectively, γ ≥ 0) is referred
to as heavy-tailed (respectively, light-tailed) distribution. Note that we restrict
ourselves to γ > −1/2 so that the Var (E1) < ∞. To ease notation, we often
assume that Var (E1) = 1.

To simplify the presentation, we suppose that E1 =d −E1 although such a
symmetry assumption can be removed with minor technical modifications. In-
deed, our results apply to any distribution with γ being the index of the heavier
of the two tails.

We consider asymptotics in the sample size n, and the notation: dn ∼ en

means lim
n→∞(dn/en) = 1.

2.2. Wavelet transforms and local regularity

Wavelet coefficients are discrete transformations of a so-called “mother”
wavelet Ψ. First, a doubly indexed family of wavelets is generated by dilating
and translating Ψ, Ψj,k(u) = 2j/2Ψ(2ju − k), j ∈ N, k ∈ Z. Wavelet coefficients
are defined by ∫

f(u)Ψj,k(u)du, j ∈ N, k ∈ Z.

The operator which associates wavelet coefficients with a given function f is called
the Discrete Wavelet Transform (DWT). Mallat’s pyramid algorithm, Mallat
(1989), is implemented in the wavelet package wavetresh of Nason and Silverman
(1994) and can be used to compute the wavelet coefficients of any n-sampled
signal (wj,k) = W (Y ), where Y = (Y1, . . . , Yn) as in (1) and (wj,k) are n-empirical
wavelet coefficients. W is an orthogonal transformation which depends on the
choice of the wavelet family. The index j, 0 ≤ j ≤ J with 2J+1 = n, is called
the resolution level and corresponds to a frequency of 2−j. The index k, k =
0, 1, . . . , 2j − 1, is called the time (or space) parameter and corresponds to the
dyadic position k/2j . To simplify the exposition we denote by wk the wavelet
coefficient computed from the data (1) at resolution level j and time position
k/2j . Hence, for any resolution level j and index k = 0, 1, . . . , 2j − 1, in the
wavelet domain (1) becomes

wk = wk(f) + wk(E). (2)

Following Härdle, Kerkyacharian, Picard and Tsybakov (1998, p.183), and ap-
proximating integrals by sums (taking into account the L2-normalisation of the
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empirical wavelet transform),

wk(f) =
1√
n

n∑
i=1

Ψj,k(i/n)f(i/n), wk(E) =
1√
n

n∑
i=1

Ψj,k(i/n)Ei. (3)

We recall some basic properties which can be found in Raimondo (1998).
(i) Under H0, the function f is differentiable so that for all resolution levels

j ≥ j0 = 3 and all k = 0, 1, . . . , 2j − 1, |wk(f)| ≤ c1(n2−3j)
1
2 .

(ii) Under H1, there exists at least a point x ∈ [k/2j , (k + 1)/2j) where f has a
jump so that |wk(f)| ≥ c2(n2−j)

1
2 . Note that a translation invariant wavelet

family should be used to ensure that (ii) holds at any resolution level j, see
Section 5.2 for details.

The constants c1, c2 depend only on f . To simplify the exposition we take
c1 = c2 = 1.

2.3. The CLT approach to noisy wavelet transforms

A classical approach to model noisy wavelet transforms invokes the Central
Limit Theorem (CLT). We illustrate the argument using the Haar basis. We recall
that the Haar wavelet is the step function Ψ(x) = l1[0,1/2)(x) − l1[1/2,1)(x), so that
the support of the Ψj,k-wavelet is exactly the dyadic interval [k/2j , (k + 1)/2j).
This implies the following two important consequences.

• At any level j, the coefficients wk(E), k = 0, 1, . . . , 2j are independent ran-
dom variables. (Since the supports of Ψj,k, k = 0, 1, . . . , 2j provide a parti-
tion of [0, 1], we see from (3) that the Ei’s involved in wk(E) are independent
of the Ei’s involved in wk′(E), k �= k′.)

• The number of points i/n, i = 1, 2, . . . in the dyadic interval [k/2j , (k+1)/2j)
is ln = n/2j . By symmetry, we have that

wk(E) =d 1√
n

n/2j∑
i=1

2j/2(±1)Ei =d 1√
ln

ln∑
i=1

Ei =
1√
ln

Sln . (4)

Hence, if Var (E1) = 1 and ln = n/2j → ∞

wk(E) −→d N (0, 1), as n → ∞. (5)

Since the pioneer work of Donoho and Johnstone (1994) on Universal thresholding
(see Section 4.3), the CLT approach has been extensively used in the statistical
wavelet literature, see e.g., Härdle, Kerkyacharian, Picard and Tsybakov (1998,
Chap. 10 and 11). While there is no doubt that, in the limit model, wavelet
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coefficients are normally distributed, Wang (1995), for finite sample size, the
quality of approximation (5) depends on the parent distribution as well as on the
number of terms in the sum (4). Thus, for heavy tailed noise, one may wish to
find an alternative to (5).

3. The GPD Approach to Noisy Wavelet Transforms

In this section, we propose an approximation to noisy wavelet transforms
based on the Generalised Pareto Distribution (GPD). Our goal is to study the
effect of the tail exponent γ of the parent distribution on the distribution of
noisy wavelet coefficients. Of particular interest to us, is the effect of γ on the
distribution of the maximum (in absolute value) of the wavelet coefficients at any
resolution level j.

3.1. Generalised Pareto Distributions

A rather recent approach for modelling extreme events is based on so-called
peaks over threshold methods, Davison and Smith (1990). The basic model
uses the Generalised Pareto Distribution (GPD) for modelling exceedances of a
random variable over a high threshold. The GPD is defined as

H(x; γ, σ) = 1 − (1 − γ
x

σ
)

1
γ , 1 − γ

x

σ
> 0.

Here σ > 0 and γ are real parameters and the support of the distribution is
x > 0 for γ < 0 and 0 < x < σ/γ for γ > 0. For γ = 0 we interpret H to
be the exponential distribution H(x) = 1 − e−x/σ, x > 0. Pickands (1975) has
shown that the GPD arises as a limiting distribution for the excess over large
thresholds. Under (Cγ), for all x > 0,

Pu(|E1| − u > x) ∼u H̄(x; γ, σu) = 1 − H(x; γ, σu), (6)

where Pu denotes the conditional probability given that {|E1| > u}, and u → Bγ

or ∞ according to (Cγ). In (6), σu is a scale parameter which depends on u as
well as on the variance of the parent distribution. More importantly, the shape
parameter γ in the GPD-fit (6) is the same as the tail exponent in our assumption
(Cγ).

3.2. The GPD-paradigm

Under (Cγ) the approximation (6) holds for the parent distribution, the
question remains as to whether such a result can be used for the normalised
sums (2) and (3). Borrowing results from large deviation theory (Nagaev (1965)
and Petrov (1975)) we show that one can use the GPD-approximation to nor-
malised sums. As it turns out, the GPD-approximation really differs from the
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CLT-approximation for heavy-tailed distributions (γ < 0). For light-tailed dis-
tributions (γ ≥ 0) the GPD-approximation to normalised sums reduces to an
exponential distribution (γ = 0) as if the distribution was normal.

Proposition 1. For any δ, 1 < δ < 2, let en = (n2−3j)
1
2 , ln = n/2j , vn = en+dn

where

dn =



√

δ log n if γ ≥ 0

l
δ−1
2

n if −1
2 < γ < 0.

For γ < 0, define the sequence σn by (6) with u = dn. For γ ≥ 0, define the
sequence σn by (6) with u = dn and E1 =d N (0, 1). Under assumptions (Cγ) and
H0, for n large enough, and all x > 0,

P
(
|wk| − vn ≥ x

)
≤

{
H̄(x; 0, σn) if γ ≥ 0

H̄(x; γ, σn) if −1
2 < γ < 0.

(7)

Of course (7) is relevant only when |wk| exceeds the threshold vn. In the next
proposition we give a condition on the resolution level j which ensures that there
are at least a finite number of exceedances over the threshold vn. Our condition
depends on the sample size, and an 	 bn means that there exists some positive
constants c1, c2 such that, for large n, c1bn ≤ an ≤ c2bn.

Proposition 2. Let |w(k)| be the ordered (absolute value of) wavelet coefficients
at resolution level j so |w(1)| ≥ |w(2)| ≥ · · · ≥ |w(2j)|. Let vn be the threshold
defined in Proposition 1. Under assumptions (Cγ) and H0, if the resolution level
j = j(n) satisfies


2j 	 n

(log n)δ
, 1 < δ < 2, if γ ≥ 0,

2j 	 n
γ+1

δ , 1 < δ < 1 − γ, if − 1
2 < γ < 0,

(8)

then for any arbitrary constant m ≥ 1,

P
(
|w(m)| > vn

)
−→ 1, as n → ∞. (9)

3.3. Fitting the GPD to noisy wavelet transforms

Tajvidi (2004) compares performances of different methods for GPD-parame-
ter estimation. It is known that if the sample size is large (e.g., n > 500)
Maximum Likelihood Estimation (MLE) is preferred because of its efficiency
properties c.f. Hosking and Wallis (1987) and Smith (1985). Below and later,
we compute the MLE of the GPD parameters, namely γ̂, σ̂, from observations
(|wk| − un)+ = max(|wk| − un, 0), at the highest resolution level J , 2J+1 = n
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(where we have the lowest signal to noise ratio). An illustration of a GPD-fit to
noisy wavelet transforms is given in Figure 2.
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Figure 2. Illustration of the GPD-fit to noisy wavelet transforms. Depicted
are the absolute values of wavelet coefficients (|wk|) at the highest accessi-
ble resolution level (J = 9). Top plots: the wavelet coefficients (wk) are
computed from observations of Figure 1 in light tailed noise. Bottom plots:
the wavelet coefficients (wk) are computed from observations of Figure 1 in
heavy tailed noise. GPD-fit: (clockwise from top left) un = 0.51, γ̂ = 0.22,
σ̂ = 0.73; un = 0.47, γ̂ = 0.28, σ̂ = 0.72; un = 0.34, γ̂ = −0.11, σ̂ = 0.43;
un = 0.33, γ̂ = −0.07, σ̂ = 0.46.

A common technique to find an appropriate threshold un is to use a mean
residual life plot, Embrechts, Klüppelberg and Mikosch (1997). Since the ex-
pected value of exceedances over the threshold u is a linear function of the thresh-
old, a plot of mean residual life against u should be approximately linear. Here
we chose the smallest value of un in the region where the plot is approximately
linear. Note that for large sample size, one can use a data-driven method for
choosing the threshold, see Section 5.3.

4. Peak-Over-Threshold Model for Noisy Wavelet Transforms

Let j be any resolution level, the basic idea is to use the GPD-paradigm
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without having to estimate the theoretical threshold vn. Instead, we consider
the statistics

Ti = |w(i)| − |w(m+1)| , i = 1, . . . ,m. (10)

Under H0, Proposition 2 shows that, with probability tending to one, Ti < |w(i)|−
vn. Hence, the GPD-paradigm (Proposition 1) can be used to derive asymptotic
confidence bounds for exceedances Ti, c.f. Theorem 1. This is illustrated in the
left panels of Figure 3.
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Figure 3. Peak Over Threshold model for noisy wavelet transforms (10),
m = 5. Depicted are the absolute values of wavelet coefficients (|wk|) at
resolution level j = 5. Top plots: the wavelet coefficients (wk) are computed
from observations of Figure 1 in light tailed noise. Bottom plots: the wavelet
coefficients (wk) are computed from observations of Figure 1 in heavy tailed
noise. The threshold line is drawn at |w(6)| after maximum selection, see
Section 5.2. The critical region, at significance level β = 0.05, is drawn
according to (11) using estimates γ̂ and σ̂ derived in Figure 2.

4.1. Critical region and confidence bounds

In the theorem below we combine results of propositions 1 and 2 to derive
100(1 − β)% confidence bounds for the combined m-exceedances (10).
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Theorem 1. Let β be an arbitrary number, 0 < β < 1, and put

ci =



−σ log

(
β

m(m−i+1)

)
if γ ≥ 0,

σ
γ

(
1 −

(
β

m(m−i+1)

)γ)
if −1

2 < γ < 0,
(11)

Rn(β) =
⋃

i=1,...,m

{
Ti > ci

}
. (12)

Under assumptions (Cγ) and H0, if the level j satisfies (8), then limn P (Rn(β)) ≤
β.

Of course when applying these bounds in practice we use estimated values
of γ and σ.

4.2. Testing and counting discontinuities

The next theorem states that the previous confidence bounds can be used to
detect discontinuities. Indeed condition (8) on the resolution level ensures that
the method is powerful. This is illustrated in the right panels of Figure 3.

Theorem 2. Let Rn(β) be the critical region defined in (12). Under assumptions
(Cγ) and H1(m), if the resolution level j satisfies (8), then limn P (Rn(β)) = 1.

Remark 1. In the case of light-tailed noise, the GPD-test (12) is quite close
to the method initiated by Wang (1995). An examination of the critical value
(11) shows that it is not too far from the Universal threshold of Donoho and
Johnstone (1994). In contrast, we see that the GPD-test takes into account the
tail exponent γ for heavy-tailed distributions.

Remark 2. A close examination of the condition (8) suggests that lower resolu-
tion levels should be used to detect discontinuities in the presence of heavy-tailed
noise.

Another attractive aspect of wavelet methods is that, with no additional
effort, we can estimate the number and the locations of jump points under H1(m),

Corollary 1. Under H1(m), denote i1 and 0 < θ1 < · · · < θi1 be the number
and locations of the jumps of the function f , 1 ≤ i1 ≤ m. Take î = sup

(
i :

1 ≤ i ≤ m, Ti > ci

)
and let k1 ≤ k2 ≤ · · · ≤ kî index the ordered DWT, i.e.,

|wk1| ≥ |wk2 | ≥ · · · ≥ |wkî
|. Under the same assumptions as in Theorem 2,

(̂i, k1/2j , k2/2j , . . . , kî/2
j) → (i1, θ1, . . . , θi1), in probability, as n → ∞.

An illustration of this result can be seen on the left panels of Figure 3.
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4.3. Competing approaches

Wavelet competitors to the GPD-method like Wang (1995) or Odgen and
Parzen (1996) derive from arguments in asymptotic theory for Gaussian pro-
cesses. We refer to these methods as the “Universal” and the “Goodness-Of-Fit”
methods, respectively. Let ŝ1, ŝ2 be the estimated standard deviation of rvs E1,
(E1)2 respectively.

- The “Universal”-method (UNI) rejects H0 when maxk=1,...,2j |wk| >

ŝ1
√

2 log n.

- The “Goodness-Of-Fit” method (GOF) rejects H0 when

max
k

1
ŝ2

√
2j

( k∑
i=1

w2
i −

k

2j

2j∑
i=1

w2
i

)
> 2.984. (13)

A recent non-wavelet approach based on the sums of squared differences of the
data has been proposed by Müller (1999). These are formed with various span size
L, and are used to estimate the amount of discontinuity in the data d1 =

∑l
i=1 c2

i ,
where ci’s are jump-sizes. We refer to this method as the “U-statistics”-method.
Let µ̃4, σ̃2 be the estimated 4th moment and variance, respectively.

- The “U-statistics”-method (UST) rejects H0 when
√

L|d̂1|√
(12/5)(µ̃4 − σ̃4)

> 1.961. (14)

Critical regions (13) and (14) are given at significance level β = 0.05.

5. Numerical Properties

5.1. Simulation study

In light of (7), we expect GPD to differ from UNI and GOF for heavy-tailed
distributions. This is confirmed by our simulation results where we compared
performances of GPD to competing approaches presented in Section 4.3. For
each method we calculated Monte-Carlo approximations to the probability of
rejecting H0 under H0 and under H1. The results are based on 1000 independent
simulations with different noise levels (increasing the standard deviation sd from
0.5 to 1) and two different noise types, in all cases n = 1, 024. We used normal
noise to illustrate performances of the methods for light tailed perturbations
and Student-t3 noise to illustrate performances of the methods for heavy-tailed
perturbations. We used several test functions f (constant, linear and quadratic)
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but we report a detailed summary (Table 1) for only one function f , as a similar
pattern was observed for other cases. Our findings are the following.

Table 1. Monte-Carlo approximations to the probability of rejecting H0.

Under H0 Under H1

sd Method Gaussian Student-t3 Gaussian Student-t3
0.5 GPD 0.002 0.001 1.000 1.000
0.5 GOF 0.003 0.003 1.000 1.000
0.5 UNI 0.013 0.164 1.000 1.000
0.5 UST 0.002 0.108 1.000 0.989
0.75 GPD 0.002 0.001 1.000 0.919
0.75 GOF 0.029 0.021 1.000 1.000
0.75 UNI 0.017 0.185 1.000 1.000
0.75 UST 0.029 0.260 0.991 0.957
1 GPD 0.002 0.001 0.988 0.979
1 GOF 0.090 0.069 1.000 1.000
1 UNI 0.020 0.431 1.000 1.000
1 UST 0.156 0.405 0.915 0.875

The results are based on 1,000 independent simulations of the model (1)
with f = 0 under H0 and f(x) = l1(x>0.25) under H1.

• The UNI-method works very well under Gaussian noise. It can tolerate low
signal-to-noise ratio as seen Table 1, sd = 1. On the other hand, it is quite
sensitive to heavy-tailed noise perturbations with a large type-I error for
Student noise perturbations, even for sd = 0.5.

• The GOF-method has good results for both Gaussian and Student noise.
It does not tolerate low-signal-to-noise ratio (sd = 1) as well as UNI but it
has much better performances for Student noise.

• The GPP-method works very well for both Gaussian and Student noise. It
can handle low-signal-to-noise ratio (sd = 1).

• The UST-method works well for Gaussian noise and constant signal, as
seen in Table 1. Also, in Table 1, we see that UST is quite sensitive to
heavy-tailed noise perturbations with a large type-I error for Student noise
perturbations. Further, we noticed that this method does not work as well
as the wavelets method for non-constant signal − we observed a high type-I
error when tested with the quadratic function of Figure 1.

Conclusion. The results show that both GOF and GPD can detect disconti-
nuities under heavy-tailed noise as well as under Gaussian noise. We note that
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GPD can tolerate a lower signal-to-noise-ratio than GOF. For Gaussian noise,
UNI and GPD have better results than GOF.

5.2. Choosing the wavelet family

Existing wavelet methods for change-points detection (UNI or GOF) were
originally developed using the Daubechies wavelet families, Daubechies (1992).
Such wavelet families are non-translation invariant. However, a simple modi-
fication of the wavelet transform can be done to obtain a translation-invariant
wavelet family, Raimondo (1998). For change-point estimation and detection
we recommend the use of such a translation invariant wavelet family as this en-
hances the power of detection for discontinuities. Indeed, this is the case here and
throughout the simulation study where the translation-invariant Haar-wavelet
was used. Note that for counting discontinuities one needs to order the invariant
wavelet transforms in the following fashion: if |w(1)| = |wk| then we disregard
|wk±1| in the selection of |w(2)| and so on. This avoids counting discontinuities
twice, see Raimondo (1998, Section 3).

5.3. Choosing the threshold

The GPD-fit to noisy wavelet transforms, as described in Section 3.3, is based
on an appropriate choice of the threshold un. Choice of threshold is a matter of
trade-off between bias and variance. A too-high threshold results in fewer obser-
vations and hence high variance of the estimates, and a too-low threshold makes
the estimates severely biased. A good choice of threshold is rather important in
small samples, and in practice it is common to use a mean residual plot to find
a suitable one. In our simulation study, we used the 10% upper quantiles as the
thresholds. This is not expected to affect the results mainly because the sample
sizes are fairly large, e.g., 512 or 1,024.

5.4. Application to Dow Jones index

We applied our method to the logarithm of daily closing Dow Jones index
starting from October 16th, 1967 until May 1st, 2000 (213 = 8, 192 data points).
We refer to Huang and Litzenberger (1988) for a discussion on the validity of
(1) for stock market data. The Dow Jones data, and detected change points,
are shown in Figure 4. Interestingly, our analysis not only confirms some well
known historical dates of crashes in the Dow Jones index, but also reveals some
other important dates of high variation in the Dow Jones index. The first crash
is in September 1974 and corresponds to the oil crisis at that time. The next two
change points are in August and September of 1982 which might be explained
by conflicts in the Middle East. Probably the disturbances in supply of oil from
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main Middle East producers have been followed by a boom in the Dow-Jones.
October 1987 is the notorious “Black Monday” and the last two crashes in August
1998 and March 2000 are related to the so-called “adjustments” in the market.
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Figure 4. Logarithm of daily Dow Jones index from October 16th, 1967 to
May 1st, 2,000 (213 = 8192 data points). The dashed lines show the change
points detected by GPD-method with m = 15, j = 11 at significance level
β = 0.05.

6. Proofs

Proof of Proposition 1. Under H0, |wk(f)| ≤ en. It follows from the triangle
inequality that

P
(
|wk| − vn ≥ x

)
≤ P

(
|wk(E)| ≥ dn + x

)
= P

(
|Sln/

√
ln| ≥ dn + x

)
. (15)

Heavy-tailed case: dn = lνn with 0 < ν = (δ−1)/2 < 1/2. By Petrov (1975, p.251),
P

(
Sln/

√
ln > lνn + x

)
∼ lnP

(
E1 >

√
ln(lνn + x)

)
. Using (Cγ), P

(
Sln/

√
ln >

lνn + x
)
∼ l

1+(1/(2γ))
n (lνn + x)1/γL(

√
ln(lνn + x)). Since −1/2 < γ < 0 we have

1+(1/(2γ)) < 0. Hence l
1+(1/(2γ))
n L(

√
ln(lνn+x)) = o(L(lνn+x)) so that, for n large

enough (n ≥ n0), P
(
Sln/

√
ln > lνn+x

)
≤ (lνn+x)1/γL(lνn+x) ∼ P (E1 > lνn+x). By

symmetry (E1, . . . , En) =d (−E1, . . . ,−En). For n ≥ n0, P
(
|Sln/

√
ln| ≥ lνn + x

)
≤

P (|E1| > lνn + x). For all x > 0, P (|E1| > lνn + x) ≤ P
(
|E1| > lνn + x | {|E1| > lνn}

)
.
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Combining this with (15) and using (6) with un = lνn, shows (7) for γ < 0.

Light-tailed case: dn =
√

δ log n. By Petrov (1975, p.218), P
(
Sln/

√
ln > dn+x

)
∼

P
(
N (0, 1) > dn + x

)
. Combining (15) and (6) with un =

√
δ log n, as previously,

shows (7) for γ ≥ 0.

Proof of Proposition 2. We prove (9) with m = 1 (extension to any m < ∞
is straightforward). We show that under some condition on the resolution level
j,

P (|w(1)| ≤ vn) −→ 0, as n → ∞. (16)

For the Haar basis we recall that (wk)k=0,1,...,2j are independent random variables,
hence P (|w(1)| ≤ vn) = P (maxk=0,...,2j |wk| ≤ vn) =

∏2j

k=0 P (|wk| ≤ vn). Using

1−x ≤ exp(−x), 0 ≤ x ≤ 1, P (|w(1)| ≤ vn) ≤ exp
(
−∑2j

k=0 P (|wk| > vn)
)
. Then

(16) will follow if we prove that

An =
2j∑

k=0

P (|wk| > vn) −→ ∞, as n → ∞. (17)

Let dn be any positive sequence. Under H0, |wk(f)| ≤ (n2−3j)1/2 = en. Hence
with vn = en + dn, by the triangle inequality, |wk| ≥ |wk(E)| − en. It follows

P (|wk| > vn) ≥ P (|wk(E)| > vn + en) = P (|wk(E)| > dn + 2en). (18)

Recall that ln = n/2j and let Sln =
∑ln

i=1 Ei. From (4) we see that

P (|wk(E)|>dn +2en) = P (|Sln/
√

ln|>dn +2en) ≥ P (Sln/
√

ln >dn +2en). (19)

Heavy-tailed case: dn = lνn where 0 < ν < 1/2. By definition of sequences dn, en

we have dn + 2en = dn(1 + o(1)). Thus, there exists a constant c > 0 such that,
for n ≥ n0, dn + 2en ≤ c dn. From (18), (19) we have that, for n ≥ n0,

P (|wk| > vn) ≥ P
(
Sln/

√
ln > c dn

)
= P

(
Sln > c l

1
2
+ν

n

)
. (20)

If −1/2 < γ < 0, Nagaev’s condition is satisfied, hence by Petrov (1975, p.251),

P
(
Sln > c l

1
2
+ν

n

)
∼ lnP

(
E1 > c l

1
2
+ν

n

)
. Using (Cγ), P

(
Sln > c l

1
2
+ν

n

)
∼

l
1+ 1

2γ
+ ν

γ
n L2(n) for some slowly varying function L2. Summing terms in (20),
for n ≥ n0,

2j∑
k=0

P (|wk| > vn) ≥ 2jP
(
Sln > c l

1
2
+ν

n

)
∼ 2j n1+ 1

2γ
+ ν

γ 2−j(1+ 1
2γ

+ ν
γ
) L2(n).
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Letting δ = 1+2ν, it follows that An ≥ (n(2γ+δ)2−jδ)
1
2γ L2(n) which, for −1/2 <

γ < 0, proves (17) for all resolution levels j satisfying (8).

Light-tailed case: dn =
√

δ log n, 1 < δ < 2. From (8), dn+2en = dn+o(1). Using
(18) and (19), P (|wk| > vn) ≥ P (Sln/

√
ln > dn +o(1)) ∼ P (Sln/

√
ln >

√
δ log n).

For γ ≥ 0, Cramer’s condition is satisfied, c.f. Petrov (1975, p.54). Since dn =
o(
√

ln), we use Petrov (1975, p.218) to let P (Sln/
√

ln >
√

δ log n) ∼ P (N (0, 1) >√
δ log n). It follows that P (Sln/

√
ln >

√
δ log n) ∼ n−δ/2 (2πδ log n)−1/2 and

2j∑
k=0

P (|wk| > vn) ≥
2j∑

k=0

P
(
Sln/

√
ln >

√
δ log n

)
∼ 2j n− δ

2
1√

2πδ log n
.

Thus, for γ ≥ 0, (17) holds for all resolution levels j satisfying (8).

Proof of Theorem 1. Let An the event that |w(m+1)| > vn; we have P (Ti >
x|An) ≤ P (|w(i)|−vn >x|An). With a slight abuse of notation, writing |wi|, |wi+1|,
. . . , |wm| for the unordered set of coefficients whose ordered sequence is |w(i)| ≥
|w(i+1)| ≥ · · · ≥ |w(m)|, we obtain

P (|w(i)| − vn > x|An) = P ( max
k=i,...,m

|wk| − vn > x|An) ≤
m∑

k=i

P (|wk| − vn > x|An).

By propositions 1 and 2, P (|wk| − vn > x|An) ∼ P (|wk| − vn > x) ≤ H̄(x, γ, σn).
Writing σ = σn for n ≥ n0,

P (Ti > x|An) ≤ (m − i + 1)H̄(x; γ, σ), i = 1, . . . ,m. (21)

Since there are at most m exceedances, we choose x = ci = c(i,m, β, γ, σ) such
that H̄(ci; γ, σ) = β/(m(m − i + 1)), from which (11) is derived. This, together
with (21) gives for n ≥ n0,

P (Rn(β)|An) ≤
m∑

i=1

P (Ti > x|An) ≤
m∑

i=1

(m − i + 1)H̄(ci; γ, σ) ≤ β.

Taking the limit on the left hand-side and applying Proposition 2 proves the
Theorem.

Proof of Theorem 2. To simplify the exposition we suppose that m = 1 and
Var (E1) = 1 (extension to other cases is straightforward). The theorem will
follow if we prove that

T1 −→P ∞, as n → ∞. (22)

By (2), along with the triangle inequaly |wk| ≤ |wk(f)| + |wk(E)| and |wk| ≥
|wk(f)| − |wk(E)|. Let Bn = {maxk=0,...,2j |wk(E)| ≤ xn}, where

xn =



√

2 log n, if γ ≥ 0,

n− γ
2 , if −1

2 < γ < 0.
(23)
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Under H1(1), and for the Haar basis, there exists a unique index k1 such that
|wk1(f)| ≥ (ln)

1
2 whereas |wk(f)| ≤ (n2−3j)

1
2 = en for any k �= k1, see Raimondo

(1998). Working conditionally on Bn and using definitions (8), (23) of xn and jn

in terms of n, it is not hard to check that en = o(xn), xn = o(
√

ln). It follows that
|wk| ≤ en+xn = O(xn), k �= k1 and |wk1 | ≥

√
ln−xn =

√
ln(1+o(1)). This shows

that for n ≥ n0, |w(1)| = maxk |wk| = |wk1 | ≥
√

ln(1 + o(1)). Since |w(2)| = |wk|
for some k �= k1, we have T1 = |w(1)|−|w(2)| ≥

√
ln−O(xn) =

√
ln(1+o(1)). This

proves (22) if we show that P (Bn) −→ 1, as n → ∞. For light-tailed distributions,
this follows from Cramer Large Deviation Theory, see Petrov (1975, p.218). For
heavy-tailed distributions we note that

P (Bc
n) = P ( max

k=0,...,2j
|wk(E)|>xn) ≤

2j∑
k=0

P (|wk(E)|>xn) = 2
2j∑

k=0

P (wk(E)>xn).

(24)
Recalling that P (wk(E) > xn) = P (Sln/

√
ln > xn) = P (Sln >

√
ln xn), and

applying Petrov (1975, p.251) with x =
√

ln xn =
√

ln n− γ
2 ,

P (Sln >
√

lnn− γ
2 ) ∼ lnP (E1 >

√
lnn− γ

2 ) ∼ l
1+ 1

2γ
n n− 1

2 L1(n) (25)

for some slowly varying function L1(n). Combining (24) and (25), P (Bc
n) =

O
(
2j l

1+ 1
2γ

n n− 1
2 L1(n)

)
= O

(
(nγ+12−j)

1
2γ L1(n)

)
and this gives P (Bn) −→ 1,

under condition (8).
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